Answer:
Evolutionary psychology
Explanation:
Evolutionary psychology is the theoretical branch of psychology that describes that how the human behavior have evolved by the effect of evolution through a lens
Only body is not effected by evolution but the brain is also sculpted; the behavior it produce and psychological procedure.There were many psychological mechanisms that were involved in survival of species known as psychological adaptation.The psychological adaptations and their byproducts that are activated in modern environment are different from their ancestral environment in some features.Example;
Our brain insructs us to behave in an adaptive way.
Tadpoles raised in water with atrazine levels of 0.1 ppb should produce a higher percentage of male frogs with gonadal abnormalities than those raised in pure water.
This statement is an example of:
A. a question leading to a hypothesis
B. a hypothesis
C. a testable prediction leading to design of an experiment
D. data from an experiment
E. an interpretation of data
Answer:
Option C, a testable prediction leading to design of an experiment
Explanation:
The statement here predicts the outcomes of raising tadpoples is water with atrazine levels of 0.1 ppb as compared to the ones raised in pure water. Hence, it cannot be question. Now since this prediction can be tested, an experiment can be designed where a certain number of tadpoles can be raised in pure water and the same number of tadpoles can be raised in water with 0.1ppb of atrazine level. The difference in two populations can be then compared to either support the prediction or contradict it.
Hence, option C is correct
and other microbes can be used to "clean up" an oil spill by breaking down oil into carbon dioxide and water. Two samples isolated from the Deepwater Horizon leak in the Gulf of Mexico were labeled A and B. The DNA of each was isolated and the percent thymine measured in each sample. Sample A contains 19.3 % thymine and sample B contains 29.7 % thymine. Assume the organisms contain normal double‑stranded DNA and predict the composition of the other bases.
Answer:
Explanation:
"Bacteria and other microbes can be used to "clean up" an oil spill by breaking down oil into carbon dioxide and water. Two samples isolated from the Deepwater Horizon leak in the Gulf of Mexico were labeled A and B. The DNA of each was isolated and the percent thymine measured in each sample. Sample A contains 19.3 % thymine and sample B contains 29.7 % thymine. Assume the organisms contain normal double‑stranded DNA and predict the composition of the other bases."
DNA is made up of four bases: Adenine (A), Thymine (T), Cytosine (C) and Guanine (G).
Adenine and Thymine are paired and are joined by two hydrogen bonds: A-T.Cytosine and Guanine are paired and are joined by three hydrogen bonds: C-G.If Sample A contains 19.3% thymine, therefore it contains the same percentage of adenine. Added together 19.3+19.3=38.6%.
Since A-T is 38.6%, therefore C-G is 100 - 38.6% = 61.4%
Dividing 61.4% in half, C and G are 30.7% each.
In summary, for Sample A:
Adenine = 19.3%
Thymine = 19.3%
Cytosine = 30.7%
Guanine = 30.7%
For Sample B, since thymine is 29.7%, adenine is also 29.7%
So A-T is 29.7 +29.7 = 59.4%
C-G = 100 - 59.4 = 40.6%
Dividing 40.6% in half, C and G are 20.3% each
In summary, for Sample B:
Adenine = 29.7%
Thymine = 29.7%
Cytosine = 20.3%
Guanine = 20.3%
Which of the following is/are true?
A. Sympatric speciation most commonly occurs due to sexual (mate) selection.
B. Sympatric speciation can only occur when a single species occupies the same geographic location.
C. A plant species obtain an extra set of homologous chromosomes. This would be an example of sympatric speciation.
D. A flood causes the loss of all red-headed males ducks in a population. As a result, the red-headed female ducks must breed with yellow-headed male ducks, which are not their preferred mates. This is an example of sympatric speciation.
E. The fungal pathogen Mycosphaerella graminicola is found worldwide with its host, cultivated wheat. Mycosphaerella graminicola is host specific and does not occur on other host species such as Barley.
The closest known relative of M. graminicola is a barely-adapted pathogen Septoria passerinii.
You are researching these fungi and have the following hypothesis: If M. graminicola and S passerinii do not have a common ancestor that lived in one geographic area where wheat and barley grew, it may be possible that a common ancestor gave rise to these two species. This would be classified as sympatric speciation.
Your hypothesis and definition of sympatric speciation is logical.
Answer: A, C, and E are correct
Explanation:
Sympatric speciation is a random or naturally occurring event whereby organisms of the same species:
- live in the same territory or nearby territories ( i.e no single specie occupy
an area in isolation)
- DO NOT interbreed, but select a sexual mate from a much diverse territory and practice non-random mating, which favors some genes results in an uneven gene flow or disruption of alleles previously common among the population.
- produce offspring with extra sets of chromosomes known as polyploidy, leading to show genetic variations
Finally, M. graminicola and S passerinii are Sympatric species based on the already given explanation.
Many properties of living things involve the transfer and transformation of energy and matter. For example, plant chloroplasts convert energy from sunlight to what forms of energy or matter?
Answer:all of
Explanation:
Was the rate of increase of sucrase activity greater when sucrose concentration went from 2.5 to 7.5 g/l or when it went from 22.5 to 27.5 g/l?
Answer: It is greater when sucrose concentration went from 2.5 to 7.5g/l.
Explanation: The rate of reaction of an enzyme is known to be affected by the rate of concentration of its substrate, which in this case is the sucrose Solution.
If the rate of increase of concentration is high,the activities of the enzyme SUCRASE will increase accordingly, in order to breakdown the substrate.
The rate of increase of Sucrose from 2.5 to 7.5g/l is higher(300%) than the rate of Increase of Sucrose from 22.5 to 27.5g/l (1.22%). It is expected under circumstances that the action of SUCRASE will increase at a rate higher in the first Solution than in the second Solution.
The rate of increase in sucrase activity depends on the concentration of sucrose and whether or not the enzyme is saturated. The increase could be greater at lower concentrations (2.5 to 7.5 g/l) if sucrase is not yet saturated. The increase might be less at higher concentrations (22.5 to 27.5 g/l) if sucrase is near or at saturation point.
Explanation:The increase in sucrase activity is generally considered to be a response to the concentration of substrate present, in this case, sucrose. The increase in activity happens because more substrate (sucrose) is available for the enzyme (sucrase) to act upon. However, there is a limit to this increase. Once the enzyme is saturated with substrate, further increases in substrate concentration do not increase the enzyme's activity. This is known as the saturation point.
To determine whether sucrase activity increased more when sucrose concentration increased from 2.5 to 7.5 g/l or from 22.5 to 27.5 g/l, we would need specific data on the rate of sucrase activity at these different concentrations. It's possible that the increase from 2.5 to 7.5 g/l was greater if this is in the ascending portion of the enzyme activity curve and the sucrase was not yet saturated with sucrose. Conversely, the increase from 22.5 to 27.5 could be lesser if the sucrase is near or at saturation point.
Learn more about sucrase activityIn the 1960s, a population of squirrels was being studied in Alabama and the coat color of the squirrels was found to range from the more common gray color (dominant) to the less common red color (recessive). When they sampled an area, they found 536 gray squirrels and 64 red squirrels. Assuming the population is at Hardy Weinberg's equilibrium, answer the following questions:1. What is the frequency of the homozygous recessive individuals?
Answer: Assuming the population is at Hardy Weinberg's equilibrium, the frequency of the homozygous recessive individuals is 0.107
Explanation: Hardy-Weinberg law provides an equation to relate genotype frequencies and allele frequencies in a randomly mating population. p² + 2pq + q² = 1 where p² = homozygous dominant, q² = homozygous recessive and 2pq = heterozygous.
Also, for two alleles, p and q, p + q = 1
Using these equations and the information provided in the question given, the total number of squirrels is 600.
Grey squirrels frequency, p² = 536/600 = 0.893
Red squirrels frequency, q² = 64/600 = 0.107
Therefore, the frequency of recessive individuals (Red) = 0.107
The frequency of the homozygous recessive individuals in the squirrel population, assuming Hardy-Weinberg equilibrium, is 10.67%, calculated by dividing the number of red squirrels by the total population.
Explanation:To determine the frequency of the homozygous recessive individuals in a squirrel population, we can use the Hardy-Weinberg equation. In this case, the recessive phenotype is represented by the red squirrel coloration. We are given that there are 64 red squirrels, which are the homozygous recessive individuals (rr), out of a total of 600 squirrels. The frequency is the number of homozygous recessive individuals divided by the total population.
Since the population is at Hardy-Weinberg equilibrium, we know that the sum of the genotype frequencies (p² + 2pq + q²) equals 1. In this context, 'p' represents the dominant allele frequency, and 'q' represents the recessive allele frequency. The frequency of the homozygous recessive individuals (q²) equals the number of red squirrels (recessive phenotype) divided by the total population.
Therefore, the frequency of the homozygous recessive squirrels is:
q² = 64 red squirrels / 600 total squirrels = 0.1067 (or 10.67%)
This value represents the frequency of the homozygous recessive individuals in the squirrel population.
Plants and animals die without air. Why? Which gases do plants and animals inhale and exhale? What are the role of these gases in plants and animals? (Note: Air is composed of 78% nitrogen, 21% oxygen, 0.9% argon, 0.03% carbon dioxide, and other minor gases).
Answer:
Plants and animals both are living organisms that are directly dependent on the air. The air is comprised of various gases with definite proportions such as 78% of nitrogen, 21% of O₂, 0.9% of argon, 0.03% of CO₂, and other minor gases.
Oxygen (O₂) is the main gas that is essential for life to exist. Without this gas, no organisms can survive.
The organisms inhale oxygen (O₂) gas and exhale carbon dioxide (CO₂) gas.
These gases play an important role in the lives of plants and animals as it helps in carrying out the process of respiration. This process is essential in order to generate energy in the body of the organisms where the food particles (commonly known as sugar) are disintegrated by the cells. This is how an organism respire by inhaling O₂ gas and exhaling CO₂ gas.
Plants and animals die without air because they need to interchange oxygen and carbon dioxide with their surrounding environment to carry out cellular respiration (plants and animals) and photosynthesis (only plants).
Cellular respiration refers to the metabolic process by which aerobic cells (both plant and animal cells) produce energy in the form of ATP by using the energy stored in the chemical bonds of foods.During cellular respiration, oxygen is used as a reactant, whereas carbon dioxide is eliminated as a waste product.On the other hand, photosynthesis refers to the metabolic reactions by which plants use sunlight and carbon dioxide from the air in order to synthesize simple carbohydrates (i.e., sugars) and release oxygen.Plants can absorb nitrogen from the soil, whereas animals obtain nitrogen by eating plants (herbivores) and animals (carnivores).In conclusion, plants and animals die without air because they need to interchange oxygen and carbon dioxide with their surrounding environment to carry out cellular respiration (plants and animals) and photosynthesis (only plants).
Learn more in:
https://brainly.com/question/16469076
Select the true statements about protein secondary structure. a. The α‑helix is held together by hydrogen bonds between the amide N − H N−H and C = O C=O groups. b. In a β‑pleated sheet, the side chains are located between adjacent segments. c. In an α‑helix, the side chains are located on the outside of the helix. d. The secondary level of protein structure refers to the spatial arrangements of short segments of the protein. e. Peptide bonds stabilize secondary structure.
Answer:.
→The α‑helix is held together by hydrogen bonds between the amide N − H N−H and C = O C=O groups
→ In a β‑pleated sheet, the side chains are located between adjacent segments.
→ In an α‑helix, the side chains are located on the outside of the helix. .
→ The secondary level of protein structure refers to the spatial arrangements of short segments of the protein
Explanation:
This is the level of protein which results from spatial arrangement produced by the formation of hydrogen bonds between the oxygen atom of one carboxyl group(c=0) group, and hydrogen of the NH group of amino acids four places ahead of it .( The resulting structure is coiled and are therefore called alpha-helices)
AND
Hydrogen bonds between adjacent amino acids that join them side by side so that the bonds appear straight rather than coil, and the chains form upwards-downwards-upward- downwards format to form flat shaped structure called beta-pleated sheet.
The hydrogen bonding is due to strong polarities of the –NH- CO- groups of amino acids.
The two structures account for the spatial arrangement of secondary protein structure. Secondary structure is stabilized by the orientation and aggregation of these hydrogen bonds. . The outwards distributions of the side chains, the non-polar nature (hydrophobic) of alpha-helix makes some secondary proteins ideal as integral membrane proteins.
Note- peptide bond stabilizes primary protein structure.
The following statements are true for protein secondary structure:
The amide N-H and C=O groups form hydrogen bonds that hold the -helix together.In a helix, the side chains are found outside the helix.The secondary structure is stabilized by peptide bonds.Therefore, the correct options are A, C and E.
The polypeptide chain is regularly coiled to form a -helix, and hydrogen bonds between the amide NH and C=O groups help to stabilize the structure. Because they occur outside the helix and extend outward in a -helix, amino acid side chains enable interactions with the environment. The covalent bonds that link amino acids together, known as peptides, are essential for maintaining the secondary structure. Rotation is hindered by the planar structure of the peptide bond, which helps to form regular patterns such as the -helix.
Therefore, the correct options are A, C and E.
Learn more about protein, here:
https://brainly.com/question/33861617
#SPJ6
You plan to expose your chlamydomonas culture to 100 nM colchicine to inhibit new protein synthesis. You need to treat 1 x 108cells. The density of your culture is 5 x 107 cells/ml. The molecular weight of colchicine is 399.44. Explain what you need to do. Show your calculations.
Answer:
mass(g) of colchicine = 3.99 × 10⁻⁵g
Explanation:
Given that;
the number of moles colchicine = 100 nM = 100 × 10⁻⁹M
Density of chlamydomonas culture = 5 × 10⁷ cells/mL
∴ In 1mL of chlamydomonas culture there are 5 × 10⁷ cells present.
To decide the number of one cell, we need to use [tex]\frac{1}{5*10^7}[/tex] mL of the cellulose
However, 1 × 10⁸ cells will be present in [tex]1*10^8*\frac{1}{5*10^7}[/tex] mL , which in turn give us;
[tex]\frac{10^8}{5*10^7}[/tex]mL
Afterwards, to get the required 1 × 10⁸ cells, 2mL(molarity, since molarity= no of moles/litre) has to be taken
If colchicine has to be treated, we need to determine the mass of colchicine that is required in the process as well;
since, the number of moles colchicine = 100 nM = 100 × 10⁻⁹M
And, the given molecular weight = 399.44;
we can determine the mass of colchicine as;
∴ [tex]numberofmoles = \frac{mass(g)}{molar mass(g)}[/tex]
substituting the parameters given, we have:
[tex]100*10^{-9}= \frac{mass(g)}{399.4}[/tex]
mass(g) = 399.4 × 100 × 10⁻⁹
= 3.99 × 10⁻⁵g
Hence, the mass of colchicine that is required in the process to make 100 nM dissolve in the in 2mL of the culture in one Litre of water is 3.99 × 10⁻⁵g.
Starting with a single cell, how long (in hours) will it take for the mass of an E. coli culture to equal that of the Earth? Assume exponential phase and limitless nutrients.
Answer:
43.6 hours, which is less than two days.
Explanation:
To calculate Growth for an exponentially growing populations
Nt = N▪ * 2^n
Where,
N▪= cell number at initial time
Nt = cell number at later time
n = number of generations
Assuming exponential phase and limitless nutrients
How long until E.coli conquers the earth?
Given,
1 doubling = 20 min = 0.33hr
N▪= Mass = 9.5 x 10^-13 g/bacterium
Nt= Mass = 5.9 x 10^27 g/Earth
Nt = N▪ * 2^n
5.9 x 10^27 = 9.5 x 10^-13 * 2^N
nlog(5.9 x 10^27) = log(9.5 x 10^-13) + nlog(2)
27.7 = -12.0 + n(0.3)
27.7 + 12.0 = n(0.3)
39.7 = n(0.3)
132 = n
Therefore,
132 generations * 0.33 hour/generation = 43.6 hours
43.6 hours is less than two days.
Our answer for a single cell, it will take less than two days for the mass of an E. coli culture to equal that of the Earth on assuming exponential phase and limitless nutrients.
Individuals III-3 and III-4 are expecting their first child when they become aware that they both have a family history of this recessive condition. As their genetic counselor, you can calculate the probability that they are carriers and that their child will be affected with the condition.
1.) The probability that III- 3 is a carrier (Rr) =
2.) The probability that III - 4 is a carrier (Rr) =
3.) The probability that IV - 1 will be affected (rr) =
Options are 1/4, 1/2, 1/16, 1/3, 3/4, 2/3, 1/12, 1/6
Final answer:
Given a family history of a recessive condition, the probabilities are approximated as 1/2 for each parent (III-3 and III-4) being carriers (Rr) and 1/4 for their child (IV-1) being affected (rr), based on genetic inheritance patterns.
Explanation:
The question revolves around determining the probability of carriers and affected individuals in a family with a recessive condition, specifically focusing on individuals III-3, III-4, and their potential child, IV-1. Given the nature of recessive conditions and the information provided, calculating these probabilities involves understanding genetic inheritance patterns.
The probability that III-3 is a carrier (Rr) depends on the exact family history not detailed here, but following general rules of recessive inheritance, if a direct parent is affected or a carrier, the probability could range up to 1/2.
Similarly, for III-4, without explicit information about the parents, a likely assumption would also be 1/2, as they have a family history of the condition, suggesting a chance of being a carrier.
The probability that their child (IV-1) will be affected (rr) if both parents are carriers (Rr) follows the Punnett square rule, resulting in a 1/4 chance. This is because each parent has a 50% chance of passing on the recessive allele. When both do, the child will express the recessive condition.
Therefore, the potential probabilities are 1/2 for each parent being a carrier and 1/4 for their child being affected by the recessive condition.
Addition of ________causes the induction of the ______________ polymerase. This polymerase then binds to the T7 ________________ upstream of the rGFP gene, resulting in the _____________________ of rGFP gene to produce rGFP mRNA. This mRNA is then ______________________ to produce the rGFP protein .
Answer:
Addition of HEAT causes the induction of the T7 RNA polymerase. This polymerase then binds to the T7 RNA POLYMERASE PROMOTER upstream of the rGFP gene, resulting in the TRANSCRIPTION of rGFP gene to produce rGFP mRNA. This mRNA is then TRANSLATED to produce the rGFP protein
Explanation:
T7 RNA polymerase is a warmth inducible compound that is initiated inside the nearness of a warmth source. This polymerase ties to a chose grouping alluded to as the T7 RNA Polymerase advertiser succession. It moves along the DNA grouping prompting the amalgamation of mRNA during a procedure alluded to as translation.
This mRNA is changed over into a protein item through a procedure alluded to as interpretation.
In fruit flies, long wings (W) are dominant over short wings (w), and brown pigments (N) are dominant over yellow pigments (n). Each individual possesses two alleles for each trait.
1. If a fly that is homozygous dominant for both traits is crossed with a fly that is homozygous recessive for both traits, what is the predicted genotype of the offspring?
Answer:
WwNn
Explanation:
Long wings (W) are dominant over short wings (w)Brown pigments (N) are dominant over yellow pigments (n)A fly that is homozygous dominant for both traits (WWNN) is crossed with a fly that is homozygous recessive for both traits (wwnn).
All gametes produced by the WWNN individual will be WN, and all gametes produced by the homozygous recessive individual will be wn.
When the gametes from the two parents combine, the zygote will be heterozygous for both genes, with the genotype WwNn.
The offspring from a homozygous dominant fruit fly (WWNN) and a homozygous recessive fly (wwnn) will all have the heterozygous genotype WwNn, displaying long wings and brown pigments.
Explanation:In classical Mendelian genetics, long wings (W) are dominant over short wings (w), and brown pigments (N) are dominant over yellow pigments (n). When a homozygous dominant fruit fly for both traits (WWNN) is crossed with a homozygous recessive fly (wwnn), the resulting genotypes for all the offspring will be heterozygous for both traits (WwNn), expressing the dominant phenotypes—long wings and brown pigments.
The scenario is straightforward as both traits are being considered separately, and the inheritance pattern follows simple Mendelian inheritance, not taking into account potential linkage or sex linkage as in X-linked crosses. Therefore, all offspring produced from this cross will have the same genotype, with one dominant and one recessive allele for each gene, showcasing the principle of uniformity in the F1 generation.
Which of the following is/are true?
A. The fungal pathogen Mycosphaerealla graminicola is found worldwide with its host, cultivated wheat. Mycopharealla graminicola is host specific and does not occur on other host species such as Barley.
The closest known relative of M. graminicola is a barely-adopted pathogen Septoria passerinii.
You are researching these fungi and have the following hypothesis: If M. graminicola and 5 passerinii both had a common ancestor that lived in one geographic area where wheat and barley grew, it may be possible that the ancestor gave rise to these two species in one geographic location. This would be classified as sympatric speciation.
Your hypothesis and definition of sympatric speciation is correct.
B. A flood causes the loss of all red-headed males ducks in a population. This is an example of sympatric speciation.
C. A plant species obtain an extra set of homologous chromosomes. This would be an example of sympatric speciation.
D. Sympatric speciation may be due to sexual (mate) selection.
E. Sympatric speciation can occur when a single species occupies the same geographic location.
Answer: Option C, D, E and A
Explanation:
Sympatric speciation is the evolution or isolation of new species from the original population of species occupying the same geographic area. It is also due to sexual selection of mates leading to reproductive barriers. A plant with extra set of homologous chromosomes is an example. Sympatric speciation is due to isolation of new species from the population of species who arise from common anscetor.
Ichthyostega is a 370-million-year-old fossil from Greenland. Ichthyostega had digits, eyes on the top of its head, and strong, armlike bones. It also had no gills and a reduced tail. Acanthostega, Eusthenopteron, and Tiktaalik all had gills and full tails. Which organism would you place Ichthyostega closest to on this phylogenetic tree?
Answer: Closer to Acanthostega
Explanation: Phylogenetic tree is a diagram that represents evolution patterns of species. The ramification of the tree indicates how the species evoluted from a series of commom ancestor. Two species are closely related if the ancestor is closer to them. By it, it means that two species are closer if their characteristics are similar to each other. As the question stated, Ichthyostega had digits and reduced tail. Among the three others, Acanthostega has arms with digits, gills, tails and no fin.
So, in the phylogenetic tree, the branch that has acanthostega would be closer to the one with Ichthyostega, as this one is likely the descendent of the previous one.
Answer:
Tulerpeton
Explanation:
List the sources of experimental uncertainty. List steps you will take to minimize the uncertainties.
Answer:
Sources of experimental uncertainties
1. Environment- change in environment can bring about experimental error e.g change Temperature can affect crop yield.
2. Wrong caibration of equipment- some equipment need to be calibrated before use. Wrong calibration brings error
Explanation: steps to uncertainties
1.Calibrate equipment when necessary.
2. Ensure fomulars are rightly imputed for electronic devices
3. Experience and competency is needed to avoid Esperanza uncertainties. Expert can be employed
4. Replication for field work reduces uncertainties. E.g maize of the same varieties can be planted in three places on the field to avoid uncertainties.
Suppose two parents, a father with the genotype AaBbCcDdee and a mother with the genotype aabbCcDDEe, want to have children. Assume each locus follows Mendelian inheritance patterns for dominance. What proportion of the offspring will have each of the specified characteristics?
Answer:
A. same genotype as the father (AaBbCcDdee) = (½ x ½ x ½ x ½ x ½) = 0.03
B. phenotypically resemble the father (A_B_C_D_ee) = (½ x ½ x ¾ x 1 x ½) = 0.09
C. same genotype as the mother (aabbCcDDEe) = (½ x ½ x ½ x ½ x ½) = 0.03
D. phenotypically resemble the mother (aabbC_D_E_) = (½ x ½ x ¾ x 1 x ½) = 0.09
E. phenotypically resemble neither parent (simply subtract the probability of phenotypically resembling each parent from 1) = 1 – (0.09375 + 0.09375) = 0.81
Explanation:
The computation of the total probability would simply be the product of individual chances for each particular gene.
This can be better gotten with the punnette sqaure
The study of genes and inheritance is called genetics.
The correct answer is 0.81
What are genes?The structural and functional unit of the DNA is genes and able to code the sequence of the DNA.The answer is as follows:-
Same genotype as the father (AaBbCcDdee) =[tex]\frac{1}{2} *\frac{1}{2} *\frac{1}{2} *\frac{1}{2} *\frac{1}{2} [/tex] = 0.03Phenotypically resemble the father (A_B_C_D_ee) = [tex]\frac{1}{2}*\frac{1}{2}*1*\frac{3}{4}*\frac{1}{2} = 0.09[/tex]Same genotype as the mother (aabbCcDDEe) = [tex]\frac{1}{2} *\frac{1}{2} *\frac{1}{2} *\frac{1}{2} *\frac{1}{2} [/tex]= 0.03phenotypically resemble the mother (aabbC_D_E_) =[tex]\frac{1}{2}*\frac{1}{2}* \frac{3}{4} *1*\frac{1}{2} = 0.09[/tex]Phenotypically resemble neither parent (simply subtract the probability of phenotypically resembling each parent from 1)[tex] = 1 - (0.09375 + 0.09375) = 0.81[/tex]
Hence, the correct answer is 0.81
For more information about the genes, refer to the link:-
https://brainly.com/question/264225
True or False, it's likely that organisms other than LUCA existed alongside LUCA before the divergence of bacteria from archaea and eukaryotes.
Answer:
False
Explanation:
Rocks form in horizontal layers. However, as shown along mountainsides, rock layers can become twisted or bent.
Answer:
The earth is extremely old,and earth processes acted gradually to twist or bend rocks.
Explanation:
The transformation takes place through many years as the molten rock was pushed upward and sediment form into the rock that was lifted above sea level by the force generated by uprising rocks.The changes are very little and gradually takes place which gives rise to the formation of rocks.
6) (1 point) Proteins that span biological membranes often contain -helices. Given that the insides of membranes are highly hydrophobic, predict what type of amino acids would be in such a helix. Why is an helix particularly suited to exist in the hydrophobic environment of the interior of a membrane?
Answer:
The amino acids in such a helix would be hydrophobic in nature.
An α helix is particularly suited to cross a membrane because all of the carbonyl oxygen atoms and the hydrogen atoms of amide of the peptide backbone take part in intrachain hydrogen bonds, thus stabilizing these polar atoms in a hydrophobic environment.
Explanation :
Many transmembrane protiens use several alpha-helices wrapped up together.
It is usually seen as the helical structure can internally satisfy all the hydrogen-bonds , it doesn't leave any polar groups that are exposed to membrane if the sidechains are hydrophobic.
Sometimes, 2 to 3 alpha helices will wrap around each other , forming coiled coil. In an aphipathic alpha helix , the hydrophobic R groups on one side of each helix interact with each other while the hydrophilic R groups on the other side of each helix will interact with water.
Answer:
→alpha-helices
→Non-polar Amino acids
→because they and non -polar and hydrophobic.
Explanation:
Membrane proteins can be intrinsic (integral ) that is embedded in the membrane bilayer or extrinsic(peripheral) attached to the outer membrane layer.
These integral protein transcend the entire phospholipid bilayer, with the alpha- helices. The latter have hydrophobic side chains of non-polar amino acids. They are held to the cell membrane with these side chains which forms hydrophobic interactions with fatty acyl group of the phosphoslipid bilayer, and sometimes ionic bond with the polar head of phospholipid.
These alpha helix are non-polar(uncharged) and hydrophobic.A characteristic feature that make them to interact and fixed into the integral phospholipid hydrophobic medium.
The presence of an oceanic trench, a chain of volcanic mountains along the edge of a continent and deep seated earthquakes is characteristics of ___?
Answer:
ocean-continent plate convergenceExplanation:
The presence of an oceanic trench, a chain of volcanic mountains along the edge of a continent and deep seated earthquakes is characteristics of ocean-continent plate convergence
Hope this help
plz mark brainliest
Have a nice day!!!!!
The presence of an oceanic trench, a chain of volcanic mountains along the edge of a continent and deep-seated earthquakes is characteristic of a convergent plate boundary, which typically forms when an oceanic plate is subducted under a continental plate.
Explanation:The presence of an oceanic trench, a chain of volcanic mountains along the edge of a continent, and deep-seated earthquakes, are indications of a convergent plate boundary. This typically happens when an oceanic plate is subducted or pushed beneath a continental plate, forming a deep oceanic trench. The intense heat and pressure cause the subducted plate to partially melt, and this molten material can rise to form a chain of volcanic mountains along the edge of the continent, often known as a volcanic arc. The process of subduction also leads to seismic activity or earthquakes that are deep-seated.
Learn more about convergent plate boundary here:https://brainly.com/question/31701968
#SPJ11
Based on the definition of a watershed, how many different watersheds were there in your model? Explain how you determined this number.
Answer:
Water shed is created when an area or land separates the water flowing to different rivers, basin and seas.
Explanation:
Water shed are of different types-
Large water sheds-Contain well developed channel networks.Small water sheds-Contain dominant land phase.Urban watershed-It is dominated by building,roads,pavements.Agriculture water shed-Forest water shed-Evapotranspiration is the dominant component of the hydrologic cycle.Mountain water shed-mountain is the dominant component that separates the water flow.Desert water shed-Sand dunes sand mounds that are formed by blowing air causes separation of water flow.Coastal watershed-Coastal area may partly be urban and is dynamic contact with sea.The hydrology is influenced by tidal action.The number of watersheds in a model depends on its design. Watersheds are areas of land that drain into common outlets, such as a reservoir or bay. To determine how many watersheds are in a model, identify the common outlets and each individual area that drains into one of these outlets is a separate watershed.
Explanation:
The number of watersheds in your model depends on how your model is designed. A watershed is an area of land that drains all the streams and rainfall into a common outlet such as the outflow of a reservoir, mouth of a bay, or any point along a stream channel.
To determine the number of watersheds in your model, you need to identify the points at which water flows together, and designate those as common outlets. Each individual area that drains into one of these common outlets comprises a separate watershed. For example, if your model includes three rivers which all converge at a single point, you would have three watersheds.
This definition also implies that all of the land on earth can be divided into watersheds. The boundaries of a watershed are determined by the topography (i.e., the hills and valleys) that guides the direction of water flow.
Learn more about Watersheds here:https://brainly.com/question/34612630
#SPJ3
Explain why evolutionary biologists monitor selec- tively neutral polymorphisms as molecular clocks.
Answer:
Because of their property of preciseness and rhythmic repetitions like a normal clock sequence...
Explanation:
Evolutionary biologist use these neutral polymorphisms as molecular clock because of their gradual accumulation of mutations that remain on changing gradually in a uniform sequence overlarge number of generations. These changing sequences are highly precise over and over, that's why these are also termed as neutral mutations.
Non-segmentation allows for evolutionary innovation in body form.
a. True
b. False
Answer:
True.
Explanation:
Answer: a. True
Explanation: Through evolutionary time, animals have developed more-complex body plans, including true tissues, non-segmentation and bilateral symmetry which is possible as a result of evolutionary innovation--the introduction and progression of novel traits compared to what exists before leading to a more advanced or complex form. Non-segmentation indeed allows for evolutionary innovation in body form.
28. Select all accurate statements
A. All chordates will have a muscular post an*l tail
B. All chordates have a dorsal, hollow nerve cord.
C. All chordates have pharyngeal slits or clefts
D. All chordates will have a notochord in their development and/or adulthood
E. All chordates are bilaterally symmetrical animals
Answer:
its A but I am not sure I just tried
Answer:
All the options A,B,C,D and E are correct.
Chordates possess a muscular posterior tail, a dorsal, hollow nerve cord, pharyngeal slits or clefts, a notochord in their adulthood and are bilaterally symmetrical animals.
Crenation and hemolysis A cell placed in a hypertonic solution will shrink in a process called crenation. A cell placed in a hypotonic solution will swell in a process called hemolysis. To prevent crenation or hemolysis, a cell must be placed in an isotonic solution such as 0.9% (m/v) NaCl or 5.0% (m/v) glucose. This does not mean that a cell has a 5.0% (m/v) glucose concentration; it just means that 5.0% (m/v) glucose will exert the same osmotic pressure as the solution inside the cell, which contains several different solutes. Part D
Question options:
A red blood cell is placed into each of the following solutions. Indicate whether crenation, hemolysis, or neither will occur.
Solution A: 3.21% (m/v) NaCl
Solution B: 1.65% (m/v) glucose
Solution C: distilled H2O
Solution D: 6.97% (m/v) glucose
Solution E: 5.0% (m/v) glucose and 0.9%(m/v) NaCl
Answer:
Crenation: A, D, E
Hemolysis: B, C
Explanation:
Crenation is an osmotic process in which blood cells shrink while placing hypertonic or alkaline solutions.
Crention caused by these hypertonic solutions.
A: 3.21% (m/v) NaCl (more solutes)
D: 6.97% (m/v) glucose (more solutes)
D: 5.0% (m/v) glucose and 0.9%(m/v) NaCl (more solutes)
Hemolysis is the destruction of red blood cells in which cells bloat up and may explode while placing in a hypotonic solution.
Hemolysis caused by these hypotonic solutions.
B: 1.65% (m/v) glucose
C: distilled H2O
Crenation (cell shrinkage) occurs when cells are placed in hypertonic solutions, while hemolysis (cell swelling) occurs when they are put in hypotonic solutions. To maintain cell size and form, cells should be in isotonic solutions, which have the same solute concentration as the cells. Examples of isotonic solutions are 0.9% m/v NaCl or 5.0% m/v glucose.
Explanation:Crenation and hemolysis are processes that pertain to the behavior of cells in different types of solutions. When a cell is placed in a hypertonic solution - a solution with a greater concentration of solutes compared to the cell's cytoplasm - the water molecules inside the cell will move outside to balance the solute concentration, causing the cell to shrink. This process is known as creation.
On the other hand, if a cell is placed in a hypotonic solution - a solution with a lower solute concentration than the cell's cytoplasm - the water molecules will move into the cell, causing it to swell and potentially burst in a process called hemolysis.
To prevent either crenation or hemolysis from occurring, the cell should be placed in an isotonic solution. An isotonic solution has the same solute concentration as the cell's cytoplasm, ensuring equal water movement in and out of the cell, and thus, maintaining the cell's size and shape. Examples of isotonic solutions are 0.9% (m/v) NaCl or 5.0% (m/v) glucose. However, these percentages do not imply that a cell has a 5.0% (m/v) glucose concentration. It means that these solutions exert the same osmotic pressure as that inside the cell, which has multiple solutes.
Learn more about Crenation and Hemolysis here:https://brainly.com/question/33357024
#SPJ6
Four of the five factors below support the mechanism of natural selection. In contrast, the fifth factor blocks natural selection from occurring. Which one of the factors listed below does NOT lead to natural selection, but instead blocks it from occurring?
a. Characteristics are inherited passed from parent to offspring.
b. Organisms in a population are identical to each other.
c. There is competition among organisms in a population.
d. More offspring are born than can survive.
e. Organisms in a population vary in characteristics that affect how well they survive and reproduce.
Answer:
Four of the five factors below support the mechanism of natural selection. In contrast, the fifth factor blocks natural selection from occurring. Which one of the factors listed below does NOT lead to natural selection, but instead blocks it from occurring
Organisms in a population are identical to each other
Explanation:
If organisms are identical then all of them should be able to survive harsh condition but since not all organisms has this identity it makes the law of natural selection not to be supported by the claim. The best organism that thrives survives and pass such trait to the next generation of offspring
Which of the following statements about apoptosis is false? a. It is an important process in the development of human fingers and toes. b. Despite more than 600 million years of evolutionary divergence, humans and nematodes share similar apoptosis pathways. c. Because apoptosis genes kill cells, natural selection is seldom involved in apoptosis pathways. d. All of the above are true; none is false.
Answer:
C) Because apoptosis genes kill cells, natural selection is seldom involved in apoptosis pathways.
Explanation:
Apoptosis is a natural process taking in the cell which causes the physiological and biochemical changes in the cell which could cause the death of the cell.
The apoptosis is controlled at the genetic level therefore apoptosis is also known as the programmed cell death.
The studies have shown that the process is involved in the development of the finger and the toes in humans and the sequences controlling the process has been conserved during the evolution in a different organism.
This shows that humans and nematode have the same conserved sequence of apoptosis but the natural selection does not control the apoptosis.
Thus, the selected option is the correct answer.
Apoptosis is involved in human development and shared across species like humans and nematodes. It's incorrect to state that natural selection plays no role in apoptosis pathways, as these pathways have evolved to benefit the overall health of the organism.
Explanation:The question asks which statement about apoptosis is false. Let's go through each item:
a) Apoptosis does play a key role in the development of human fingers and toes. During embryological development, apoptosis is meant to eliminate the web-like tissues between individual fingers and toes to form fully separated digits.
b) Indeed, despite the vast evolutionary divergence, humans and nematodes share similar apoptosis pathways.
The false statement here is c) Even though apoptosis does involve killing off cells, natural selection plays a role here as well. It's involved in apoptosis pathways as these pathways have evolved to maintain the health of the organism by removing damaged or unneeded cells and preventing dangerous ones from proliferating.
https://brainly.com/question/28275150
#SPJ2
1. If the frequency of two alleles in a gene pool is 90% A and 10% a, what is the frequency of individuals in the population with the genotype Aa?
Answer: 0.18
Explanation:
For the alleles, the percentage distribution of each is 'A' (90% = 0.9)
While 'a' (10% = 0.1)
Hence, 0.9 and 0.1 are the respective frequencies of each allele
Now, apply Hardy-Weinberg Equilibrium equation, where heterozygotes are represented by the 2pq term.
Therefore, the number of heterozygous individuals (Aa) is equal to 2pq which equals
2 × 0.9 × 0.1 = 0.18
Thus, the frequency of heterozygote is 0.18, while the percentage distribution in the population is 18%
Explain the significance of complementary base pairing in the conservation of the base sequence of DNA.