Answer:
The answer to your question is 12n² + 6n - 3
Step-by-step explanation:
Polynomial
3(4n² + 2n - 1)
Distributive property, this property lets us multiply a sum by multiplying each term of the sum separately and if possible simplify like terms.
Solution
3(4n²) + 3(2n) - 3(1)
12n² + 6n - 3
This month kami sold 70 figurines in 2 sizes. The large figurines sold for $12 each and the small figurines sold for $8 each. The amount of money he received from the sales of the large figurines was equal to the amount of money he received from the sales of the small figurines. How many large figurines did Kami sell?
Answer:Kami sold 28 large figurines.
Step-by-step explanation:
Let x represent the number of large figurines that Kami sold.
Let y represent the number of small figurines that Kami sold.
This month kami sold 70 figurines in 2 sizes. This means that
x + y = 70 - - - - - - - - - - 1
The large figurines sold for $12 each and the small figurines sold for $8 each. The amount of money he received from the sales of the large figurines was equal to the amount of money he received from the sales of the small figurines. This means that
12x = 8y
y = 12x/8
y = 1.5x
Substituting y = 1.5x into equation 1, it becomes
x + 1.5x = 70
2.5x = 70
x = 70/2.5 = 28
y = 1.5x = 1.5 × 28 = 42
If A = {x | x is an even integer}, B = {x | x is an odd integer}, C = {2, 3, 4, 5}, and D = {9, 10, 11, 12}, list the element(s) of the following set.
C ∪ D = _________.
Final answer:
To find the union of sets C and D, you combine the elements of both sets without repeating any elements. The union, C ∪ D, is therefore {2, 3, 4, 5, 9, 10, 11, 12}.
Explanation:
The question asks to list the elements of the set that is the union of two sets C and D. The union of two sets contains all the elements that are in either set. Therefore, C ∪ D is the set that includes all the elements from both sets C and D without duplication.
Set C contains the integers {2, 3, 4, 5} and set D contains the integers {9, 10, 11, 12}. Hence, the union of sets C and D, denoted C ∪ D, would be {2, 3, 4, 5, 9, 10, 11, 12}. This combines all the unique elements from both sets.
BRAINIEST TO FIRST CORRECT!
A triangular window broke in Natalia's barn. How large does the piece of glass need to be to replace the window?
Answer: OPTION A.
Step-by-step explanation:
By definition, the area of a triangle can be calculated with the following formula:
[tex]A=\frac{bh}{2}[/tex]
Where "A" is the area of the triangle, "b" is the base of the triangle and "h" is the height of the triangle.
In this case, you need to observe the triangular piece shown in the picture given in the exercise.
You can identify that the base and the height of the triangle are:
[tex]b=3.6\ ft\\\\h=4.8\ ft[/tex]
Therefore, you must substitute those values into the formula. Then:
[tex]A=\frac{(3.6\ ft)(4.8\ ft)}{2}[/tex]
Finally, you must evaluate in order to find the area of the triangle.
You get the following result:
[tex]A=\frac{17.28\ ft^2}{2}\\\\A=8.64\ ft^2[/tex]
Jonas is jogging from the Park to the school. He has jogged 0.424 miles so far. He has 0.384 mile left to jog. How far is the park located away from the school?
Answer:the park is located 0.808 miles away from the school
Step-by-step explanation:
Jonas is jogging from the Park to the school. The total number of miles that Jonas has jogged so far is 0.424.
He has 0.384 mile left to jog. This means that the distance of the park from the school would be the sum of the distance that he has jogged so far and the distance that he has left to jog. It becomes
0.424 + 0.384 = 0.808 miles
Over the interval from 4 seconds to 10 seconds, the object's speed was calculated to be 3 m/s. What is the object's position after 8 seconds have elapsed.
Answer:
1 meter farther
Step-by-step explanation:
The difference in time from 4 seconds to 10 seconds is 6 seconds.
The speed is half of the difference of time.
That is why the speed is 3 m/s.
The difference in time from 10 to 18 is 8 seconds.
Take the time and divide it by 2 to get the speed.
The speed is 4 m/s.
The object's position is 1 more meter.
4 m/s - 3 m/s = 1 m/s
The object's position after 8 seconds is 24 m to have elapsed.
What is Division method?
Division method is used to distributing a group of things into equal parts. Division is just opposite of multiplications.
For example, dividing 20 by 2 means splitting 20 into 2 equal groups of 10.
Given that;
Over the interval from 4 seconds to 10 seconds, the object's speed was calculated to be 3 m/s.
Now,
Since, Over the interval from 4 seconds to 10 seconds, the object's speed was calculated to be 3 m/s.
That is,
The speed = 3 m/s
Time = 10 - 4 = 6 seconds
So, The distance cover by object's in 6 seconds = 3 x 6
= 18 m
Hence, The object cover the distance in 8 seconds = 18 x 8 / 6
= 24 m
So, The object's position after 8 seconds is 24 m to have elapsed.
Learn more about the divide visit:
https://brainly.com/question/25018554
#SPJ5
During a typical evening, a pizzeria receives phone orders for pizza delivery at a constant rate: 18 orders in a typical 4 minute period. How many pies are sold in 4 hours?
_______pies
Assume the pizzeria starts taking orders at 4:00 PM and the profit is a constant rate of $11 on 10 orders. When will phone order profit exceed $1,000? (Round your answer to the nearest minute.)
: PM
Answer:
1080 orders is made after 4hours
When profit exceeds $1000, the time will be 7:22 PM
Step-by-step explanation:
1. Let No of order be O and time be T
O ∝ T
O = KT
K = O ÷ T
K = 18 ÷ 4 = 4.5
Total no of orders in 4hrs (240min) will be
O = 4.5 × 240 = 1080 orders
2. Total orders made from profit of $1000 is evaluated.
10 orders give $11
x orders will give 909.09091 orders
time required to reach 909.09091 orders is then evaluated
1080 orders is placed in 4hrs
909.09091 orders will be placed in x hours
upon cross multiplication
x = 3.3670034 hours which is equivalent to 202.020202 minutes
When that's added to 4:00 PM, the answer is 7:22PM minutes to the nearest minute.
1080 pies are sold in 4 hours based on their order rate, and the phone order profit will exceed $1,000 around 7:22 PM, assuming a constant profit rate.
The student asked two questions related to pizza orders.
Firstly, they wanted to know how many pies are sold in 4 hours based on a constant rate of 18 orders in a 4-minute period.
Secondly, they asked when phone order profit would exceed $1,000 assuming a profit of $11 on 10 orders.
Calculating Pies Sold in 4 Hours
To calculate the number of pies sold in 4 hours (240 minutes) when 18 orders are received every 4 minutes, we need to determine how many 4-minute periods are in 240 minutes.
This is 240 minutes / 4 minutes = 60 periods.
Since 18 orders are received per period, the total number of pies sold is 18 orders × 60 periods = 1080 pies.
Calculating When Phone Order Profit Exceeds $1,000
To calculate when the profit exceeds $1,000, note that for every 10 orders, a profit of $11 is made.
First, calculate the total number of orders needed to exceed $1,000 profit.
Given: $1,000 / $11 = approximately 91 sets of 10 orders.
Therefore, total orders needed = 91 sets × 10
= 910 orders.
Since 18 orders are taken every 4 minutes, we find the total time by dividing 910 orders by the rate of 4.5 orders per minute (18 orders / 4 minutes).
This gives approximately 202.2 minutes from the start time (4:00 PM), which rounds to 7:22 PM when the profit exceeds $1,000.
For a boat to float in a tidal bay, the water must be at least 2.5 meters deep. The depth of water around the boat, ????(????), in meters, where ???? is measured in hours since midnight, is____________.
Final answer:
The depth of water around the boat, d(t), varies based on the tidal patterns. Tides are influenced by various factors including the moon's gravity, ocean depth, and local geography. Accurate prediction requires tidal charts and local data.
Explanation:
The depth of water around the boat, represented as d(t), varies based on time due to the tidal patterns. The tides are influenced by numerous factors such as the alignment and gravitational pull of the moon and sun, the depth of the ocean, and local geographical features like bays and estuaries. In the case of the Bay of Fundy, the tides can have an exceptionally large range due to its shape and the resonance of the tidal forces.
The frequency and height of tides will determine how often and to what extent the water level rises and falls, thus affecting the depth at any given hour. To forecast these tidal levels and ensure safe boating conditions, experts create tidal charts with high accuracy, taking into account local bathymetry and global tidal patterns. However, the actual mathematical representation of d(t) would require access to these local tidal patterns and data from the mentioned charts or measurement systems to create a function that accurately represents the changing water depth around the boat.
HELP! What does X equal? WILL GIVE BRAINLIEST!
According to postal regulations, the girth plus the length of a parcel sent by fourth-class mail may not exceed 108 in. What is the largest possible volume of a rectangular parcel with two square sides that can be sent by fourth-class mail?
Answer:
11,664 in³
Step-by-step explanation:
For a square side length of x, the girth is 4x and the length of the parcel is then allowed to be up to 108-4x.
The total volume is the product of the edge lengths, so is ...
V = (108 -4x)(x²) = -4x³ +108x²
This will be a maximum where its derivative is zero:
dV/dx = -12x² +216x = 0 = -12x(x -18)
This is zero for x=0 and for x=18.
The maximum volume parcel is 18 in by 18 in by 36 in, and has a volume of ...
(18 in)(18 in)(36 in) = 11,664 in³
To find the largest possible volume of a rectangular parcel with two square sides adhering to postal regulations, we use a derived formula V = x²(108 - 4x) and apply optimization to find the maximum volume.
To answer the question about the largest possible volume of a rectangular parcel with two square sides that can be sent by fourth-class mail, we use the given postal regulation that states the girth plus the length of a parcel may not exceed 108 inches. Assuming we have a box with dimensions x (for the length and width of the square sides) and y (for the length), the girth is calculated as 4x (since we have two square sides) and the total allowed measurement is 4x + y <= 108 inches. The volume V of the parcel is x²y.
First, we express y in terms of x: y = 108 - 4x. We can then rewrite the volume formula in terms of x: V = x²(108 - 4x). To maximize the volume, we take the derivative of V with respect to x and set it to zero: dV/dx = 2x(108 - 4x) - 4x². Solving for x, we find the critical points which will give us the value of x that maximizes the volume. Plugging this x value back into V or y = 108 - 4x, we can find the maximum volume and the dimensions of the parcel. Without explicitly solving the calculus problem, the general approach is to use optimization via calculus or other mathematical techniques to maximize the volume function.
A simple reflex requires the nervous system to perform three functions. Two of these functions are to collect and distribute information. What is the third function?
Answer:
Integrate information
Step-by-step explanation:
John wants to find the width of a canyon. He walks along the side for 75 ft and marks a point and then walks 16.5 ft and marks another point. Then he turns at a right angle away from the canyon and walks to a point that is in line with the first point marked and another point perpendicular across the canyon from the starting point.
A) Can he conclude the two triangles are similar? Why or why not?
B) if it was 24 ft that he walked for AB, can the canyon width be found? If so, find it and show all work.
Answer:
A) Yes , the triangles are similar as indicated and shown from the analysis of the diagram.
B) Yes, the canyon width AE can be found and it is calculated and gotten as 109.09ft
Step-by-step explanation:
Attached below is the step by step calculations and explanation of both answers.
If a rectangle has an area of 2x^2+7x+3 find the perimeter
Answer:
Perimeter of the rectangle=6x+8 square units
Step-by-step explanation:
Given that area of rectangle is [tex]2x^2+7x+3[/tex]
Area of rectangle=lw square units
[tex]2x^2+7x+3=2x^2+x+6x+3[/tex]
[tex]=x(2x+1)+3(2x+1)[/tex]
[tex]=(x+3)(2x+1)[/tex]
[tex]2x^2+7x+3=(x+3)(2x+1)[/tex]
Comparing the above equation with the given area we get
lw=(x+3)(2x+1)
Therefore length=x+3 and width=2x+1
To find the perimeter :
Perimeter of the rectangle=2(l+w) square units
[tex]=2((x+3)+(2x+1))[/tex]
[tex]=2(x+3+2x+1)[/tex]
[tex]=2(3x+4)[/tex]
[tex]=6x+8[/tex]
Therefore perimeter of the rectangle=6x+8 square units
Joe baked 16 apple pies and 6 blueberry pies. Whitney bakes 19 apple pies and 12 blueberry pies . Who baked a higher ratio of apple pies to blueberry pies
Answer:
Joe baked a high ratio. Hope this helps :)
Answer:
Joe
Step-by-step explanation:
Joe baked more than twice as many apple pies as blueberry. (16 > 12)
Whitney baked less than twice as many apple pies as blueberry. (19 < 24)
Joe baked a higher proportion of apple pies.
If an object is propelled straight up weed from ground level with an initial velocity of 176 ft./s its height H in feet three seconds later is given by the equation H equals -16 T squared +1 7060 after how many seconds is a high 288 feet
Answer:
the object is at 288 feet 2 seconds and 9 seconds after launch
Step-by-step explanation:
The equation of motion is given as ...
h(t) = -16t² +176t
and we are asked to find when the object is at height 288 ft. Putting that number into the equation, we have ...
288 = -16t² +176t
-18 = t² -11t . . . . . . . . divide by -16
-18 +30.25 = t² -11t +30.25 . . . . . . add (11/2)² to complete the square
12.25 = (t -5.5)² . . . . . . simplify a bit
±3.5 = t -5.5 . . . . . . . . .square root
t = 5.5 ± 3.5 = {2, 9}
The object is 288 feet high after 2 seconds or 9 seconds.
the price of a car was $20,000 in 2014, $16,000 in 2015 and $12,800 in 2016. what is the rate of the depreciation of the price of car per year?
a. 15%
b. 20%
c. 25%
d. 30%
Answer:
b. 20%
Step-by-step explanation:
2014
Car price = 20000
2015
Car price = 16000
Depreciation = 20000 - 16000 = 4000
Depreciation % = (4000/20000)*100 = 20%
2016
Car price = 12800
Depreciation = 16000 -12800 = 3200
Depreciation % = (3200/16000)*100 = 20%
The spherical balloon is inflated at the rate of 10 m³/sec. Find the rate at which the surface area is increasing when the radius of the sphere is 3m?
The rate at which the surface area of the sphere is increasing can be found using related rates in calculus. By differentiating the volume formula with respect to time, we relate the rates of change for the radius and surface area, and then plug in the given volume increase rate when the radius is 3m.
Explanation:The problem requires the application of related rates in calculus to find the rate at which the surface area of a sphere is increasing. To calculate this, we can use the formula for the volume of a sphere, which is V = \frac{4}{3}\pi r^3, and the formula for the surface area, which is S = 4\pi r^2. Given a rate of volume increase, \frac{dV}{dt} = 10 m^3/sec, we can differentiate the volume with respect to time to find the relationship between the rates of change of the radius and volume. Then we use the rate of change of the radius to find the rate of change of the surface area.
Step 1: Differentiate the volume with respect to time.
\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}
Step 2: Solve for \frac{dr}{dt} when the radius is 3m.
Step 3: Use the value of \frac{dr}{dt} to find \frac{dS}{dt} (the rate of surface area increase).
Step 4: \frac{dS}{dt} = 8\pi r \frac{dr}{dt}
Ann had $198 more than her sister.After their mother gave Ann $20 and her sister $60,Ann had twice as much money as her sister.How much money did Ann have at first?
Answer:
Ann had $296 money at first.
Step-by-step explanation:
Let the money her sister have be 'x'.
Given:
Ann had $198 more than her sister.
So we can say that;
Money Ann had = [tex]x+198[/tex]
Now Given:
mother gave Ann $20 and her sister $60.
Now,
Money Ann had after mother gave her money = [tex]x+198+20 = x+218[/tex]
Money her sister had after mother gave her money = [tex]x+60[/tex]
Also given:
Ann had twice as much money as her sister.
So we can say that Money Ann had after mother gave her money is equal to 2 times Money her sister had after mother gave her money.
framing in equation form we get;
[tex]x+218=2(x+60)[/tex]
Applying Distributive property we get;
[tex]x+218=2x+120[/tex]
Combining like terms we get;
[tex]2x-x=218-120\\\\x = \$98[/tex]
Money sister had first = $98
Money Ann had first = [tex]x+198 = 98+198 = \$296[/tex]
Hence Ann had $296 money at first.
A food truck operator is parked in a lot at the corner of two streets. She wants to be equidistant from both streets. Should she park her truck on a perpendicular bisector, an angle bisector, a median, or an altitude?a) perpendicular bisectorb) angle bisectorc) mediand) altitude
Answer:
Angle bisector
Step-by-step explanation:
median isn't applicable in this case as the roads from the streets are inclined at an angle.
altitude refers to height which is also not applicable
The perpendicular bisector is the locust of points equidistant from two points,
in this question the street are not seen as points but as lines which forms an angle and the bisection of this angle forms a locus where she can park her car. If she parks her car anywhere on the angular bisector of the two streets, she would be at equal distance from both streets.
When Quentin ordered a tennis racquet recently, he agreed to pay a 7% shipping and handling charge. If Quentin paid 9.45 in shipping and handling, how much must the racquet have cost?
Answer:
Racket must have cost 135.
Step-by-step explanation:
Given:
Percentile amount of shipping and handling charge = 7%
Actual amount of shipping and handling charge= 9.45
we need to find the Cost of racket.
Solution:
Let the cost of racket be 'x'.
Now we can say that:
Percentile amount of shipping and handling charge multiplied by cost of racket and then divided by 100 is equal to actual amount of shipping and handling charge.
framing in equation form we get;
[tex]\frac{7}{100}x=9.45[/tex]
Multiplying both side by [tex]\frac{100}{7}[/tex] we get;
[tex]\frac{7}{100}x\times \frac{100}{7}=9.45\times \frac{100}{7}\\\\x=135[/tex]
hence Racket must have cost 135.
The demand function for a product is given by p = −0.05x2− 0.3x + 8 where p is the unit price in dollars and x is the weekly demand for the product each week, measured in thousands of units. Find the consumer’s surplus if the market price for the product is $5.
Answer:
The answer is 5300 units.
Step-by-step explanation:
The equation will be exactly lie below if the price is 5$:
[tex]5=-0.05x^2-0.3x + 8\\0=-0.05x^2-0.3x+3[/tex]
Roots of the parabol will be:
[tex]x_{1}=-11.3\\x_{2}=5.3[/tex]
In fact that there will be no negative production, The consumer surplus will be 5300 units
Easy Slider Inc. sold a 15-year $1,000 face value bond with a 10% coupon rate. Interest is paid annually. After flotation costs, Easy Slider received $928 per bond. Compute the after-tax cost of debt for these bonds if the firm's marginal tax rate is 40%?
Answer:
6.6%
Step-by-step explanation:
We find the cost of the bond. Yield to maturity is the yield for bond holder but cost for the issuer like Easy Slider.
Formula is
P=CP(1-(1+x)^-n)/x + FV/(1+x)^n
where P is the price of bond in the market. So, the selling price of Easy Slider Inc bond is 928
CP= coupon payment. Here, CP is 10% of 1000. So, $100
FV= Face value. Here, FV is $1000
n= maturity of the bond. Here, n=15
x= cost of the bond before tax
putting the value in the equation
928=100(1-(1+x)^-15)/x + 1000/(1+x)^15
solving for x, we get 0.1100
Now, if we find out after tax then
0.1100(1-T)= After tax cost
0.1100(1-0.4)
0.066 or 6.66%
A volleyball reaches its maximum of 13 feet, 3 seconds after it is served. What quadratic formula could model the height of the volleyball over time after it is served.
Answer:
[tex]H=-(t-3)^2+13[/tex]
Step-by-step explanation:
The path covered by the volleyball will be a downward parabola with the vertex being the highest point of the ball.
A general form of a downward parabola is given as:
[tex]y=-a(x-h)^2+k[/tex]
Where [tex](h,k)[/tex] is the vertex of the parabola and 'a' is a constant.
Now, let 'h' be the vertical height and 't' be the time taken.
So, the equation would be of the form:
[tex]H=-a(t-h)^2+k[/tex]
Now, as per question:
h = 2 seconds, k = 13 feet.
[tex]H=-a(t-3)^2+13[/tex]
Now, taking a = 1. So, the formula that can be used is:
[tex]H=-(t-3)^2+13[/tex]
What does the computer do when it executes the following statement: x = y + 5 A. retrieves the value of y B. calculates the total of 5 and the value of y C. stores the result of the calculation in the variable x D. all of the above
Answer:
D. all of the above
Step-by-step explanation:
In a programming software, depending on the type of input or coding given, the software application has the power to executes the following statement:
when the coding/input state x = y + 5
the computer will
A. retrieves the value of y (the value of y will have been stated earlier)
B. calculates the total of 5 and the value of y (sum the value of y with 5)
C. stores the result of the calculation in the variable x (store the result of value of x in case if it is been call for again, or store nit until a new value is gotten for x)
them, the computer can either print out the result of xor wait for the next action.
the correct option for this question is D. all of the above
There were 166 paid admissions to a game. The price was $2 for adults and $.75 for children. The amount of data taken in was $293.25 how many adults and how many children attended.
Answer:the number of adults that attended the game is 135.
the number of children that attended the game is 31
Step-by-step explanation:
Let x represent the number of adults that attended the game.
Let y represent the number of children that attended the game.
There were 166 paid admissions to a game. This means that
x + y = 166
The price was $2 for adults and $.75 for children. The amount of data taken in was $293.25. This means that
2x + 0.75y = 293.25 - - - - - - - - - - 1
Substituting x = 166 - y into equation 1, it becomes
2(166 - y) + 0.75y = 293.25
332 - 2y + 0.75y = 293.25
- 2y + 0.75y = 293.25 - 332
- 1.25y = - 38.75
y = - 38.75/- 1.25
y = 31
x = 166 - y = x = 166 - 31
x = 135
The Department of Education wishes to estimate the proportion of all college students who have a job off-campus. It surveyed 1600 randomly selected students, 451 had such jobs. The population of interest to the Department of education is: 1. All 1600 students surveyed 2. All college students o some of college students who have off-campus jobs 3. All college students who have off-campus jobs 4. The 451 students in the survey who had off-campus jobs
Answer: 2. All college students
Step-by-step explanation:
A population is a large group of individuals that have some common feature by the researcher's point of interest.
Herero , the Department of Education wishes to estimate the proportion of all college students who have a job off-campus.
So , he need data of all students to compute the exact proportion.
But instead of that he surveyed 1600 randomly selected students which determine the sample.
Sample just gives the estimate of the parameter.
Hence, the population of interest to the Department of education is " All college students" .
The population of interest to the Department of Education, which wants to estimate the proportion of all college students who have a job off-campus, is all college students, not just the ones surveyed or who have off-campus jobs.
Explanation:In the context of this question asked by the Department of Education, the population of interest refers to the group about which the Department wants to draw conclusions. The Department is looking for a proportion, specifically the proportion of all college students who have a job off-campus. Therefore, the population of interest to the Department of Education is option 2: all college students. This is because the Department wants to estimate a characteristic (having a job off-campus) of this entire group, not just of the students in the sample or of students who have off-campus jobs.
Learn more about Population of Interest here:https://brainly.com/question/33865030
#SPJ11
The radius of a spherical balloon being filled with air expands at 4 cm^3 per minute. Assuming the balloon fills in spherical shape, how fast is the radius of the spherical balloon increasing in cm per minute after 2.25 minutes?
Answer: dr/dt = 0.042 cm/minute
Step-by-step explanation:
Given;
dV/dt = 4cm^3/minute
t = 2.25minutes
Volume of a sphere is given as;
V = (4/3)πr^3
Change in Volume ∆V can be derived by differentiating the function.
dV/dt= 4πr^2 . dr/dt
dV/dt = 4πr^2dr/dt ....1
dV/dt is given as 4 cm^3/min
radius after 2.25 minutes can be gotten from the the volume.
Volume after 2.25mins = 4×2.25 = 9cm^3
9cm^3 = V = 4/3πr^3
r^3 = 27/4π
r = (27/4π)^1/3
From equation 1.
dr/dt = (dV/dt)/4πr^2 = 4/(4πr^2) = 1/(πr^2)
dr/dt = 1/(π(27/4π)^2/3)
dr/dt = 0.042cm/minute.
Find an equation of the circle with center at ( 5 , 1 ) that is tangent to the y-axis in the form of ( x − A ) 2 + ( y − B ) 2 = C where A , B , C are constant
Answer:
(x -5)² +(y -1)² = 25
Step-by-step explanation:
The equation for a circle centered at (h, k) with radius r is ...
(x -h)² +(y -k)² = r²
Here, the radius is equal to the x-coordinate of the center, since you want the circle tangent to the y-axis. That means (h, k) = (5, 1) and r = 5. The equation you want is ...
(x -5)² +(y -1)² = 25
The equation of the circle with center at (5,1) and tangent to the y-axis is (x - 5)² + (y - 1)² = 25.
To find this equation, we can use the general form of a circle's equation, which is:
(x - A)² + (y - B)² = C
Where A and B are the x and y coordinates of the center of the circle, respectively, and C is the square of the radius of the circle. Since the circle is tangent to the y-axis and its center is at (5,1), the radius of the circle must be 5 units because this is the horizontal distance from the center to the y-axis. Therefore, C will be 5², which is 25. The complete equation of the circle is:
(x - 5)² + (y - 1)² = 25
Find the angle measure to the nearest degree.
cos A = 0.7431
How do I do this?
Answer:
Step-by-step explanation:
If you are looking for a missing angle measure, you use the 2nd button and the cos button. Make sure, first off, that your calculator is in "degree" mode by hitting the "mode" button and making sure that the "degree" is highlighed and not the "radian". Then hit "clear". Once you know that you are in the correct mode, hit "2nd" then "cos" and you will see this on your screen:
[tex]cos^{-1}([/tex]
Inside the parenthesis you will enter your decimal, so it looks like this now:
[tex]cos^{-1}(.7431[/tex]
You do NOT have to close the parenthesis, but you can if you want to. Then hit "enter" to get that the angle that has a cosine of .7431 is 42.0038314 or, to the nearest degree, 42
The inverse cosine function is used to find the angle from the cosine value. In this case, angle A is approximately 42 degrees.
Explanation:To find the angle measure when given the cosine value, you use the inverse cosine function, sometimes written as cos-1 or arccos. The inverse cosine of a given number tells you what angle has that given cosine value.
So for cos A = 0.7431, we need to find the inverse of cosine of 0.7431. Use your calculator's inverse cosine function (often labeled as cos-1 or arccos) with the input 0.7431. Ensure your calculator is in degree mode if the answer needs to be in degrees, which seems to be your case.
Using this process, you should find that angle A is approximately 42 degrees (42.006 to be exact).
Learn more about Inverse Trigonometric Function here:https://brainly.com/question/1143565
#SPJ2
A homeowner wants to insulate the new recreation room in her basement. She has been told that 3' of insulation would do the job. The walls are all 9' high and respectively measure 13', 13', 18', and 18' in length. How many rolls will she need if each roll measures 3' x 2' x 50'?
Answer:
6 rolls
Step-by-step explanation:
Data provided in the question:
Height of wall = 9'
Width of walls = 13', 13', 18' and 18'
Dimension of roll = 3' x 2' x 50'
Now,
Total area of the walls = 9' × 13' + 9' × 13' + 9' × 18' + 9' × 18'
= 117 + 117 + 162 + 162
= 558 ft²
Area of each roll = 2' × 50'
= 100 ft²
Thus,
Number of rolls required = [ Total area of the walls ] ÷ [ Area of each roll ]
= 558 ft² ÷ 100 ft²
= 5.58 ≈ 6 rolls
Final answer:
To insulate the recreation room, the homeowner needs to calculate the total area of the walls and then divide it by the area covered by one roll of insulation. After calculating the areas and factoring in the size of the rolls, it is determined that the homeowner needs to purchase 4 rolls of insulation.
Explanation:
The homeowner needs to calculate the amount of insulation needed for a new recreation room. To determine the number of rolls required, we first need to calculate the total area to cover by adding the areas of all four walls. The walls are 9’ high with two of them measuring 13’ in length and the other two are 18’ in length.
The total area These areas can be calculated using the formula Area = Height × Length for each wall. For the 13’ walls: Area = 9’ × 13’ = 117 sq ft (per wall). So, for both, it would be 117 sq ft × 2 = 234 sq ft. And for the 18’ walls: Area = 9’ × 18’ = 162 sq ft (per wall), which is 162 sq ft × 2 = 324 sq ft in total. Now, let's add these together to get the total area of all walls that need insulation: 234 sq ft + 324 sq ft = 558 sq ft.
Next, we calculate how many square feet are in each roll. Since each roll measures 3’ x 50’, the area per roll is 3’ x 50’ = 150 sq ft.
Finally, by dividing the total area needed by the area one roll covers, we can determine the number of rolls:
Number of rolls needed = Total area ÷ Area per roll = 558 sq ft ÷ 150 sq ft/roll ≈ 3.72 rolls.
Since we cannot purchase a fraction of a roll, the homeowner will need to purchase 4 rolls of insulation.
A quadrilateral has no pairs of parallel sides. Which name best describes the figure?
rectangle
trapezoid
parallelogram
kite
Answer:
Therefore,
A quadrilateral that has no pairs of parallel sides is
KITE.
Step-by-step explanation:
A quadrilateral that has no pairs of parallel sides is
KITE.
In Kite there are no pairs of Parallel sides.
The Figure for Kite ABCD is below (not to the scale).
Rectangle and Parallelogram:
Opposite sides are Parallel .
Hence they have pairs of parallel sides,
Trapezoid:
Trapezoid has one pair of parallel side.
Hence it has a pair of parallel sides,
Therefore,
A quadrilateral that has no pairs of parallel sides is
KITE.
Answer:
Kite
Step-by-step explanation: