The weight of a small Starbucks coffee is a normally distributed random variable with a mean of 415 grams and a standard deviation of 23 grams. Find the weight that corresponds to each event.

Answers

Answer 1

Answer:

(a) The highest 20% weight correspond to the weight 434.32 grams.

(b) The middle 60% weight correspond to the weights 434.32 grams and 395.68 grams.

(c) The highest 80% weight correspond to the weight 395.68 grams.

(d) The highest 80% weight correspond to the weight 391.08 grams.

Step-by-step explanation:

Let X = weight of a small Starbucks coffee.

It is provided: [tex]X\sim N(\mu = 415\ grams, \sigma=23\ grams)[/tex]

(a)

Compute the value of x fro P (X > x) = 0.20 as follows:

[tex]P (X>x)=0.20\\P(\frac{X-\mu}{\sigma}>\frac{x-415}{23} )=0.20\\P (Z>z)=0.20\\1-P(Z<z)=0.20\\P(Z<z)=0.80[/tex]

Use a standard normal table.

The value of z is 0.84.

The value of x is:

[tex]0.84=\frac{x-415}{23}\\0.84\times23=x-415\\x=415+19.32\\=434.32[/tex]

Thus, the highest 20% weight correspond to the weight 434.32 grams.

(b)

Compute the value of x fro P (x₁ < X < x₂) = 0.60 as follows:

[tex]P(x_{1}<X<x_{2})=0.60\\P(\frac{x_{1}-415}{23}<\frac{X-\mu}{\sigma}< \frac{x_{2}-415}{23})=0.60\\P(-z<Z<z)=0.60\\P(Z<z)-P(Z<-z)=0.60\\P(Z<z)-[1-P(Z<z)]=0.60\\2P(Z<z)=1.60\\P(Z<z)=0.80[/tex]

Use a standard normal table.

The value of z is 0.84.

The value of x₁ and x₂ are:

[tex]z=\frac{x_{1}-415}{23}\\0.84=\frac{x_{1}-415}{23}\\x_{1}=415+(0.84\times23)\\=434.32[/tex]

[tex]-z=\frac{x_{2}-415}{23}\\0.84=\frac{x_{2}-415}{23}\\x_{1}=415-(0.84\times23)\\=395.68[/tex]

Thus, the middle 60% weight correspond to the weights 434.32 grams and 395.68 grams.

(c)

Compute the value of x fro P (X > x) = 0.80 as follows:

[tex]P (X>x)=0.80\\P(\frac{X-\mu}{\sigma}>\frac{x-415}{23} )=0.80\\P (Z>z)=0.80\\1-P(Z<z)=0.80\\P(Z<z)=0.20[/tex]

Use a standard normal table.

The value of z is -0.84.

The value of x is:

[tex]-0.84=\frac{x-415}{23}\\-0.84\times23=x-415\\x=415-19.32\\=395.68[/tex]

Thus, the highest 80% weight correspond to the weight 395.68 grams.

(d)

Compute the value of x fro P (X < x) = 0.15 as follows:

[tex]P (X<x)=0.15\\P(\frac{X-\mu}{\sigma}<\frac{x-415}{23} )=0.15\\P (Z<z)=0.15[/tex]

Use a standard normal table.

The value of z is -1.04.

The value of x is:

[tex]-1.04=\frac{x-415}{23}\\-1.04\times23=x-415\\x=415-23.92\\=391.08[/tex]

Thus, the highest 80% weight correspond to the weight 391.08 grams.

Answer 2

Final answer:

The question pertains to finding the weight that corresponds to a specific event for a normally distributed random variable, using the mean and standard deviation provided for small Starbucks coffee weights.

Explanation:

The weight of a small Starbucks coffee is a normally distributed random variable with a mean of 415 grams and a standard deviation of 23 grams. To find the weight that corresponds to a specific event, you need to use the formula for the z-score: Z = (X - μ) / σ, where Z is the z-score, X is the weight in grams, μ is the mean weight, and σ is the standard deviation.

Given that the mean (μ) is 415 grams and the standard deviation (σ) is 23 grams, you can calculate the z-score for any specific weight (X) to see how it relates to the distribution. Without a specific event or weight provided in this instance, we can discuss the process rather than a specific outcome. To calculate the percentile or probability for a given weight, the found z-score can then be used with a standard normal distribution table.


Related Questions

A bicycle is traveling at a speed of 15.5 miles per hour. What is the speed in feet per minute?

Answers

Answer:

1364

Step-by-step explanation:

An SRS of 350 high school seniors gained an average of ¯ x = 21 points in their second attempt at the SAT Mathematics exam. Assume that the change in score has a Normal distribution with standard deviation σ = 52 . (a) Find a 99 % confidence interval for the mean change in score μ in the population of all high school seniors. (Enter your answers rounded to two decimal places.) lower bound of confidence interval: upper bound of confidence interval:

Answers

Answer:

Upper bound: 26.45

Lower bound: 15.55            

Step-by-step explanation:

We are given the following in the question:

Sample mean, [tex]\bar{x}[/tex] = 21

Sample size, n = 350

Alpha, α = 0.05

Population standard deviation, σ = 52

95% Confidence interval:

[tex]\mu \pm z_{critical}\frac{\sigma}{\sqrt{n}}[/tex]

Putting the values, we get,

[tex]z_{critical}\text{ at}~\alpha_{0.05} = 1.96[/tex]

[tex]21 \pm 1.96(\dfrac{52}{\sqrt{350}} ) = 21 \pm 5.45 = (15.55,26.45)[/tex]

Upper bound: 26.45

Lower bound: 15.55

Final answer:

The 99% confidence interval for the mean change in score in the population of high school seniors ranges from approximately 13.89 to 28.11 points.

Explanation:

To find the 99% confidence interval for the mean change in score μ in the population of all high school seniors, we'll use the formula for the confidence interval of the mean for a population when the standard deviation is known:

Confidence interval = μ ± (z*·σ/√n)

Where μ is the mean, σ is the standard deviation, n is the sample size, and z* is the z-score associated with the desired confidence level. Here, the sample mean (μ) is 21, the standard deviation (σ) is 52, and the sample size (n) is 350. The z-score for a 99 percent confidence level is approximately 2.576.

Confidence interval = 21 ± (2.576*52/√350)

First, calculate the margin of error:

Margin of error = 2.576 * (52/√350) ≈ 7.11

Then, calculate the confidence interval:

Lower bound = 21 - 7.11 = 13.89 (rounded to two decimal places)

Upper bound = 21 + 7.11 = 28.11 (rounded to two decimal places)

Therefore, the 99 percent confidence interval for the mean change in score μ is approximately from 13.89 to 28.11 points.

g A signal x(????) with Fourier transform ????(???? ) undergoes impulse-train sampling to generate 4 where For each of the following sets of constraints on x(????) or ????(???? ), does the sampling guarantee that x(????) can be recovered from xxpp(????????)? Justify your answer and show your work. Simple yes/no answers are not acceptable. a) ????????(???????????? )=0 for |????????|>5,000???????? b) ????????(???????????? )=0 for |????????|>15,000???????? c) ???????????? {????????(???????????? )}=0 for |????????|>5,000???????? d) xx(????????) is real and ????????(???????????? )=0 for |????????|>15,000???????? [hint: if xx(????????) is real-valued then ????????(???????????? )=????????∗(−???????????? )] e) ????????(???????????? )∗????????(???????????? )=0 for |????????|>15,000???????? f) |????????(???????????? )|=0 for ????????>5,000???????? Problem

Answers

Answer:

(a) The Nyquist rate for the given signal is 2 × 5000π = 10000π. Therefore, in order to be able

to recover x(t) from xp(t), the sampling period must at most be Tmax =

10000π = 2 × 10−4

sec. Since the sampling period used is T = 10−4 < Tmax, x(t) can be recovered from xp(t).

(b) The Nyquist rate for the given signal is 2 × 15000π = 30000π. Therefore, in order to be able

to recover x(t) from xp(t), the sampling period must at most be Tmax =

30000π = 0.66×10−4

sec. Since the sampling period used is T = 10−4 > Tmax, x(t) cannot be recovered from

xp(t).

(c) Here, Im{X(jω)} is not specified. Therefore, the Nyquist rate for the signal x(t) is indeterminate. This implies that one cannot guarantee that x(t) would be recoverable from xp(t).

(d) Since x(t) is real, we may conclude that X(jω) = 0 for |ω| > 5000. Therefore, the answer to

this part is identical to that of part (a).

(e) Since x(t) is real, X(jω) = 0 for |ω| > 15000π. Therefore, the answer to this part is identical

to that of part (b).

(f) If X(jω) = 0 for |ω| > ω1, then X(jω) ∗ X(jω) = 0 for |ω| > 2ω1. Therefore, in this

part, X(jω) = 0 for |ω| > 7500π. The Nyquist rate for this signal is 2 × 7500π = 15000π.

Therefore, in order to be able to recover x(t) from xp(t), the sampling period must at most

be Tmax =

15000π = 1.33 × 10−4

sec. Since the sampling period used is T = 10−4 < Tmax,

x(t) can be recovered from xp(t).

(g) If |X(jω)| = 0 for |ω| > 5000π, then X(jω) = 0 for |ω| > 5000π. Therefore, the answer to

this part is identical to the answer of part (a).

An object of mass 600 kg is released from rest 1000 m above the ground and allowed to fall under the influence of gravity. Assuming the force due to air resistance is proportional to the velocity of the object with proportionality constant bequals50 ​N-sec/m, determine the equation of motion of the object. When will the object strike the​ ground? [Hint: Here the exponential term is too large to ignore. Use​ Newton's method to approximate the time t when the object strikes the​ ground.] Assume that the acceleration due to gravity is 9.81 m divided by sec squared.

Answers

Answer:

15 sec

Step-by-step explanation:

Data:

let m = 600 kg

    b  = 50

the differential equation will be:

[tex]m\frac{dv}{dt} = mg - bv(t)[/tex]

Final answer:

The equation of motion of the object can be determined considering the forces acting on it, including the force due to gravity and the force due to air resistance. The equation can be rearranged and solved using the given values in Newton's method to approximate the time when the object strikes the ground.

Explanation:

The equation of motion of the object can be determined by considering the forces acting on it. The main force acting on the object is the force due to gravity, which is given by F = mg, where m is the mass of the object and g is the acceleration due to gravity. However, in this case, we also need to consider the force due to air resistance, which is proportional to the velocity of the object.

Let's denote the velocity of the object as v and the constant of proportionality for the force due to air resistance as b. The equation of motion can then be written as:

m(dv/dt) = mg - bv

This equation can be rearranged to get:

(dv/dt) + (b/m)v = g

Now, we can solve this differential equation to find the velocity as a function of time, and then integrate the velocity to get the position as a function of time. However, since the exponential term is too large to ignore, we can use Newton's method to approximate the time when the object strikes the ground. The equation of motion and the value of g are given, so we can substitute those values into Newton's method to solve for the time when the object strikes the ground.

The operations manager of a large production plant would like to estimate the mean amount of time a worker takes to assemble a new electronic component. Assume that the standard deviation of this assembly time is 3.6 minutes and is normally distributed.

a) After observing 120 workers assembling similar devices, the manager noticed that their average time was 16.2 minutes. Construct a 92% confidence interval for the mean assembly time.

b) How many workers should be involved in this study in order to have the mean assembly time estimated up to

Answers

Final answer:

We can calculate the 92% confidence interval for the mean assembly time to be approximately 15.572 to 16.828 minutes. The information provided, however, is insufficient to answer part b) of the question.

Explanation:

In order to construct a 92% confidence interval for the mean assembly time, we first have to find the z-score corresponding to this level of confidence. The z-score for a 92% confidence interval is approximately 1.75. This value is found using a standard normal distribution table (or z-table).

So, the 92% confidence interval for the mean assembly time of 16.2 minutes can be computed as follows: 16.2 ± 1.75*(3.6/sqrt(120)). This gives a confidence interval of approximately 15.572 to 16.828 minutes.

Regarding the second part of your question (b), it seems unfinished and lacks enough information for me to provide a complete answer. Typically, a desired margin of error or a certain level of confidence would need to be specified to determine the sample size.

Learn more about Confidence Interval here:

https://brainly.com/question/34700241

#SPJ3

a) The 92% confidence interval for the mean assembly time is (15.75 minutes, 16.65 minutes).  b) About 993 workers are needed for the study to estimate the mean assembly time with a 0.2-minute margin of error.

To construct the confidence interval, use the formula for the confidence interval of the mean for a normal distribution: [tex]\[ \text{CI} = \bar{x} \pm z \times \frac{\sigma}{\sqrt{n}} \][/tex]

1. Calculate the standard error of the mean: [tex]\[ \text{SE} = \frac{\sigma}{\sqrt{n}} = \frac{3.6}{\sqrt{120}} \approx 0.329 \][/tex]

2. Find the critical z-value for a 92% confidence interval (using a z-table or calculator): [tex]\( z = 1.75 \) (approximately).[/tex]

3. Substitute the values into the formula: [tex]\[ \text{CI} = 16.2 \pm 1.75 \times 0.329 \][/tex]

4. Calculate the confidence interval: [tex]\[ \text{CI} = (16.2 - 0.575, 16.2 + 0.575) \][/tex]

[tex]\[ \text{CI} = (15.625, 16.775) \][/tex]

So, the 92% confidence interval for the mean assembly time is approximately (15.625 minutes, 16.775 minutes).

b) To estimate the mean assembly time with a desired margin of error, use the formula for the required sample size: [tex]\[ n = \left( \frac{z \times \sigma}{\text{ME}} \right)^2 \][/tex]

Given the desired margin of error (ME), let's say 0.2 minutes, and using \( z = 1.75 \) from the 92% confidence level:

[tex]\[ n = \left( \frac{1.75 \times 3.6}{0.2} \right)^2 \]\[ n = (31.5)^2 \]\[ n = 992.25 \][/tex]

So, approximately 993 workers should be involved in the study to estimate the mean assembly time with a margin of error of 0.2 minutes.

Given subspaces H and K of a vector space V, the sum of H and K, written as H+K, is the set of all vectors in V that can be written as the sum of two vectors, one in H and the other in K; that is, H+K={w:w=u+v for some u in H and some v in K}
a. Show that H+K is a subspace of V.
b. Show that H is a subspace of H+K and K is a subspace of H+K.

Answers

Answer:

a. H + K = {u + v}

b. See explanation below

Step-by-step explanation:

Given

H+K={w:w=u+v for some u in H and some v in K}

a.

From the (given) above,

We have that

0 = v1 + 0.u

v1 represents the zero vector in K

We also have that

0 = v + u1

u1 represents the zero vector in H

Up this point, we've shown that both H and K have vector factors, V

We'll use the available data to solve for the zero vector of H + K

This is given by

u1 + v1 + u2 + v2 ---- Rearrange

u1 + u2 + v1 + v2 ---- Let u3 = u1 + u2 and v3 = v1 + v2.

So, we have

u3 + v3 as the zero vector of H + K

H + K = {u + v}

So, H + K is a subspace of V

b

Since H, K are subspace of V, then they are

1. Both close under scalar multiplication

2. Both closed under vector addition

1 and 2 gives

c(u + v) where c is a constant

= c.u + c.v

We can then conclude that H is a subspace of H+K and K is a subspace of H+K because H + K is closed under scalar multiplication and vector addition

Final answer:

The sum of two subspaces H and K is a subspace of V as it contains the zero vector, is closed under addition, and under scalar multiplication. Additionally, H and K themselves also qualify as subspaces of this resultant sum subspace, H+K.

Explanation:

To show that H+K is a subspace of V, we need to prove that it satisfies three properties: it contains the zero vector, it is closed under addition, and it is closed under scalar multiplication.

1. Zero Vector: Since H and K are subspaces, they both contain the zero vector. So, 0 = 0 + 0 represents a vector in H+K (with the first 0 from H and the second from K).

2. Closure under Addition: If w1 and w2 are vectors in H+K, w1 can be written as h1 + k1 (h1 in H, k1 in K) and w2 as h2 + k2 (h2 in H, k2 in K). Adding w1 and w2 gives: (h1 + k1) + (h2 + k2) = (h1 + h2) + (k1 + k2), where h1+h2 is in H and k1+k2 is in K, hence, the result is in H+K.

3. Closure under Scalar Multiplication: Let w be in H+K and c be any scalar. Then w = h + k, so cw = c(h + k) = ch + ck, where ch is in H and ck is in K, hence, cw is in H+K.

To show that H is a subspace of H+K and K is a subspace of H+K, note that for any vector h in H, it can be written as h+0 (with 0 as the zero vector of K), and similarly for any vector k in K as 0+k. Thus, H and K are subspaces of H+K.

Learn more about Vector Subspaces here:

https://brainly.com/question/30031077

#SPJ11

Every morning Jack flips a fair coin ten times. He does this for anentire year. LetXbe the number of days when all the flips come out the same way(all heads or all tails).(a) Give the exact expression for the probabilityP(X >1).(b) Is it appropriate to approximateXby a Poisson distribution

Answers

Final answer:

The probability question from part (a) requires calculating the chance of getting all heads or all tails on multiple days in a year, which involves complex probability distributions. For part (b), using a Poisson distribution could be appropriate due to the rarity of the event and the high number of trials involved.

Explanation:

The question pertains to the field of probability theory and involves calculating the probability of specific outcomes when flipping a fair coin. For part (a), Jack flips a coin ten times each morning for a year, counting the days (X) when all flips are identical (all heads or all tails). The exact expression for P(X > 1), the probability of more than one such day, requires several steps. First, we find the probability of a single day having all heads or all tails, then use that to calculate the probability for multiple days within the year. For part (b), whether it is appropriate to approximate X by a Poisson distribution depends on the rarity of the event in question and the number of trials. A Poisson distribution is typically used for rare events over many trials, which may apply here.

For part (a), the probability on any given day is the sum of the probabilities of all heads or all tails: 2*(0.5^10). Over a year (365 days), we need to calculate the probability distribution for this outcome occurring on multiple days. To find P(X > 1), we would need to use the binomial distribution and subtract the probability of the event not occurring at all (P(X=0)) and occurring exactly once (P(X=1)) from 1. However, this calculation can become quite complex due to the large number of trials.

For part (b), given the low probability of the event (all heads or all tails) and the high number of trials (365), a Poisson distribution may be an appropriate approximation. The mean (λ) for the Poisson distribution would be the expected number of times the event occurs in a year. Since the probability of all heads or all tails is low, it can be considered a rare event, and the Poisson distribution is often used for modeling such scenarios.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

Upgrading a certain software package requires installation of 68 new files. Files are installed consecutively. The installation time is random, but on the average, it takes 15 sec to install one file, with a variance of 11 sec2. (a) What is the probability that the whole package is upgraded in less than 12 minutes?

Answers

(a) Probability of upgrading in less than 12 minutes is practically 0. (b) Approximately 66 new files are required for 95% completion in less than 10 minutes.

Part (a):

First, let's calculate the mean and standard deviation of the time it takes to install all 68 files.

Given:

Mean time to install one file: [tex]$\mu = 15 , \text{sec}$[/tex]

Variance: [tex]$\sigma^2 = 11 , \text{sec}^2$[/tex]

The total time T to install all 68 files is the sum of 68 random variables, each with mean [tex]\mu$ and variance $\sigma^2$[/tex]. Since each installation time is independent, the mean of the total time is the sum of the individual means, and the variance of the total time is the sum of the individual variances.

Mean of total time:

[tex]\mu_{\text {total }}=68 \times \mu=68 \times 15 \mathrm{sec}=1020 \mathrm{sec}[/tex]

Variance of total time:

[tex]\sigma_{\text {total }}^2=68 \times \sigma^2=68 \times 11 \mathrm{sec}^2=748 \mathrm{sec}^2[/tex]

Standard deviation of total time:

[tex]\sigma_{\text {total }}=\sqrt{\sigma_{\text {total }}^2}=\sqrt{748} \mathrm{sec} \approx 27.34 \mathrm{sec}[/tex]

Now, to find the probability that the whole package is upgraded in less than 12 minutes (720 seconds), we convert this time into seconds and then use the cumulative distribution function of the normal distribution.

[tex]Z=\frac{X-\mu_{\text {total }}}{\sigma_{\text {total }}}[/tex]

Where:

X=720 (time in seconds)

[tex]\mu_{\text {total }}[/tex] =1020 (mean time in seconds)

[tex]\sigma_{\text {total }}[/tex] = [tex]\sqrt{748[/tex] (standard deviation in seconds)

Substituting the values:

[tex]\begin{aligned}& Z=\frac{720-1020}{27.34} \\& Z \approx-7.316\end{aligned}[/tex]

Now, we look up this Z value in a standard normal distribution table or use software to find the corresponding probability. The probability we seek is P(Z<−7.316).

Using a calculator or statistical software, this probability is extremely close to 0 (practically 0). Hence, the probability that the whole package is upgraded in less than 12 minutes is very close to 0.

Part (b):

Given that 95% of the time upgrading takes less than 10 minutes (600 seconds), we can use the same approach as above to find the corresponding Z value.

[tex]\begin{aligned}&Z=\frac{600-1020}{27.34}\\&Z \approx-14.468\end{aligned}[/tex]

To find the corresponding percentile from the standard normal distribution, we look up Z = -14.468 and find the corresponding percentile, which should be close to 0.05.

Now, let's find the number of files N required to ensure that 95% of the time the upgrading takes less than 10 minutes. We want the probability of completing the installation in less than 10 minutes to be 0.95, which corresponds to the Z value of approximately -1.645 (from standard normal distribution tables).

[tex]Z=\frac{X-\mu_{\text {total }}}{\sigma_{\text {total }}}=-1.645[/tex]

Solving for X:

[tex]\begin{aligned}& -1.645=\frac{X-1020}{27.34} \\& X=-1.645 \times 27.34+1020 \\& X \approx 978.52\end{aligned}[/tex]

So, the total time to install N files is approximately 978.52 seconds. Since we know the mean time to install one file is 15 seconds, we can find N by:

[tex]\begin{aligned}& N=\frac{978.52}{15} \\& N \approx 65.235\end{aligned}[/tex]

So, to ensure that 95% of the time upgrading takes less than 10 minutes, we would need to install approximately 65 new files. Since we can't install a fraction of a file, we would round up to the nearest whole number, giving us N = 66.

Complete Question:

Upgrading a certain software package requires installation of 68 new files. Files are installed consecutively. The installation time is random, but on the average, it takes 15 sec to install one file, with a variance of 11 square sec.

(a) What is the probability that the whole package is upgraded in less than 12 minutes?

(b) A new version of the package is released. It requires only N new files to be installed, and it is promised that 95% of the time upgrading takes less than 10 minutes. Given this information, compute N.

Which of the following values cannot be​ probabilities?
Select all the values that cannot be probabilities.

1​, -0.51​, 5/3​, √ 2 ​, 3/5​, 0.03​, 0​, 1.37

Answers

Answer:

-0.51, 5/3, sqrt (2), and 1.37

Step-by-step explanation:

As we know probability must be between 0 and 1. It cannot be greater than 1 and cannot be less than 0 or negative

1,  can be the probability as it lies between 0 and 1

-0.51,  cannot be the value of probability as it is negative

5/3 = 1.66 which is greater than 1, so cannot be the value of probability

[tex]\sqrt{2}[/tex] = 1.41 which is greater than 1, so cannot be the value of probability

3/5 = 0.6 can be the probability as it lies between 0 and 1

0.03, can be the probability as it lies between 0 and 1

1.37 which is greater than 1, so cannot be the value of probability

The Hyperbolic Functions and their Inverses: For our purposes, the hyperbolic functions, such as sinhx=ex−e−x2andcoshx=ex+e−x2 are simply extensions of the exponential, and any questions concerning them can be answered by using what we know about exponentials. They do have a host of properties that can become useful if you do extensive work in an area that involves hyperbolic functions, but their importance and significance is much more limited than that of exponential functions and logarithms. Let f(x)=sinhxcoshx.

d/dx f(x) =_________

Answers

Answer:

[tex]\dfrac{d}{dx}f(x)=\dfrac{e^{2x}+e^{-2x}}{2}[/tex]

Step-by-step explanation:

It is given that

[tex]\sinh x=\dfrac{e^x-e^{-x}}{2}[/tex]

[tex]\cosh x=\dfrac{e^x+e^{-x}}{2}[/tex]

[tex]f(x)=\sinh x\cosh x=[/tex]

Using the given hyperbolic functions, we get

[tex]f(x)=\dfrac{e^x-e^{-x}}{2}\times \dfrac{e^x+e^{-x}}{2}[/tex]

[tex]f(x)=\dfrac{(e^x)^2-(e^{-x})^2}{4}[/tex]

[tex]f(x)=\dfrac{e^{2x}-e^{-2x}}{4}[/tex]

Differentiate both sides with respect to x.

[tex]\dfrac{d}{dx}f(x)=\dfrac{d}{dx}\left(\dfrac{e^{2x}-e^{-2x}}{4}\right )[/tex]

[tex]\dfrac{d}{dx}f(x)=\left(\dfrac{2e^{2x}-(-2)e^{-2x}}{4}\right )[/tex]

[tex]\dfrac{d}{dx}f(x)=\left(\dfrac{2(e^{2x}+e^{-2x})}{4}\right )[/tex]

[tex]\dfrac{d}{dx}f(x)=\dfrac{e^{2x}+e^{-2x}}{2}[/tex]

Hence, [tex]\dfrac{d}{dx}f(x)=\dfrac{e^{2x}+e^{-2x}}{2}[/tex].

A child pulls a sled through the snow on a level path with a force of 20 N exerted at an angle of pi/4 above the horizontal. Find the horizontal and vertical components of the force (expressed as vectors).

Answers

Answer:

[tex]10\sqrt 2 iN[/tex] and [tex]10\sqrt 2 jN[/tex]

Step-by-step explanation:

We are given that

Force =F=20 N

[tex]\theta=\frac{\pi}{4}[/tex]

We have to find the horizontal and vertical component of the force.

Horizontal component of the force =[tex]F_x=Fcos\theta i[/tex]

Horizontal component of the force=[tex]F_x=20cos\frac{\pi}{4}i=10\sqrt 2 iN[/tex]

Vertical component of the force,[tex]F_y=Fsin\theta j[/tex]

Vertical component of the force,[tex]F_y=20sin\frac{\pi}{4}j=10\sqrt 2 jN[/tex]

Force,[tex]F=F_x+F_y[/tex]

[tex]F=10\sqrt 2i N+10\sqrt 2j N[/tex]

Suppose a new production method will be implemented if a hypothesis test supports the conclusion that the new method reduces the mean operating cost per hour. a. State the appropriate null and alternative hypotheses if the mean cost for the current production method is 215 per hour.

b. What is the Type I error in this situation? What are the consequences of making this error?

c. What is the Type II error in this situation? What are the consequences of making this error?

Answers

a. Null hypothesis (H0): Mean cost for the new production method is $215 per hour.

Alternative hypothesis (H1): Mean cost for the new production method is less than $215 per hour.

b. Type I error: Rejecting the null hypothesis when it is true; consequence: Implementing the new method incorrectly and incurring unnecessary costs.

c. Type II error: Failing to reject the null hypothesis when it is false; consequence: Missing the opportunity to adopt a cost-effective production method and continuing with higher operating costs.

We have,

a. The appropriate null and alternative hypotheses would be:

Null Hypothesis (H0): The mean cost for the new production method is equal to or greater than $215 per hour.

Alternative Hypothesis (H1): The mean cost for the new production method is less than $215 per hour.

b. The Type I error in this situation would be rejecting the null hypothesis when it is actually true.

In other words, it would mean concluding that the new production method reduces the mean operating cost per hour when it actually doesn't.

The consequence of making this error is that resources, time, and effort might be invested in implementing the new method based on incorrect information, potentially leading to unnecessary costs and inefficiencies.

c. The Type II error in this situation would be failing to reject the null hypothesis when it is actually false.

In other words, it would mean failing to conclude that the new production method reduces the mean operating cost per hour when it actually does.

The consequence of making this error is that the opportunity to adopt a more cost-effective production method would be missed, potentially leading to continued higher operating costs and missed efficiency gains.

Thus,

a. Null hypothesis (H0): Mean cost for the new production method is $215 per hour.

Alternative hypothesis (H1): Mean cost for the new production method is less than $215 per hour.

b. Type I error: Rejecting the null hypothesis when it is true; consequence: Implementing the new method incorrectly and incurring unnecessary costs.

c. Type II error: Failing to reject the null hypothesis when it is false; consequence: Missing the opportunity to adopt a cost-effective production method and continuing with higher operating costs.

Learn more about hypothesis testing here:

https://brainly.com/question/17099835

#SPJ4

Final answer:

The null and alternative hypotheses are set as μ ≥ 215 and μ < 215 respectively. A Type I error, rejecting the null hypothesis when it's true, could lead to unnecessary changes. A Type II error, failing to reject the null hypothesis when it's false, could result in missed cost savings.

Explanation:

a. In this situation, the null hypothesis (H0) would state that the mean cost of the new production method is equal to or greater than 215. We can denote this as: H0: μ ≥ 215. The alternative hypothesis (Ha) posits that the mean cost of the new production method is less than 215, denoted as: Ha: μ < 215.

b. A Type I error would occur if we incorrectly reject the null hypothesis, concluding that the new method reduces the cost when, in fact, it does not. The consequence could be implementing a production method that doesn't actually provide the desired savings, which could lead to unnecessary changes and associated costs.

c. A Type II error would happen if we fail to reject the null hypothesis when it's actually false, meaning the new method does reduce the cost but we fail to recognize it. The consequence of this error could be missing out on an opportunity to reduce operating costs, potentially leading to higher than necessary expenses.

Learn more about Hypothesis Testing here:

https://brainly.com/question/34171008

#SPJ11

In a poll, respondents were asked if they have traveled to Europe. 68 respondents indicated that they have traveled to Europe and 124 respondents said that they have not traveled to Europe. If one of these respondents is randomly selected, what is the probability of getting someone who has traveled to Europe?

Answers

Answer:

T= A person selected in the poll travel to Europe

NT= A person selected in the poll NOT travel to Europe

For this case we have the following respondents for each event

n(T)= 68

n(NT) = 124

So then the total of people for the poll are:

[tex] n = n(T) + n(NT)= 68 +124= 192[/tex]

And we are interested on the probability of getting someone who has traveled to Europe, and we can use the empirical definition of probability given by:

[tex] p =\frac{Possible}{Total}[/tex]

And if we replace we got:

[tex] p = \frac{n(T)}{n}= \frac{68}{192}= 0.354[/tex]

So then the probability of getting someone who has traveled to Europe is 0.354

Step-by-step explanation:

For this case we define the following events:

T= A person selected in the poll travel to Europe

NT= A person selected in the poll NOT travel to Europe

For this case we have the following respondents for each event

n(T)= 68

n(NT) = 124

So then the total of people for the poll are:

[tex] n = n(T) + n(NT)= 68 +124= 192[/tex]

And we are interested on the probability of getting someone who has traveled to Europe, and we can use the empirical definition of probability given by:

[tex] p =\frac{Possible}{Total}[/tex]

And if we replace we got:

[tex] p = \frac{n(T)}{n}= \frac{68}{192}= 0.354[/tex]

So then the probability of getting someone who has traveled to Europe is 0.354

The population of bald eagles is decreasing 4% each year. In 2015, there were 2800 bald eagles.

What will the approximate population of bald eagles be in the year 2030?

Answers

Answer:

1120 Eagles

Step-by-step explanation:

If the population of Eagles decreases by 4% percent each year, then in 2030 (which is 15 years later), the population would decrease by (4 × 15)%

that is 60%

This indicates that the population of bald eagles in the year 2030 would be 60% less of what it was in the year 2015.

so we have, [tex]\frac{60}{100}[/tex] × 2800

which gives us 1680

this means that the number of bald eagles in the year 2030 would be 1680 less than the number of bald eagles in the year 2015

hence 2800 - 1680

then the answer is 1120 Bald Eagles

Answer: the approximate population of bald eagles be in the year 2030 is 15178

Step-by-step explanation:

The population of bald eagles is decreasing 4% each year. This means that the rate is exponential.

We would apply the formula for exponential decay which is expressed as

A = P(1 - r)^t

Where

A represents the population after t years.

t represents the number of years.

P represents the initial population.

r represents rate of growth.

From the information given,

P = 2800

r = 4% = 4/100 = 0.04

t = 2030 - 2015 = 15 years

Therefore

A = 2800(1 - 0.04)^ 15

A = 2800(0.96)^ 15

A = 15178

To overcome an infection an anti-biotic is injected into David’s bloodstream. After the injection the anti-biotic in his body decreases at a rate proportional to the amount, Q(t), present at time t. If the initial injection was 8 ccs and 5 ccs remain after 4 hours, estimate how many ccs will remain after 5 hours?

Answers

Answer:

4.45 ccs will remain after 5 hours.

Step-by-step explanation:

The anti-biotic in his body decreases at a rate proportional to the amount, Q(t), present at time t.

(dQ/dt) = - kQ ((Minus sign because it's a rate of reduction)

(dQ/dt) = -kQ

(dQ/Q) = -kdt

 ∫ (dQ/Q) = -k ∫ dt 

Solving the two sides as definite integrals by integrating the left hand side from Q₀ to Q and the Right hand side from 0 to t.

We obtain

In (Q/Q₀) = -kt

(Q/Q₀) = e⁻ᵏᵗ

Q(t) = Q₀ e⁻ᵏᵗ

the initial injection was 8 ccs and 5 ccs remain after 4 hours

Q₀ = 8 ccs,

At t = 4 hours, Q = 5 ccs

5 = 8 e⁻ᵏᵗ

e⁻ᵏᵗ = 0.625

-kt = In (0.625) = -0.47

-4k = 0.47

k = 0.1175 /hour

Q(t) = Q₀ e⁻⁰•¹¹⁷⁵ᵗ

At t = 5 hours, Q = ?

Q = 8 e⁻⁰•¹¹⁷⁵ᵗ

0.1175 × 5 = 0.5875

Q = 8 e(^-0.5875)

Q = 4.45 ccs

Hope this Helps!!!

If you deposit $8,000 in a bank account that pays 10% interest annually, how much will be in your account after 5 years? Do not round intermediate calculations. Round your answer to the nearest cent.

Answers

Answer:

$12,884.08

Step-by-step explanation:

Assuming that interest is compounded annually, the future value of an invested amount 'P', at an interest rate 'r' for a period of 'n' years is given by the following equation:

[tex]FV = P*(1+r)^n[/tex]

Therefore, an investment of $8,000 at a rate of 10% per year for 5 years has a future value of:

[tex]FV = 8,000*(1+0.1)^5\\FV=\$12,884.08[/tex]

There will be $12,884.08 in the account after 5 years.

Answer:

Step-by-step explanation:

Assuming the interest was compounded annually, we would apply would apply the formula for determining compound interest which is expressed as

A = P(1+r/n)^nt

Where

A = total amount in the account at the end of t years

r represents the interest rate.

n represents the periodic interval at which it was compounded.

P represents the principal or initial amount deposited

From the information given,

P = 8000

r = 10% = 10/100 = 0.1

n = 1 because it was compounded ince in a year.

t = 5 years

Therefore,

A = 8000(1+0.1/1)^1 × 5

A = 8000(1.1)^5

A = $12884.1

The lifetime of a certain transistor in a certain application has mean 900 hours and standard deviation 30 hours. Find the mean and standard deviation of the length of time that four bulbs will last

Answers

Answer:

[tex]E(T)=E(X1 + X2 + X3 + X4 =E(x1) + E(x2) + E(x3) + E(x4) [/tex]

[tex]E(T) =900+900+900+900 =3600[/tex]

And the mean would be:

[tex] \bar X = \frac{T}{4} = \frac{3600}{4}= 900[/tex]

And the standard deviation of total time would be:

[tex]SD(T)=\sqrt(Var(T)) = sqrt(Var(X1) + Var(x2) + Var(x3) + Var(x4))[/tex]

[tex]\sigma=sqrt(30^2+30^2+30^2+30^2) =\sqrt(3600) =60[/tex]

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let total life time of t four transistors T = X1 + X2 + X3 + X4 (where X1,X2,X3 and X4 are life time of individual transistors

For this case the mean length of time that four transistors will last

[tex]E(T)=E(X1 + X2 + X3 + X4 =E(x1) + E(x2) + E(x3) + E(x4) [/tex]

[tex]E(T) =900+900+900+900 =3600[/tex]

And the mean would be:

[tex] \bar X = \frac{T}{4} = \frac{3600}{4}= 900[/tex]

And the standard deviation of total time would be:

[tex]SD(T)=\sqrt(Var(T)) = sqrt(Var(X1) + Var(x2) + Var(x3) + Var(x4))[/tex]

[tex]\sigma=sqrt(30^2+30^2+30^2+30^2) =\sqrt(3600) =60[/tex]

Final answer:

The mean lifetime of four transistors is 3600 hours and the standard deviation of the lifetime is 60 hours.

Explanation:

The mean and standard deviation are statistical concepts used to describe a dataset. The mean, or average, is the sum of all data points divided by the number of data points. In this case, the mean lifetime of a single transistor is 900 hours. If you have four transistors, their total lifetime would be four times the mean of a single transistor. So, the mean lifetime for four transistors is 4 * 900 = 3600 hours.

The standard deviation measures the amount of variation in a set of values. When you are considering the lifetime of multiple transistors, you add the variances - not the standard deviations - and then take the square root. The variance is the square of the standard deviation. So, the standard deviation for the lifetime of four transistors is sqrt(4) * 30 = 60 hours.

Learn more about Statistical Analysis here:

https://brainly.com/question/33812621

#SPJ11

In a statistics class of 42 students, 14 have volunteered for community service in the past. If two students are selected at random from this class, what is the probability that both of them have volunteered for community service? Round your answer to four decimal places. P(both students have volunteered for community service) the absolute tolerance is __________

Answers

The correct statement is that the probability of both the students who have volunteered for community service the absolute tolerance will be 0.1056.

The calculation of the probability of both the students who have volunteered for the community service getting selected is shown by doing multiple calculations as under.

It is assumed that the number of students is denoted by n. So, n=42.

It is assumed that the students who have volunteered is denoted by x. So x= 14.

Calculating further,

The random 2 students can be selected by using the formula below and applying the given info to the formula we get,

[tex]\left \ ( {{n} \atop {r}} \right. )= \dfrac {n!}{2(42-2)!}\\\\\\\left \ ( {{42} \atop {2}} \right. )=861[/tex]

Selecting 2 students out of the 14 volunteered by using the similar formula,

[tex]\left \ ( {{14} \atop {2}} \right. )= \dfrac{14!}{2(14-2)!}\\\\\\\left \ ( {{14} \atop {2}} \right. )= 91[/tex]

Now calculating the probability by dividing the values derived from the above calculations,

[tex]\rm Probability= \dfrac{Favorable\ Observations}{Total\ Observations}\\\\\\\rm Probability= \dfrac{91}{861}\\\\\\\rm Probability= 0.1056[/tex]

So we know that the probability of two students getting selected from the number of students who have volunteered for the community service is 0.1056.

Hence, correct statement is that the probability of both the students who have volunteered for community service the absolute tolerance will be 0.1056.

To know more about probability, click the link below.

https://brainly.com/question/795909

Alice and Bob each picks an integer number uniformly at random between 1 and n. Assume that all possible combinations of two numbers are equally likely to be picked. What is the probability that Alice’s number is bigger than Bob’s?

Answers

Answer:

The answer is 1/n

Step-by-step explanation:

First number = Alice's number

Second Number = Bob's Number

There are already 2 good answers if the first number is AT LEAST 1 greater than the second.

However, what if the first number is EXACTLY 1 greater than the second?

I will assume the first number is removed from the array after being selected.

If the first number is 1, then it is impossible, because the second number cannot be less than 1.

If the first number is 2, then the second number could be 1, which has a probability of 1/(n-1)

If the first number is 3, then the second number could be 2, which has a probability of 1/(n-1)

etc…

There is a 1/n probability of each first number selected, so the answer would be:

0*1/n+1/n*1/(n−1)+1/n*1/(n−1)+⋯+1/n*1/(n−1)

There are n terms in that series.

That gives us:

0+1/n(n−1)+1/n(n−1)+⋯+1/n(n−1)

There are n-1 of those identical terms, because 1 of the terms is 0.

(n−1)/n(n−1)=1/n

So the answer is 1/n.

What happens to the value of the expression \dfrac5x+5 x 5 ​ +5start fraction, 5, divided by, x, end fraction, plus, 5 as xxx decreases from a large positive number to a small positive number?

Answers

Answer:

It increases

Step-by-step explanation:

(5/x) + 5

As x decreases, 5/x increases.  So the expression increases.

A process manufactures ball bearings with diameters that are normally distributed with mean 25.14 mm and standard deviation 0.08 mm. Specifications call for the diameter to be in the interval 2.5 ± 0.01 cm. What proportion of the ball bearings will meet the specification? A. Describe the distribution of ball diameters using proper statistical notation. B. Represent the situation described in the problem graphically. C. Calculate the proportion of ball bearings meeting the specifications

Answers

Answer:

a) Let X the random variable that represent the diameters of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(2.514 cm,0.008 cm)[/tex]  

Where [tex]\mu=2.514[/tex] and [tex]\sigma=0.008[/tex]

b) For this case we can see the interval required on the figure attached,

c) [tex]P(2.49<X<2.51)=P(\frac{2.49-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{2.51-\mu}{\sigma})=P(\frac{2.49-2.514}{0.008}<Z<\frac{2.51-2.514}{0.008})=P(-3<z<-0.5)[/tex]

And we can find this probability with this difference:

[tex]P(-3<z<-0.5)=P(z<-0.5)-P(z<-3)[/tex]

And in order to find these probabilities we can use tables for the normal standard distribution, excel or a calculator.  

[tex]P(-3<z<-0.5)=P(z<-0.5)-P(z<-3)=0.309-0.00135=0.307[/tex]

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Part a

Let X the random variable that represent the diameters of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(2.514 cm,0.008 cm)[/tex]  

Where [tex]\mu=2.514[/tex] and [tex]\sigma=0.008[/tex]

Part b

For this case we can see the interval required on the figure attached,

Part c

We are interested on this probability

[tex]P(2.49<X<2.51)[/tex]

And the best way to solve this problem is using the normal standard distribution and the z score given by:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

If we apply this formula to our probability we got this:

[tex]P(2.49<X<2.51)=P(\frac{2.49-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{2.51-\mu}{\sigma})=P(\frac{2.49-2.514}{0.008}<Z<\frac{2.51-2.514}{0.008})=P(-3<z<-0.5)[/tex]

And we can find this probability with this difference:

[tex]P(-3<z<-0.5)=P(z<-0.5)-P(z<-3)[/tex]

And in order to find these probabilities we can use tables for the normal standard distribution, excel or a calculator.  

[tex]P(-3<z<-0.5)=P(z<-0.5)-P(z<-3)=0.309-0.00135=0.307[/tex]

Explain why the difference in match win probabilities is significant. (ii) Explain why the number of challenges remaining in the set is significant. (iii) On what basis did the authors conclude that players challenge too few calls

Answers

Answer:

Step-by-step explanation:

The number of observations in model 1 are more compared with model 2 and model 3. And, the coefficient values increased from model 1 to model 3. Moreover, the standard error values are increased. Hence, the test statistic value increases. Therefore, the variable “difference in match win probabilities” is significant.

State the null and alternative Hypotheses:

Null Hypothesis:

H0: The difference in match win probabilities is not significant.

Alternative Hypothesis:

H1: The difference in match win probabilities is significant.

From the given information (model 3), the coefficient of “The difference in match win probabilities” is -0.550 and the corresponding standard error is 0.240. The sample size is 1973.

The test statistic is -2.2917 and it is calculated below: on the picture attached.

Statistics homework question answer, step 1, image 1

The number of sample observations is n=1973 and consider the level of significance as 0.05.

The degree of freedom is, n – 1 = 1973–1 = 1972.

Police records in the town of Saratoga show that 15 percent of the drivers stopped for speeding have invalid licenses. If 12 drivers are stopped for speeding, (a) Find the probability that none will have an invalid license. (Round your answer to 4 decimal places.) P(X = 0) (b) Find the probability that exactly one will have an invalid license. (Round your answer to 4 decimal places.) P(X = 1) (c) Find the probability that at least 2 will have invalid licenses. (Round your answer to 4 decimal places.) P(X ≥ 2)

Answers

Answer:

(a) P(x=0) = 0.1422

(b) P(x=1) = 0.3012

(c) P(x≥2) = 0.5566

Step-by-step explanation:

The probability that x drivers will have an invalid license follows a binomial distributions, so it is calculated as:

[tex]P(x)=\frac{n!}{x!(n-x)!}*p^{x}*(1-p)^{n-x}[/tex]

Where n is equal to the 12 drivers stopped and p is the probability that a driver stopped for speeding have invalid licenses. Then, replacing values, we get:

[tex]P(x)=\frac{12!}{x!(12-x)!}*0.15^{x}*(1-0.15)^{12-x}[/tex]

Now, the probability that none will have an invalid licenses is calculated as:

[tex]P(x=0)=\frac{12!}{0!(12-0)!}*0.15^{0}*(1-0.15)^{12-0}\\P(x=0)=0.1422[/tex]

At the same way, the probability that exactly one will have an invalid license  is calculated as:

[tex]P(x=1)=\frac{12!}{1!(12-1)!}*0.15^{1}*(1-0.15)^{12-1}\\P(x=1)=0.3012[/tex]

Finally, the probability that at least 2 will have invalid licenses is calculated as:

[tex]P(x\geq 2)=1-P(x<2)\\P(x\geq 2)=1-(P(x=0)+P(x=1))\\P(x\geq 2)=1-(0.1422+0.3012)\\P(x\geq 2)=1-0.4434\\P(x\geq 2)=0.5566[/tex]

Answer:

a) [tex] P(X=0) = (12C0) (0.15)^0 (1-0.15)^{12-0} =0.1422[/tex]

b) [tex] P(X=1) = (12C1) (0.15)^1 (1-0.15)^{12-1} =0.3012[/tex]

c) [tex] P(X \geq 2) = 1-P(X<2) = 1-P(X\leq 1)= 1-[P(X=0)+P(X=1)][/tex]

And replacing we got:

[tex]P(X \geq 2)= 1- [0.1422+0.3012]= 0.5566[/tex]

Step-by-step explanation:

Previous concepts

A Bernoulli trial is "a random experiment with exactly two possible outcomes, "success" and "failure", in which the probability of success is the same every time the experiment is conducted". And this experiment is a particular case of the binomial experiment.

The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".

The probability mass function for the Binomial distribution is given as:  

[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]  

Where (nCx) means combinatory and it's given by this formula:  

[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]  

Solution to the problem

Let X the random variable of interest, on this case we now that:  

[tex]X \sim Binom(n=12, p=0.15)[/tex]  

Part a

We want this probability:

[tex] P(X=0) = (12C0) (0.15)^0 (1-0.15)^{12-0} =0.1422[/tex]

Part b

We want this probability:

[tex] P(X=1) = (12C1) (0.15)^1 (1-0.15)^{12-1} =0.3012[/tex]

Part c

We want this probability:

[tex]P(X \geq 2)[/tex]

And we can use the complement rule:

[tex] P(X \geq 2) = 1-P(X<2) = 1-P(X\leq 1)= 1-[P(X=0)+P(X=1)][/tex]

And replacing we got:

[tex]P(X \geq 2)= 1- [0.1422+0.3012]= 0.5566[/tex]

A local pizzeria sells 500 large pepperoni pizzas per week at a price of $20 each. Suppose the owner of the pizzeria tells you that the price elasticity of demand for his pizza is -2, and he asks you for advice. He wants to know two things. First, how many pizzas will he sell if he cuts his price by 10%? Second, how will his revenue be affected?

Answers

Answer:

(1) He would sell 600 pizzas if he cuts his price by 10%

(2) His revenue would increase by 8% ($800)

Step-by-step explanation:

(1) Price elasticity of demand = % change in quantity demanded /% change in price

price elasticity of demand = -2

Initial price = $20

New price = $20 - (10% × $20) = $20 - $2 = $18

Change in price = new price - initial price = 18 - 20 = -2

% change in price = -2/20 × 100 = -10%

% change in quantity demanded = price elasticity of demand × % change in price = -2 × -10% = 20%

Let the new quantity demanded be y

% change in quantity demanded = (y-500)/500

0.2 = (y-500)/500

y-500 = 0.2×500

y-500 = 100

y = 100+500 = 600

If he reduces his price by 10%, he would sell 600 pizzas.

(2) If he sells each pizza $20, quantity demanded is 500

Revenue = 500 × $20 = $10,000

If he cuts his price by 10%, his new price would be $180 and new quantity demanded is 600

Revenue = 600 × $18 = $10,800

If he cuts his price by 10% his revenue would increase by $800 ($10,800 - $10,000 = $800)

Final answer:

By decreasing the price by 10%, the pizzeria can expect a 20% increase in quantity demanded, resulting in 600 pizzas sold and an increase in revenue to $10,800 from the original $10,000, showing the price decrease to be beneficial.

Explanation:

The student's question involves calculating the impact of a price change on demand and revenue for a pizzeria, given a price elasticity of demand of -2. To address this, we can apply the formula for price elasticity of demand, which is the percentage change in quantity demanded divided by the percentage change in price. Knowing that the demand elasticity is -2 and the owner plans to reduce the price by 10%, we can calculate the expected change in quantity demanded and how revenue will be affected.

First, a 10% decrease in the price from $20 to $18 results in a 20% increase in quantity demanded (since the elasticity is -2, the absolute value indicates the proportionate change in quantity for a 1% change in price, thus 10% price change × 2 = 20% quantity change). Hence, the new quantity demanded will be 500 (original) × 1.20 (20% increase) = 600 pizzas. Second, the new revenue will be 600 (quantity) × $18 (new price) = $10,800, compared to the original revenue of 500 × $20 = $10,000. The pizzeria's revenue increases by $800, indicating that the price decrease was beneficial in terms of revenue.

Explain why hydrogen and fuel cells are required for 100% zero emissions and sustainable energy conversion throughout society. Provide at least three (3) reasons that they are required and describe the technical features that hydrogen and fuel cells offer to make these reasons compelling.

Answers

Answer:

A fuel cell converts hydrogen into electricity. This hydrogen is stored in a tank on board the FCEV. Hydrogen and energy components are not synonymous; they can be conveyed in mix or independently. Energy units can work on petroleum gas, which maintains a strategic distance from burning and in this way 90% of airborne toxins. Hydrogen can be scorched in motors and boilers with no immediate CO2 and close to zero NO2 discharges. At the point when utilized together, hydrogen power modules are zero-emanation at the purpose of utilization, with by and large outflows reliant on the fuel creation technique.Because fuel cells allow the regulated reaction of hydrogen (in a tank) and oxygen (from the air) to produce electricity, they are often perceived as non-polluting.Hydrogen (like electricity) is not a primary source of energy but rather an energy carrier. There are no natural reservoirs of pure hydrogen. To produce hydrogen, water can be electrolyzed in the reverse of the fuel-cell reaction. To force electrolysis to occur, considerable amounts of electricity are required, much of which is currently generated by burning fossil fuels. Alternatively, in commercial applications, the vast preponderance of hydrogen generated in the United States is extracted from a fossil fuel: natural gas. When natural gas (basically methane, a lightweight molecule made of carbon and hydrogen) is exposed to steam under high temperatures in the presence of a catalyst, it frees the hydrogen. This is called “reforming,” and the process produces carbon dioxide (CO2).

Step-by-step explanation:

Hydrogen and fuel cells are essential for achieving zero emissions and sustainable energy due to efficiency, renewable sourcing, and zero emissions.

Hydrogen and fuel cells are crucial for achieving 100% zero emissions and sustainable energy conversion due to several reasons:

Efficiency: Fuel cells offer high efficiency, up to 50% or more, compared to traditional combustion engines, contributing to reduced energy waste.

Renewable sourcing: Hydrogen can be produced from renewable sources like solar and wind, ensuring sustainable energy production.

Zero emissions: Hydrogen-powered vehicles emit only water and heat, making them environmentally friendly and reducing greenhouse gas emissions.

A 99% confidence interval for the mean \muμ of a population is computed from a random sample and found to be 6 ± 3. We may conclude that Group of answer choices there is a 99% probability that \mu μ is between 3 and 9. there is a 99% probability that the true mean is 6, and there is a 99% chance that the true margin of error is 3. if we took many additional random samples, the mean would be 6 and the margin of error would be 3. if we obtained several more samples and calculated a confidence interval for each the margin of error would be 3 but the sample mean would be different.

Answers

Answer:

There is a 99% probability that \mu μ is between 3 and 9.

Step-by-step explanation:

For a confidence level of x% for a mean being found between a and b, it means that we are x% sure, that is, there is a x% probability that the true mean for the population is between a and b.

A 99% confidence interval for the mean μ of a population is computed from a random sample and found to be 6 ± 3.

99% probability that the true mean of the population is between 3 and 9.

So the correct answer is:

There is a 99% probability that \mu μ is between 3 and 9.

Final answer:

A 99% confidence interval of 6 ± 3 implies that we are 99% confident that the population mean is between 3 and 9. If further samples were taken, both the mean and margin of error could vary, depending on the specific data points and variability of each sample.

Explanation:

A 99% confidence interval refers to the range of values within which we are 99% confident that the population mean (μ) resides. In this case, the confidence interval is 6 ± 3, which implies that we are 99% confident that the mean is anywhere between 3 and 9. It does not mean that there is a 99% probability that the true mean is 6, or that the true margin of error is 3. The margin of error is a function of your data's variability and your sample size, not a fixed number.

If we take more random samples, the mean could be different because each sample may contain different individuals or data points with different distributions. However, if the sampling process is properly randomized and unbiased, on average, the mean of the samples should be close to the population mean.

While the margin of error would be expected to remain around 3 for similar sample sizes and variability, it is not guaranteed to always be 3, as it depends on the specific data in each sample.

Learn more about Confidence Interval here:

https://brainly.com/question/34700241

#SPJ11

The net worthw(t) of a company is growing at a rate of′(t) = 2000−121t2dollarsper year, wheretis in years since 1990.(a) If the company is worth $40,000 in 1990, how much is it worth in 2000

Answers

Answer:

The worth of the company in 2000 is $56,000.

Step-by-step explanation:

The growth rate of the company is:

[tex]f'(t)=2000-12t^{2}[/tex]

To determine the worth of the company in 2000, first compute the change in the net worth during the period 1990 (t = 0) to 2000 (t = 10) as follows:

[tex]\int\limits^{10}_{0} {2000-12t^{2}} \, dt =\int\limits^{10}_{0} {2000} \, dt-12\int\limits^{10}_{0} {t^{2}} \, dt=2000 |t|^{10}_{0}-12|\frac{t^{3}}{3}|^{10}_{0}\\=(2000\times10)-(4\times10^{3})\\=20000-4000\\=16000[/tex]

The increase in the company's net worth from 1990 to 2000 is $16,000.

If the company's worth was $40,000 in 1990 then the worth of the company in 2000 is:

Worth in 2000 = Worth in 1990 + Net increase in company's worth

                        [tex]=40000+16000\\=56000[/tex]

Thus, the worth of the company in 2000 is $56,000.

A sample of 30 is taken from a population of Inconel weldments. The average thickness is 1.87 inches at a key location on the part. The sample standard deviation is 0.125 inches and will be used as an estimate of population standard deviation.Calculate the 99% confidence interval. (Hint: Z(a/2) is 2.58 for a 99% CI)a. (1.811, 1.929)b. (1.611, 1.729)c. (1.711, 1.829)d. (1.511, 1.629)

Answers

Answer:

a. (1.811, 1.929)

Step-by-step explanation:

We have to find find M as such

[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]

In which, z is Z(a/2), [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample. So

[tex]M = 2.58*\frac{0.125}{\sqrt{30}} = 0.059[/tex]

The lower end of the interval is the mean subtracted by M. So it is 1.87 - 0.059 = 1.811.

The upper end of the interval is the mean added to M. So it is 1.87 + 0.059 = 1.929

So the correct answer is:

a. (1.811, 1.929)

A department store, on average, has daily sales of 28,651.79. the standard deviation pf sales is $1000. On Tuesday, the store sold $36,211.08 worth of goods. Find Tuesday's Z-score. Was Tuesday an unusually good day?

Answers

Answer:

Tuesday's Z-score is 7.56

Step-by-step explanation:

We are given that a department store, on average, has daily sales of 28,651.79 and the standard deviation of sales is $1000.

Also, it is given that on Tuesday, the store sold $36,211.08 worth of goods.

Let X = Daily sales of goods

So, X ~ N([tex]\mu = 28,651.79, \sigma^{2} =1000^{2}[/tex])

The z-score probability distribution is given by;

        Z = [tex]\frac{X-\mu}{\sigma}[/tex] ~ standard normal N(0,1)

Now, Tuesday,s Z-score is given by;

      Z = [tex]\frac{36,211.08-28,651.79}{1000}[/tex] = 7.56

Yes, Tuesday was an unusually good day as on this day more worth of sales takes place as compared to the average daily sales of $28,651.79 .

Use the rectangle hexagon with side length 10 meters to fill in the missing information

Answers

Answer:

[tex]A_h=150\sqrt{3}\ m^2[/tex]

Step-by-step explanation:

Regular Hexagon

For the explanation of the answer, please refer to the image below. Let's analyze the triangle shown inside of the hexagon. It's a right triangle with sides x,y, and z.

We know that x is half the length of the side length of the hexagon. Thus

[tex]x=5 m[/tex]

Note that this triangle repeats itself 12 times into the shape of the hexagon. The internal angle of the triangle is one-twelfth of the complete rotation angle, i.e.

[tex]\theta=360/12=30^o[/tex]

Now we have [tex]\theta[/tex], the height of the triangle y is easily found by

[tex]\displaystyle tan30^o=\frac{x}{y}[/tex]

Solving for y

[tex]\displaystyle y=\frac{x}{tan30^o}=\frac{5}{ \frac{1} {\sqrt{3} }}=5\sqrt{3}[/tex]

The value of z can be found by using

[tex]\displaystyle sin30^o=\frac{x}{z}[/tex]

[tex]\displaystyle z=\frac{x}{sin30^o}=\frac{5}{\frac{1}{2}}=10[/tex]

The area of the triangle is

[tex]\displaystyle A_t=\frac{xy}{2}=\frac{5\cdot 5\sqrt{3}}{2}=\frac{25\sqrt{3}}{2}[/tex]

The area of the hexagon is 12 times the area of the triangle, thus

[tex]\displaystyle A_h=12\cdot A_t=12\cdot \frac{25\sqrt{3}}{2}=150\sqrt{3}[/tex]

[tex]\boxed{A_h=150\sqrt{3}\ m^2}[/tex]

Other Questions
Lili has 20 friends. Among them are Kevin and Gerry, whoare husband and wive. Lili wants to invite 6 of her friends to her birthdayparty. If neither Kevin nor Gerry will go to a party without the other, howmany choices does Lili have? Many works of literature feature characters who have been given a literal or figurative gift. The gift may be an object, or it may be a quality such as uncommon beauty, significant social position, great mental or imaginative faculties, or extraordinary physical powers. Yet this gift is often also a burden or a handicap. Select a character from a novel, epic, or play who has been given a gift that is both an advantage and a problem. Then write a well-developed essay analyzing the complex nature of the gift and how the gift contributes to the meaning of the work as a whole. Grace earns $7 for each car she washes. She always saves $22 of her weekly earnings. This week, she wants to have at least $63 in spending money. How many cars must she wash? Enter and solve an inequality to represent this situation. Enter your value as a simplified mixed number, if necessary. If point E is translated 2 units right and 4 units up, what are the coordinates of E'? Q: Lisa sells 10 bottles of homemade ketchup for $10 each. The cost of the ingredients, the bottles, and the labels was $70. In addition, it took her 2 hours to make the ketchup and to do so she took time off from a job that paid her $10 per hour. Lisa's accounting profit is ............ while her economic profit is .............. A school is putting on a play. On the first night of the play, twice as many adults attended the lay as students. Students tickets cost $3 and adults tickets cost $5. The total amount of money earned from tickets sales was $1,131. Write a system of equations that represent this situation. What is 9 to the power of zero simplified there are 6 girls in a music class. this represents 3/7 of the entire class. solve 3/7s=6 to find the number of students,s, in the class. Spinning a roulette wheel 6 times, keeping track of the occurrences of a winning number of "16". a. Not binomial: there are more than two outcomes for each trial. b. Procedure results in a binomial distribution. c. Not binomial: the trials are not independent. d. Not binomial: there are too many trials. The decay constant for 14C is .00012 In 1947, the famous cave paintings in Lascaux, France were discovered and testing revealed that charcoal in the cave contained 20% of the 14C found in living trees. Write a formula for the age of the charcoal (hence of the associated paintings). Show your work to find this formula. A research group discovers a new version of happyase, which they call happyase*, that catalyzes the chemical reaction HAPPY SAD. The researchers begin to characterize the enzyme In the first experiment, with [E_t] at 4 nM, they find that the V_max is 1.6 mu M s^-1. In another experiment, with [E]total at 1 nM and [HAPPY] at 30 M, they find that v0 is 300 nMs1. Based on this second experiment, what is the Km for happyase? Epidemiologic studies that examine the role of a suspected factor in the etiology of a disease may be observational or experimental. The most important difference between experimental and observational studies is that in experimental studies: ___________a. The study and control groups are equal in size.b. The study is prospective.c. The study and control groups are always comparable with respect to all factors other than the exposure.d. The investigator determines who shall be exposed to the suspected factor and who shall not.e. Controls are used. If 2.0j of work is done in raising 180g apple, how far was it lifted? What is the mean of: 9.6, 2, 4.1, 8, 5.9, 2, 3.7, 6, 7.6? How many solutions does the system of equations have? The system has infinitely many solutions. The system has no solution.The system has exactly one solution. Addyson's goal is to spend less than $415 on a trip. So far, she has spent $25 on gas for her car. She will spend $100 each day on other expenses. Addyson's trip must last fewer than how many days? What is the center of the circle described by the equationx^2+4x+y^2-6y=12(4, -6)(-4, 6)(-2, 3)(2, -3) How do fables usually end? Which of the following refers to a product innovation that requires a major change in the way consumers live and creates a new market and value chain? A. Continuous design thinking B. Disruptive innovation C. Convergent thinking D. First mover advantage E. Ideation When Dr. Footcare developed and launched a revolutionary new walking shoe, he knew that during the introductory stage of the product life cycle (PLC) __________.