Answer:
The formation of favorable C-bond ionic or C-bonding interactions in a folded protein replace interactions between solvent (water) and the ionic species (or restore donors and acceptors) in the unfolded state. The favorable ΔH obtained by formation of H-bond in the H-bonding protein is offset by the energy required to break many interactions, with solvent going from the inter-molecular to the intramolecular state.
Answer:
The answer is:
The formation of favorable intermolecular ionic or H-bonding interactions in a folded protein replace interactions between solvent (water) and the ionic species (or H-bond donors and acceptors) in the unfolded state. The favorable ΔH obtained by formation of intramolecular bonds in the folded protein is offset by the energy required to break many interactions, with solvent going from the unfolded to the folded state.
Explanation:
In this environment, the color of Sea Lampreys is an example of: Select one: a. A consequence of non-random mating. b. Natural selection. c. A heterozygous advantage. d. An adaptation.
Answer:
Option d. An Adaption is correct.
Explanation:
Young Sea Lampreys usually feed on algae and other organisms that live on the bottom of sea. Due to this feeding activity it need to blend in the environment. This results in the adaption due to skin color (darker on top so that predator cannot see them and fading to a lighter colored belly because they move at the bottom).
What term describes an individual possessing two of the same alleles at a gene locus? monohybrid dihybrid homozygous wild type heterozygous
Question was't arranged i have arranged it in ask for detail section.
Answer:
Option e. homozygous is the correct answer.
Explanation:
A gene which has two identical alleles on homologous chromosomes is called homozygous. It is denoted by XX (capital letters) for dominant character (alleles) and xx (lowercase letters) for recessive character (alleles).
An individual possessing two of the same alleles at a gene locus is described as "homozygous."
Homozygous:
Homozygous refers to a genetic condition where an individual carries two identical alleles at a particular gene locus on a pair of homologous chromosomes.
These alleles can be the same for a particular trait, whether dominant or recessive.
For instance, if a person has two identical alleles for brown eyes (let's denote this as "BB"), they are considered homozygous for the eye color gene at that specific locus.
Understanding Alleles and Genetic Loci:
Genetic loci are specific positions on a chromosome where a particular gene is located. Each gene at a given locus can have multiple forms, known as alleles.
Alleles can be either identical (homozygous) or different (heterozygous) for a specific gene.
Contrast with Heterozygous:
In contrast, heterozygous individuals have two different alleles at a specific gene locus.
For example, if an individual has one allele for brown eyes and one allele for blue eyes (denoted as "Bb"), they are considered heterozygous for the eye color gene.
For such a more question on homozygous
https://brainly.com/question/29981732
#SPJ3
If a steam that is septic (anaerobic) receives further human waste containing carbon, nitrogen and sulfur containing materials, what does the carbon become, the nitrogen, and finally the sulfur?
Answer:
Carbon convert into methane, Nitrogen converts into Ammonia and Sulfur converts into hydrogen sulfide gas
Explanation:
As the flow time in a wastewater treatment plant increase the color of waste water converts from grey to black as the condition becomes more anaerobic and flow becomes more septic. In such scenario if more waste water is added the sulfur and nitrogen extracts from the waste are converted into ammonia and hydrogen sulfide. Carbon is present in the form of organic waste and in the absence of oxygen it gets converted into methane gas. However , in presence of oxygen this carbon is released as carbon dioxide.
Decomposers provide mineral nutrients for: A. heterotrophs. B. autotrophs. C. the second trophic level. D. the third trophic level. E. omnivores
Answer:
The answer is option B. autotrophs
Explanation:
Decomposers release nutrients like nitrogen and carbon dioxide as well as water when they feed on dead plants and animals. Decomposers include fungi, bacteria and earthworms.
These nutrients are released into air, soil and water and serve as nutrients for autotrophs. Autotrophs produce their own food from sunlight energy, water and carbon dioxide. Example include green plants; which by the process of photosynthesis produce their own food using carbon dioxide and soil nutrients.
1.) Which processes produce carbon dioxide as a waste product?
a.) the Krebs cycle and the electron transport chain
b.) ethyl alcohol fermentation and the Krebs cycle
c.) ethyl alcohol fermentation and lactic acid fermentation
d.) lactic acid fermentation and the Krebs cycle
2.) The bonds between the phosphate groups in ATP have large amounts of chemical _____ energy.
a.) potential
b.) kinetic
c.) low
d.) high
3.) Where does the sour taste come from in foods such as cheese and yogurt?
a.) ethyl alcohol produced by fermentation
b.) lactic acid produced by fermentation
c.) ATP produced by the Krebs cycle
d.) carbon dioxide produced by cellular respiration
4.) What molecule is used by the enzyme ATP synthase to form ATP?
a.) FADH 2
b.) NADH
c.) ATP
d.) ADP
5.) What conditions cause cells to break down fat molecules?
a.) limiting calorie intake and increasing energy needs
b.) increasing energy needs and increasing calorie intake
c.) decreasing energy needs and increasing calorie intake
d.) limiting calorie intake and limiting oxygen exposure
6.) Why is ATP an example of chemical potential energy?
a.) It stores energy until a cell needs it.
b.) It drives reactions to make glucose.
c.) It creates and destroys energy.
d.) It assembles mitochondria.
7.) Which set of pairings correctly matches the process with its conditions?
a.) cellular respiration : aerobic : : fermentation : anaerobic
b.) cellular respiration : anaerobic : : fermentation : aerobic
c.) cellular respiration : anaerobic : : fermentation : anaerobic
d.) cellular respiration : aerobic : : fermentation : aerobic
8.) The purpose of cellular respiration is to enable cells to create and use _____.
a.) oxygen
b.) DNA
c.) carbon dioxide
d.) ATP
9.) How does ADP differ from ATP?
a.) ADP has one more adenine group than ATP.
b.) ADP has one more phosphate group than ATP.
c.) ATP has one more phosphate group than ADP.
d.) ATP has one more adenine group than ADP.
10.) What is involved in redox reactions?
a.) the addition of water to break down food macromolecules
b.) the bonding of ions to form chemical compounds
c.) the transfer of electrons between reactants
d.) the breaking down of water into hydrogen and oxygen atom
I set it for 64 points, so you will receive approximately 32 points.
Please answer as many as you can. Most answers out of the two answerers will become brainliest.
The ATP bonds have potential energy that is stored in it.
The bonds between the phosphate groups in ATP have large amounts of chemical potential energy but after breaking of bonds, this potential energy is converted into kinetic energy which is used to move things.
The sour taste come in foods such as cheese and yogurt from lactic acid produced by fermentation. Sour taste in food is mainly occurs due to the presence of citric, malic, oxalic, and tartaric acids in fruits and lactic acid in yogurt.
Limiting calorie intake and increasing energy needs are the conditions that cause cells to break down fat molecules.
ATP is an example of chemical potential energy because it stores energy until a cell needs it for performing different activities.
Cellular respiration is aerobic means needs oxygen for the generation of energy whereas fermentation is an anaerobic means it occurs in the absence of oxygen.
Learn more: https://brainly.com/question/14808473
vanadium crystallizes in a body-centered cubic lattice and the density is 5.96g/cm3 what is the unit cell edge length in pm?
Final answer:
The unit cell edge length of vanadium in a body-centered cubic lattice is approximately 303.4 pm.
Explanation:
Vanadium crystallizes in a body-centered cubic (BCC) lattice. In a BCC structure, there are atoms at the eight corners of the unit cell and one atom in the center. The edge length (a) of the unit cell can be calculated using the formula:
a = (4 * radius) / √3
Given that the density of vanadium is 5.96 g/cm3, we can use its molar mass (50.9415 g/mol) and Avogadro's number (6.022 × 10^23 atoms/mol) to calculate the radius of a vanadium atom using the formula:
density = (molar mass * number of atoms) / (volume of unit cell)
By rearranging the formulas and substituting the given values, we can find the unit cell edge length:
a = (√[3 * molar mass * Avogadro's number / (4 * density)]) / 10
Substituting the values gives:
a = (√[3 * 50.9415 * 6.022 *10^23 / (4 * 5.96)]) / 10
Simplifying the expression gives:
a ≈ 3.034 Å
To convert Ångströms (Å) to picometers (pm), multiply by 100:
a ≈ 3.034 * 100 = 303.4 pm
Soon after the island of Hawaii rose above the sea surface (somewhat less than one million years ago), the evolution of life on this new island should have been most strongly influenced by _____.
A) genetic bottleneck.
B) sexual selection.
C) habitat differentiation.
D) founder effect.
Answer:
Soon after the island of Hawaii rose above the sea surface (somewhat less than one million years ago), the evolution of life on this new island should have been most strongly influenced by habitat differentiation
Explanation:
Habitat differentiation has to do with when new environment is carved out of old one to form a new one, just as the description that occurs in island of Hawai Rose.
Most naturally occurring selective pressures do not eliminate reproduction by the affected individuals. Instead, their reproductive capacity is reduced by a small proportion. How would your results differ if there was only 20% negative selection pressure rather then 100%?
Answer:
The result would differ in the sense that the reproductive success would not decrease at the same rate at 20% as it would at 100%. At 20% it would decrease faster.
Final answer:
A 20% negative selection pressure results in a slower rate of allele elimination from the population, leading to a more gradual evolutionary change compared to 100% negative selection pressure. This allows for greater genetic diversity and adaptability in facing future environmental changes.
Explanation:
Naturally occurring selective pressures, such as predators, diseases, or environmental conditions, tend to reduce an organism's reproductive capacity rather than completely negate it. If there was only 20% negative selection pressure, as opposed to 100%, this would mean that the affected individuals still retain a significant proportion (80%) of their reproductive capability. Consequently, the alleles or genetic traits subject to this pressure would be eliminated from the population at a slower rate compared to a scenario with 100% negative selection pressure. Over time, this could lead to a more gradual change in the allele frequencies within the population, affecting the pace at which evolution occurs under these selective pressures.
The evolutionary impact of differing levels of selective pressure illustrates how natural selection can shape populations over time. A 20% selective pressure allows for a greater diversity of genetic material to remain within the population, potentially enabling it to adapt to future changes in the environment or new selective pressures. Thus, understanding the nuances of selective pressure helps us grasp the complex dynamics of evolution and the survival of species in changing environments.
A father with myotonic dystrophy has three daughters who are all carriers of the mutant allele and two sons who are unaffected noncarriers. the three daughters have six sons, of which four are affected and two are not, and four daughters, of which two are carriers and two are not. From this description, what type of mutation is probably responsible for myotonic dystrophy?
Answer:
Inherited Autosomal Dominant Mutations
Explanation:
The mutations in DMPK gene or ZNF9 gene contribute to the onset of Muscular Dystrophy. This is a type of inherited disorder that can run in families and due to it's autosomal transfer nature, it affects both sexes equally.
Only one species of moth, Xanthopan morgani, is known to have a tongue long enough to reach the nectar in the Madagascar orchid Angraecum sesquipedale.
Would the orchid be more likely to reproduce if, through many generations, its nectaries became shorter so that other insect species were able to serve as pollinators? (Select all that apply.)a.Yes. If more insect species are able to use the orchid for food, then the orchid is more likely to reproduce.b.Yes. We can predict that the nectaries of these orchids will tend to shorten enough that other pollinators can also feed on them.c.No. If the nectaries were shorter, then the moth Xanthopan morgani would be able to feed without rubbing against the pollen.d.No. If the nectaries were shorter, then insect species that use other flowers as food sources would also drink its nectar, and it would be less likely these insects would visit another orchid of the same species while carrying its pollen.e.All of the above are plausible. It is impossible to predict.
Answer: e.All of the above are plausible. It is impossible to predict.
Explanation:
The long tongue of moth Xanthopan morgani is able to derive the nectar from the orchid. If through many generations the nectaries become shorter the moth may not be able to derive the nectar this may facilitate the other insect species to derive the nectar and pollination.
If more insect species will able to use the orchid for nectar then obviously the orchid is more likely to reproduce due to pollination. The nectaries may get even shorter that the nectar will readily available to the other species of insects. This may also interrupt the pollination of other species of orchids as Madagascar orchid is a source of nectar which will attract many pollinators also those were specific to the other orchid species.
All conditions are plausible. But several generations of evolution of the Madagascar orchid is required to be observed to predict the association of insects with the orchid.
Shorter nectaries in the orchid would increase the likelihood of other insect species serving as pollinators, but it wouldn't guarantee that the moth Xanthopan morgani can feed without rubbing against the pollen. This would not deter other insect species from visiting other orchids of the same species while carrying its pollen.
B and D are the correct answers.
Explanation:B and D are the correct answers.
If the nectaries of the orchid became shorter, it would allow other insect species to serve as pollinators. This would increase the likelihood of reproduction for the orchid as more insects would be able to access the nectar and potentially transfer pollen.
However, it is incorrect to select answer choices A and C. While more insect species being able to use the orchid for food increases the likelihood of reproduction, the reduction in nectary length would not guarantee that the moth Xanthopan morgani can feed without rubbing against the pollen. Furthermore, shorter nectaries would not necessarily deter other insect species from drinking the nectar and visiting other orchids of the same species while carrying its pollen.
Learn more about Orchid Reproduction here:https://brainly.com/question/36440193
#SPJ11
If you were to set up a PCR reaction (in vitro DNA synthesis) with a DNA template, primers,DNA polymerase, dATP, dGTP, dCTP, dTTP and a small amount of ddATP, what would be the result? If you were to set up a PCR reaction (in vitro DNA synthesis) with a DNA template, primers,DNA polymerase, dATP, dGTP, dCTP, dTTP and a small amount of ddATP, what would be the result? DNA synthesis would happen normally. All DNA molecules produced would be the same length as the template. DNA synthesis might be terminated after the addition of any adenine base (at random). DNA molecules of many different lengths would be produced. DNA synthesis would be terminated after the first adenine base is added. All DNA molecules produced would the same length
Answer:
DNA synthesis might be terminated after the addition of any adenine base (at random). DNA molecules of many different lengths would be produced.
Explanation:
Polymerase chain reaction may be defined as the molecular process of increasing the amount of DNA upto several times. Three important steps in PCR - denaturation, annealing and extension.
As given in the question, dd ATP ( dideoxy adenosine triphosphate) is added to the PCR reaction. ddATP lacks the hydroxyl group at 3' position of the sugar. This means the reaction will be terminated after this ddATP as no further nucleotide will be added. This will also leads to the genereation of the different length of DNA fragments as ddATP will randomly be inserted in the DNA molecule.
Thus, the correct answer is option (3) and (4).
(Blank) organize the elements to form glucose
Protein function is lost or reduced when a protein is denatured. Which of the environmental factors listed can cause protein denaturation? excessive heat extreme pH exposure to water protein‑digesting enzymes
Answer:
Option A, Excessive heat
Explanation:
A denatured protein is the one whose structure changes with the loss of an activity. Generally, a denatured protein unfolds itself when the 2 D network of water around the protein molecule breaks by the breaking of hydrogen bonds. This primarily happens when the temperature is high. Both hydrogen bonds and hydrophobic interactions are disturbed by the heat thereby breaking hydrogen bonds.
Answer:
excessive heat
extreme pH
Explanation:
Protein denaturation can occur when they are exposed to abruptly increased temperature conditions and extremes of pH. Heat denature proteins by affecting the weak interactions that stabilize their secondary or tertiary structures. It makes the proteins less functional or completely non-functional. Similarly, extremes of pH alter the net charge on the protein. This causes electrostatic repulsion between the amino acids and disrupts some hydrogen bonds. Loss of these weak interactions denatures proteins.
31.
Part 1. How is indeterminate cleavage different from determinate cleavage?
Part 2. Is there any benefit to the organism if they have determinate or indeterminate cleavage? i.e is one type of cleavage superior to the other?
Part 3. Why do you think that all animals do not display indeterminate cleavage?
Indeterminate cleavage results in identical cells capable of forming an embryo while determinate cells do not result in cells which are capable to develop embryo.
Indeterminate is superior to determinate cleavage.
Explanation:
Cleavage is the division of cells in the early embryonic stage. The two stages of cleavage described here are:
In indeterminate cleavage or regulative cleavage occurs when an embryo divides, each cell is capable of developing into complete embryo. eg: Deuterosomes
In determinate cleavage the resulting embryonic cells of blastomere cannot develop into embryos. It is also called as mosaic cleavage. The essential part of the cell might be missing which does not let the cell survive. eg: Protosomes
Indeterminate cleavage is of great importance as the cell grows and can produce new organism. The complete identical twin is formed. Its application can be seen in tomato plants.
3. All animals do not display intermediate cleavage because growth from intermediate cleavage is continuous and does not stop after adulthood which is not possible in animals.
Plants are set up in a greenhouse. 1/3 of potted plants are grown under red light, 1/3 under green light, and 1/3 under natural light. Plant biomass is measured at the beginning of the experiment and after a 28 day period.
In this study, is the amount of plant growth the independent or dependent variable?
dependent
independen
Answer:
Plants are set up in a greenhouse. 1/3 of potted plants are grown under red light, 1/3 under green light, and 1/3 under natural light. Plant biomass is measured at the beginning of the experiment and after a 28 day period.
In this study, is the amount of plant growth the independent or dependent variable?
Dependent variable
Explanation:
Plant is the independent variable as the light varies in color which makes the plant to depend on them for growth
Measurements with small freshwater sponges such as Grantia have documented water flow rates around 3-4 ml/minute. Assuming that a sponge has a constant flow rate over the course of a day, how many ml of water could a single sponge such as Grantia filter in a 24-hour period?
A sponge with a flow rate of 3.5 ml/minute could potentially filter around 5040 ml of water in a 24-hour period.
Explanation:The process to find the total amount of water a single sponge such as Grantia filters in a 24-hour period involves simple multiplication. First, you need to know the flow rate of the sponge, which is given as 3-4 ml/minute. Let's take the average, which is 3.5 ml/minute. To find the total volume of water processed in a 24-hour period, we need to multiply the rate by the total number of minutes in a day, which is 1440 minutes. So, it's 3.5 ml/minute * 1440 minutes = 5040 ml/day. Therefore, this sponge could process around 5040 ml of water in a 24-hour period.
Learn more about Volume Filtered here:https://brainly.com/question/31528520
#SPJ3
Each step in the flow of energy through an ecosystem is known as aA.food chain.B.trophic level.C.plateau of consumption.D.food web.
Answer: Option B) Trophic level
Explanation:
Trophic level refers to a feeding level, representing the number of links by which food energy is transferred from producers
to final consumers.
For example
Grass ------> Antelope ---------> Lion
This food chain begins with grass as producer, that is fed on by antelope which in turn is fed on by a carnivore, lion. Thus, there are three trophic levels by which energy is transferred in a step-by-step basis from grass to lion.
Thus, trophic level is the answer
Final answer:
Each step in the ecosystem's energy flow is known as a trophic level, representing the organism's position based on its role as a producer or consumer. The concept highlights the linear transfer of energy and nutrients through a food chain, emphasizing the energy losses at each trophic level.
Explanation:
Each step in the flow of energy through an ecosystem is known as a trophic level. In the context of ecology, a food chain provides a linear sequence of organisms through which nutrients and energy pass, including primary producers, primary consumers, and higher-level consumers. Each organism in a food chain occupies a specific trophic level, denoting its position based on its role as a producer or consumer. The concept of trophic levels is fundamental to understanding ecosystem structure and dynamics, emphasizing the flow of energy from one level to the next.
Trophic levels include:
Primary producers: Organisms that synthesize their own food from inorganic substances using light or chemical energy.
Primary consumers: Organisms that feed on primary producers.
Higher-level consumers: Organisms that feed on primary and other consumers.
Energy is transferred between trophic levels, but with significant losses at each step, usually around 10%, leading to the concept of an energy pyramid. This pyramid reflects the cumulative loss of usable energy at higher trophic levels, shaping the structure of food chains and ecosystems.
Describe the experiments that revealed the structure of the genetic material. If a sample of DNA contains 8% adenine (A), then what are the percentages of thymine (T), cytosine (C), and guanine (G)
Answer:
Explanation:
One of the earlier experiments that confirmed DNA and not proteins as genetic material was conducted by Alfred Hershey and Martha Chase
Hershey and Chase experiment showed the genetic material of virus is DNA not protein. Their experiments demonstrated that Phage are composed of DNA and protein, when phage infect bacteria, their DNA enters the host bacterial cell but not protein before infection
Hershey and Chase experiment prove that DNA is the hereditary material.
From chargaff base pairing rule, the ratio of purine to pyrimidine is a cell is 1:1. Since adenine pair with thymine and cytosine pair with quanine, this means the percentage of adenine will equal the percentage of thymine.
%A = %T and %G = %C.
%A + %T + %G + %C =100
If a DNA contains 8% adenine, therefore the percentage of thymine is 8%
8% + 8% + %G +%C = 100%
16% + %G +%C = 100%
%G +%C = 100%-16%
%G +%C = 84% = 84%/2= 42%
Since %G = %C
Then %G = 42%, %C = 42
By Chargaff's law, the percentage of a base is always equal to the base from which it pairs.
So the percentage of adenine is 8%, thymine is 8%, cytosine is 42%, and guanine is 42%.
Chargaff's lawAccording to the law :
If the percentage of adenine is 8%, the thymine concentration will also be 8% because adenine pair with thymine. The combine percentage of both pairs is 16%.The remaining percentage is 84%, so the percentage of cytosine and guanine will be 42% each. The 16% of adenine and thymine and 84% of guanine and cytosine makes 100% of concentration of four bases together.Thus, the percentage of adenine is 8%, thymine is 8%, cytosine is 42%, and guanine is 42%.
Learn more about DNA, here:
https://brainly.com/question/17997743
Homeotic genes contain a homeobox sequence that is highly conserved among very diversespecies. The homeobox is the code for that domain of a protein that binds to DNA in aregulatory developmental process. Which of the following would you then expect?A) That homeotic genes are selectively expressed over developmental time.B) That a homeobox containing gene has to be a developmental regulator.C) That homeoboxes cannot be expressed in non homeotic genes.D) That all organisms must have homeotic genes.E) That all organisms must have homeobox containing genes.
Answer:
wdawdsawdsaw
Explanation:
414w141432we
Suppose that rat liver expresses a protein called Yorfavase. This enzyme is composed of 192 amino acid residues, and thus the coding region of the yfg gene consists of 576 bp. However, the rat genome database indicates that the yfg gene consists of 1440 bp. Select which type of DNA does not contribute to the additional 864 bp found in the yfg gene.
O O O 5-end untranslated regulatory region centromeric DNA
DNA coding for a signal sequence noncoding intron O promoter sequence
Answer:
Centromeric DNA
Explanation:
Genes are responsible for formation of proteins. A codon produces a single amino acid and it comprises of three base pairs. The whole DNA of organism does not contribute to encode protein. There are sequences in DNA that does not contribute in coding known as non-coding DNA and perform different functions. These may include the O O O 5-end, DNA coding for a signal sequence, noncoding intron and O promoter sequence .
The centromere is the part of DNA that links the sister chromatids. The centromere is not converted to mRNA or proteins. It is also not involved in regulation of genes. So it did not contribute to 864 bp found in the yfg gene.
Why do black redstarts exhibit migratory restlessness at night for fewer days than common redstarts?
Answer:
The statistics given has shown that night-migrating birds are driven by autonomous circadian clocks which is made possible by sunset cues. This timekeeping that is the autonomous circadian clocks system is probably the key factor in the overall control of nocturnal songbird migration.
Answer: Blact redstarts are associated with circadian clock. Seasonal melatonin and circadian clock lead to migratory nocturnal restlessness. The birds that exhibit migratory restlessness at night is due to high levels of melatonin at nights because melatonin are high in the night.
Explanation:
Migratory restlessness is the locomotive performance that birds engaged in before migration. It is common in birds with circadian rhythm.
The pKa for the side chain of histidine is 6.0. What is the ratio of the deprotonated imidazole side chain to the protonated side chain at pH 5.0 and at pH 7.5?
Answer:
When the pKa is 6.0, we can determine the fraction of protonated H is by:
pH = pKa + log [A]/[HA]
Where
A = Deprotonated imidazole side
HA = Protonated side
Given, pH = 5.0
5 = 6 + log [A]/[HA]
log [A]/[HA] = -1 (take antilog of both side)
[A]/[HA] = 0.1
The ratio of the deprotonated imidazole side chain to the protonated side chain at pH 5.0 = 0.1
Given, pH = 7.5
7.5 = 6 + log [A]/[HA]
log [A]/[HA] = 1.5 (take antilog of both sides)
[A]/[HA] = 31.62
The ratio of the deprotonated imidazole side chain to the protonated side chain at pH 5.0 = 31.62
Final answer:
The ratio of deprotonated to protonated histidine side chain at pH 5.0 is 0.1, and at pH 7.5 is 31.62, calculated using the Henderson-Hasselbalch equation.
Explanation:
The ratio of deprotonated to protonated histidine side chain can be calculated using the Henderson-Hasselbalch equation:
pH = pKₐ + log ([A⁻]/[HA])
where pKₐ is the acidity constant of the side chain, pH is the environment's pH, [A⁻] is the concentration of the deprotonated form, and [HA] is the concentration of the protonated form.
Calculation at pH 5.0:
pH = pKₐ + log ([A⁻]/[HA])
5.0 = 6.0 + log ([A⁻]/[HA])
log ([A⁻]/[HA]) = -1
[A⁻]/[HA] = 10⁻¹
[A⁻]/[HA] = 0.1
Calculation at pH 7.5:
pH = pKₐ + log ([A⁻]/[HA])
7.5 = 6.0 + log ([A⁻]/[HA])
log ([A⁻]/[HA]) = 1.5
[A⁻]/[HA] = 10^1.5
[A⁻]/[HA] = 31.62
At pH 5.0, the ratio of deprotonated to protonated histidine side chain is 0.1, meaning there is 10 times more protonated form present. At pH 7.5, the ratio is 31.62, indicating there is significantly more deprotonated form present.
The modern synthesis brought together Darwin's theory of evolution with Mendelian genetics. Why was this so important?
Answer:
Option C
Explanation:
Options for the question are
a. It demonstrated that nothing in biology makes sense except in the light of evolution.
b. It demonstrated that species arise from other species.
c. It provided a quantifiable mechanism to explain gradual evolutionary change.
d. It was the first time that change in biological organisms was observed.
e. It was not very important to evolutionary biology.
Solution -
The term modern synthesis by coined by Julian Huxley and the goal of this synthesis was to understand and determine how genetics bring evolutionary changes in a population and with this objective it combined the Darwin’s theory of evolution and Mendel’s work on heredity. Later on scientist Dobzhansky under this synthesis found that genetic mutation causes variation through the process of natural selection and hence lead to evolutionary changes in a population even if they are isolated for a long time.
Hence, option C is correct
Based on the following DNA sequence comparisons, which two unidentified microorganisms would you conclude are most closely related? Choose one: A. Both microbial genomes include a gene that encodes for streptokinase, an enzyme and virulence factor that activates human plasminogen. B. Both microbial genomes include genes that encode for protein components of the prokaryotic ribosome. C. Both microbial genomes include genes that encode for photosynthetic photoreceptor proteins. D. Both microbial genomes include a gene that encodes for nitrogenase, a nitrogen-fixing enzyme.
Answer:
A. Both microbial genomes include a gene that encodes for streptokinase, an enzyme and virulence factor that activates human plasminogen.
Explanation:
Streptokinase (Ska) is a single-chain 414 amino acid protein, produced by certain Streptococci species (group A, C, and G streptococci), which possess an activity closer to two host proteins (urokinase-type and tissue-type plasminogen activators), as it non-enzymatically process inactive plasminogen to proteolytically active plasmin.
Streptokinase is a species-specific virulence factor. If both microbial genomes produces streptokinase, then these microorganisms can both be grouped as Streptococci since they are closely related.
All other choices do not certainly ease the relationship beyond the domain level.
Answer:
A. Both microbial genomes include a gene that encodes for streptokinase, an enzyme and virulence factor that activates human plasminogen.
Explanation:
Streptokinase is an enzyme (also synthesize as a medication) produced specifically by streptococci spp. If the two unidentified microbes could produce this enzyme, then they should contain the gene that codes for streptokinase .Thus they share certain genome characteristics, and are related.
Other options related the similarities to the domain levels only
All of the following are post-translational modifications except A. Elongation B. Phosphorylation C. Proteolytic cleavage D. Glycosylation A. Elongation
Answer: Elongation
Explanation:
Elongation (in the context of DNA) is not a form of post translational modification. It is basically an increase in the length of a particular growing nucleotide chain during either replication, translation or transcription. Post translation modifications are basically changes that are most of the times chemical that can take place in a protein after translation and some of these occur to activate or to cleave some specific regions. Examples including phosphorylation, glycosylation (conjugation of carbohydrate by enzymes) etc
In addition to providing yogurt with its unique flavor and texture, lactic acid-producing bacteria also provide which additional benefit during food production?a. Providing xenobiotics b. Lowering the pH to kill pathogenic bacteria c. Pasteurizing milk products d. Breaking down lactose for lactose-intolerant individuals
Answer:
Option b. Lowering the pH to kill pathogenic bacteria is correct answer.
Explanation:
bacterial motors are sensitive to pH. By decreasing the pH bacterial motors stops working. This was identified in a new research. But, with the weak acids and a lower internal pH they slow and ultimately stop moving (became dead).
Reference: Powell, K. Acid stops bacteria swimming. Nature (2003).
1. Although generally not considered to be alive, a _______ is studied alongside other microbes such as bacteria2. The protein coat that surrounds the nucleic acid of a virus3. A viral life cycle that results in bursting of the host cell4. A viral life cycle in which the virus inserts its genome into the genome of its host, where it may remain dormant for long periods________.5. Viral genome that has inserted itself into the genome of its host________
Answer:
The correct terms are as - 1. virus, 2. capsid, 3. lytic cycle, 4. lysogenic cycle, 5. prophage.
Explanation:
A virus is considered as nonliving by various scientists as it required a living host to divide, however, it is studied with the microbes such as the bacteria and others. The virus is made up of nucleic acid surrounded by the protein coat called a capsid.
Viruses normally show two types of life cycles inside the host cell that are the lysogenic cycle and the lytic cycle.
The lytic cycle is characterized as the life cycle that ends with the destruction or bursting of the host cell. The lysogenic cycle includes being dormant inside the host genome until the favorable condition reestablished. Prophage is a virus that inserts itself into the host genome on its own.
Thus, the correct answer is - 1. virus, 2. capsid, 3. lytic cycle, 4. lysogenic cycle, 5. prophage.
The questions are about different aspects of virology including viral structure, and the lytic and lysogenic cycles. A virus, although not considered truly alive, is studied as a microbe. Its structure includes a protein coat (capsid) and its genetic content or nucleic acid. The lytic and lysogenic cycles describe how a virus interacts with its host.
Explanation:1. Although generally not considered to be alive, a virus is studied alongside other microbes such as bacteria. 2. The protein coat that surrounds the nucleic acid of a virus is known as a capsid. 3. A viral life cycle that results in bursting of the host cell is referred to as the lytic cycle. 4. A viral life cycle in which the virus inserts its genome into the genome of its host, where it may remain dormant for long periods is known as the lysogenic cycle. 5. A viral genome that has inserted itself into the genome of its host is referred to as a provirus or prophage.
Learn more about Virology here:https://brainly.com/question/33923490
#SPJ3
Why did agriculture become the preferred way of supplying basic human needs?
An experiment to assess the effect of watering on the life span of a certain type of root system incorporates three watering regimens. (a) How many populations involved in the study?
Answers: Two populations involved in the study. 1) Root system 2) Watering regimens
Explanation: The experiment to investigate the effect of watering on the life span of certain type of root system using three watering regimens are determined based on the life span of the root system. Therefore, two populations involved in the experiment. One is the population of watering regimens and the other is the root system.
"The total concentration of receptors in a sample is 10 mM, and the concentration of free ligand is 2.5 mM. Calculate the percentage of receptors that are bound to ligand. Enter your answer as a number only (no percent symbol)."
To calculate the percentage of receptors that are bound to the ligand, subtract the concentration of free ligand from the total concentration of receptors (this gives the concentration of receptors that are bound), divide by the total concentration of receptors and multiply by 100. In this case, 25% of the receptors are bound to the ligands.
Explanation:To calculate the percentage of receptors that are bound to a ligand, you first need to determine how many receptors are not bound to the ligand. This value is the total concentration of receptors minus the concentration of free ligand. In this case, it would be 10 mM - 2.5 mM = 7.5 mM.
To find the percentage of receptors that are bound, we need to divide the receptors that are bound (free receptors) by the total concentration of receptors and then multiply by 100.
Thus, the calculation is as follows: (2.5 mM / 10 mM) x 100 = 25%.
The total concentration of receptors is 10 mM, and the free ligand concentration is 2.5 mM, therefore, 25% of receptors are bound to the ligand.
Learn more about Concentration Calculation here:https://brainly.com/question/17329736
#SPJ12