The volume of a fixed mass of an ideal gas is doubled while the temperature is increased from 100 K to 400 K.
What is the final pressure in terms of its initial pressure?

a. 2 Pi
b. 3 Pi
c. 4 Pi
d. 1/2 Pi

Answers

Answer 1

Answer:

c. 4 Pi

Explanation:

The pressure law states that the pressure of a gas is directly proportional to its temperature provided volume and other physical quantities remain constant.

If t is the temperature and p is the pressure of a gas,

p ∝ t

p = kt where k s the constant of proportionality

k = p/t

If t1 and p1 are the initial temperature and pressure respectively and

t2, p2 are the final temperature and pressure

p1/t1 = p2/t2

t1 = 100k, t2 = 400k

p2 = p1 × 400/100

p2 = 4t1

The final pressure of the gas is 4 times the initial pressure.


Related Questions

suppose two masses are connected by a spring. compute the formula for the trajectory of the center of mass of the two mass oscillator

Answers

Answer:

The center mass (Xcm) of the two mass = (M₁X₁ + M₂X₂)/(M₁ +M₂)

Explanation:

let the first mass = M

let the position of second  = M

Final answer:

The formula for the trajectory of the center of mass of a two mass oscillator connected by a spring is x(t) = A * cos(ωt + φ), where A represents the amplitude, ω is the angular frequency, and φ is the phase constant.

Explanation:

The formula for the trajectory of the center of mass of a two mass oscillator connected by a spring can be derived using the principles of simple harmonic motion (SHM). Let's assume that the masses are m1 and m2, and the spring constant is k. The equation for the trajectory of the center of mass can be written as:

x(t) = A * cos(ωt + φ)

where:

x(t) is the displacement of the center of mass at time tA is the amplitude of the motion, which can be calculated using the initial conditionsω is the angular frequency, which is given by ω = √(k / (m1 + m2))φ is the phase constant, which can also be calculated using the initial conditions

A 89.3 kg man sits on the stern of a 5.8 m
long boat. The prow of the boat touches the
pier, but the boat isn’t tied. The man notices his mistake, stands up and walks to the boat’s prow, but by the time he reaches the prow, it’s moved 4.17 m away from the pier.
Assuming no water resistance to the boat’s
motion, calculate the boat’s mass (not counting the man).
Answer in units of kg

Answers

Answer:

34.9 kg

Explanation:

Since there are no net external forces on the system, the center of gravity does not move.

Let's say that m is the mass of the man, M is the mass of the boat, and L is the length of the boat.

When the man is at the stern, the distance between the center of gravity and the pier is:

CG = (m L + M (L/2)) / (m + M)

When the man reaches the prow, the distance between the center of gravity and the pier is:

CG = (m x + M (x + L/2)) / (m + M)

Since these are equal:

(m L + M (L/2)) / (m + M) = (m x + M (x + L/2)) / (m + M)

m L + M (L/2) = m x + M (x + L/2)

m L + M (L/2) = m x + M x + M (L/2)

m L = m x + M x

m L − m x = M x

m (L − x) = M x

M = m (L − x) / x

Plugging in values:

M = 89.3 kg (5.8 m − 4.17 m) / 4.17 m

M = 34.9 kg

The required mass of boat is 34.9 kg.

The given problem is based on the concept of the center of mass. The point of analysis where the entire mass of the system is known to be concentrated is known as the center of mass.

Given data:

The mass of man is, m = 89.3 kg.

The length of boat is, L = 5.8 m.

The distance away from the pier is, d = 4.17 m.

Since there are no net external forces on the system, the center of gravity does not move. Let's say that m is the mass of the man, M is the mass of the boat

When the man is at the stern, the distance between the center of gravity and the pier is:

CG = (m L + M (L/2)) / (m + M)

When the man reaches the prow, the distance between the center of gravity and the pier is:

CG = (m d + M (d + L/2)) / (m + M)

Since these are equal:

(m L + M (L/2)) / (m + M) = (m d + M (d + L/2)) / (m + M)

m L + M (L/2) = m d + M (d + L/2)

m L + M (L/2) = m d + M d + M (L/2)

Further solving as,

m L = m d + M d

m L − m d = M d

m (L − x) = M x

M = m (L − x) / x

M = 89.3 kg (5.8 m − 4.17 m) / 4.17 m

M = 34.9 kg

Thus, we can conclude that the required mass of boat is 34.9 kg.

Learn more about the center of mass here:

https://brainly.com/question/8662931

g what are the bands of electromagneitc radiation and how are they related to energy frequency and wavelength

Answers

Answer:

The details of bands is given in explanation.

Explanation:

The electromagnetic waves are differentiated into different bands based upon their wavelengths and frequencies. The names of different bands are as follows:

1. Radio Waves

2. Micro Waves

3. Infra-red

4. Visible light

5. Ultra Violet

6. X-rays

7. Gamma Rays

The frequency of every region or rays increases from 1 through 7. The energy of rays also increase from 1 through 7. Since, the wave length is inversely related to energy and frequency, thus the wavelength of rays decrease from 1 through 7.

A detailed information of the bands is provided in the picture attached.

12 of 15 Constants The predominant frequency of a certain fire truck's siren is 1500 Hz when at rest.

Answers

Answer:

The detect frequency is 1622.72 Hz.

Explanation:

Given that,

Frequency = 1500 Hz

Suppose you move with a speed of 27.0 m/s toward the fire engine. what frequency do you detect ?

We need to calculate the frequency

Using formula of frequency

[tex]f=(\dfrac{v+v_{0}}{v})f_{0}[/tex]

Where, v = speed of sound

v₀ = speed of source

f₀ = frequency of siren

Put the value into the formula

[tex]f=\dfrac{330+27.0}{330}\times1500[/tex]

[tex]f=1622.72\ Hz[/tex]

Hence, The detect frequency is 1622.72 Hz.

what is the distance on a map in centimeters between two features if they are 7.6 km apart on the ground and the map has a scale of 1. 125000

Answers

Answer:

6.08 cm

Explanation:

We are given that

Ratio =1:125000

Let x be the distance on a map between two features .

The distance between two features on ground=y=7.6 km

According to question

[tex]\frac{x}{y}=\frac{1}{125000}[/tex]

Substitute the values then we get

[tex]\frac{x}{7.6}=\frac{1}{125000}[/tex]

[tex]x=\frac{7.6}{125000}=0.0000608 km[/tex]

We know that

[tex]1km=100000 cm[/tex]

0.0000608 km=[tex]0.0000608\times 100000=6.08cm[/tex]

Hence, the distance between two features on the map=6.08 cm

Final answer:

The distance on the map between the two features is 6.08 centimeters.

Explanation:

To find the distance on a map in centimeters between two features if they are 7.6 km apart on the ground and the map has a scale of 1:125000, you can use the scale factor formula: Distance on Map = Distance on Ground / Scale

Plugging in the values: Distance on Map = 7.6 km / 125000 = 0.0000608 km

Since 1 km = 100000 centimeters, multiply by 100000 to convert km to cm:

Distance on Map = 0.0000608 km × 100000 cm/km = 6.08 cm

Therefore, the distance on the map between the two features is 6.08 centimeters.

A roller coaster car crosses the top of a circular loop-the-loop at twice the critical speed. Part A What is the ratio of the normal force to the gravitational force? What is the ratio of the normal force to the gravitational force? n/FG=2n/FG=2 n/FG=3n/FG=3 n/FG=4n/FG=4 n/FG=5n/FG=5

Answers

Answer:

n/(FG) = 3.

Explanation:

At the top of the loop-the-loop, the normal force is directed downwards as well as the weight of the car. So, the total net force of the car is

[tex]F_{net} = N + mg[/tex]

By Newton's Second Law, this force is equal to the centripetal force, because the car is making circular motion in the loop.

[tex]F_{net} = ma = \frac{mv^2}{R}\\N + mg = \frac{mv^2}{R}[/tex]

The critical speed is the minimum speed at which the car does not fall. So, at the critical speed the normal force is zero.

[tex]0 + mg = \frac{mv_c^2}{R}\\v_c = \sqrt{gR}[/tex]

If the car is moving twice the critical speed, then

[tex]N + mg = \frac{m(2v_c)^2}{R} = \frac{m4gR}{R} = 4mg\\N = 3mg[/tex]

Finally, the ratio of the normal force to the gravitational force is

[tex]\frac{3mg}{mg} = 3[/tex]

At the equator, the radius of the Earth is approximately 6370 km. A plane flies at a very low altitude at a constant speed of v = 239 m/s. Upon landing, the plane can produce an average deceleration of a = 16.5 m/s².
How long will it take the plane to circle the Earth at the equator?

Answers

To solve this problem we will apply the concepts related to the kinematic equations of linear motion. From there we will define the distance as the circumference of the earth (approximate as a sphere). With the speed given in the statement we will simply clear the equations below and find the time.

[tex]R= 6370*10^3 m[/tex]

[tex]v = 239m/s[/tex]

[tex]a = 16.5m/s^2[/tex]

The circumference of the earth would be

[tex]\phi = 2\pi R[/tex]

Velocity is defined as,

[tex]v = \frac{x}{t}[/tex]

[tex]t = \frac{x}{v}[/tex]

Here [tex]x = \phi[/tex], then

[tex]t = \frac{\phi}{v} = \frac{2\pi (6370*10^3)}{239}[/tex]

[tex]t = 167463.97s[/tex]

Therefore will take 167463.97 s or 1 day 22 hours 31 minutes and 3.97seconds

Starting fom rest, a car accelerates at a constant rate, reaching 88 km/h in 12 s. (a) What is its acceleration? (b) How far does it go in this time?

Answers

Answer:

(A)  [tex]a=2.0.37m/sec^2[/tex]

(B) s = 146.664 m

Explanation:

We have given car starts from the rest so initial velocity u = 0 m /sec

Final velocity v = 88 km/hr

We know that 1 km = 1000 m

And 1 hour = 3600 sec

So [tex]88km/hr=88\times \frac{1000}{3600}=24.444m/sec[/tex]

Time is given t = 12 sec

(A) From first equation of motion v = u+at

So [tex]24.444=0+a\times 12[/tex]

[tex]a=2.0.37m/sec^2[/tex]

So acceleration of the car will be [tex]a=2.0.37m/sec^2[/tex]

(b) From third equation of motion [tex]v^2=u^2+2as[/tex]

So [tex]24.444^2=0^2+2\times 2.037\times s[/tex]

s = 146.664 m

Distance traveled by the car in this interval will be 146.664 m

An astronaut is on a 100-m lifeline outside a spaceship, circling the ship with an angular speed of
0.100 rad/s. How far inward can she be pulled before the centripetal acceleration reaches 5g = 49 m/s2?

Answers

Answer:

D = 72.68 m

Explanation:

given,

R = 100 m

angular speed = 0.1 rad/s

distance she can be pulled before the centripetal acceleration reaches 5g = 49 m/s².

using conservation of Angular momentum

[tex]I_i\omega_i= I_f\omega_f[/tex]

[tex]mr_i^2\omega_i=m r_f^2\omega_f[/tex]

[tex]\omega_f = \dfrac{r_i^2}{r_f^2}\times \omega_i[/tex]

[tex]\omega_f = \dfrac{r_i^2}{r_f^2}\times \omega_i[/tex]

we know,

centripetal acceleration

[tex]a = \dfrac{v^2}{r}[/tex]

v = r ω

[tex]a =\omega_f^2 r_f [/tex]

[tex]a =(\dfrac{r_i^2}{r_f^2}\times \omega_i)^2 r_f [/tex]

[tex]a =\dfrac{r_i^4\times \omega_i^2}{r_f^3}[/tex]

[tex]r_f^3=\dfrac{100^4\times 0.1^2}{5\times 9.8}[/tex]

[tex]r_f^3=20408.1632[/tex]

[tex]r_f = 27.32\ m[/tex]

distance she has reached inward is equal to

D = 100 - 27.23

D = 72.68 m

The position of a particle is given by the function x=(4t3−6t2+12)m, where t is in s.
A.) at what time does the particle reach its minimum velocity
B.) what is (vx)min
C.) at what time is the acceleration zero

Answers

Answer

given,

x = 4 t³ - 6 t² + 12

velocity, [tex]v = \dfrac{dx}{dt}[/tex]

[tex]\dfrac{dx}{dt}=\dfrac{d}{dt}(4t^3-6t^2+12)[/tex]

[tex]v =12t^2-12t[/tex]

For minimum velocity calculation we have differentiate it and put it equal to zero.

[tex]\dfrac{dv}{dt} =\dfrac{d}{dt}12t^2-12t[/tex]

[tex]\dfrac{dv}{dt} =24t-12[/tex].........(1)

putting it equal to zero

24 t - 12 =0

t = 0.5 s

At t = 0.5 s velocity will be minimum.

b) minimum velocity

    v = 12t² -12 t

    v = 12 x 0.5² -12 x 0.5

    v = -3 m/s

c) derivative of velocity w.r.t. time is acceleration

from equation 1

     a = 24 t - 12

time at which acceleration will be zero

     0 = 24 t - 12

     t = 0.5 s

At t = 0.5 s acceleration will be zero.

Part A. The particle reaches its minimum velocity at 0.5 seconds.

Part B. The minimum velocity of the particle is -3 m/s.

Part C. The acceleration of the particle will be zero at the time t = 0.5 seconds.

How do you calculate the minimum velocity and acceleration?

Given that the position of a particle is given by the function x.

[tex]f(x) = 4t^2 -6t^2 +12[/tex]

The function of the velocity of a particle can be obtained by the time function.

[tex]v= \dfrac {dx}{dt}[/tex]

[tex]v = \dfrac {d}{dt} ( 4t^3-6t^2 +12)[/tex]

[tex]v = 12t^2 -12 t[/tex]

The velocity function of the particle is [tex]v = 12t^2 - 12t[/tex].

Part A

The minimum velocity of the particle is obtained by the differentiation of velocity function with respect to the time and put it equal to zero.

[tex]\dfrac {dv}{dt} = \dfrac {d}{dt} (12t^2 - 12t) = 0[/tex]

[tex]\dfrac {dv}{dt} = 24 t-12 = 0[/tex]

[tex]t = 0.5\;\rm s[/tex]

Hence we can conclude that the particle reaches its minimum velocity at 0.5 seconds.

Part B

The velocity function is [tex]v = 12t^2 - 12t[/tex]. Substituting the value of t = 0.5 s to calculate the minimum velocity.

[tex]v = 12(0.5)^2 - 12(0.5)[/tex]

[tex]v = 3 - 6[/tex]

[tex]v = -3 \;\rm m/s[/tex]

The minimum velocity of the particle is -3 m/s.

Part C

The acceleration is defined as the change in the velocity with respect to time. Hence,

[tex]a = \dfrac {dv}{dt}[/tex]

[tex]a = 24 t-12[/tex]

Substituting the value of a = 0, we get the time.

[tex]0 = 24t - 12[/tex]

[tex]t = 0.5 \;\rm s[/tex]

The acceleration of the particle will be zero at the time t = 0.5 seconds.

To know more about acceleration and velocity, follow the link given below.

https://brainly.com/question/2239252.

Raindrops acquire an electric charge as they fall. Suppose a 2.4-mm-diameter drop has a charge of +18 pC, fairly typical values.
What is the potential at the surface of the raindrop?

Answers

To solve this problem we will apply the concepts related to the potential, defined from the Coulomb laws for which it is defined as the product between the Coulomb constant and the load, over the distance that separates the two objects. Mathematically this is

[tex]V = \frac{kq}{r}[/tex]

k = Coulomb's constant

q = Charge

r = Distance between them

[tex]q = 18 pC \rightarrow q = 1.8*10^-11 C[/tex]

[tex]d = 2.4mm \rightarrow r = 1.2 mm = 1.2*10^-3 m[/tex]

Replacing,

[tex]V = \frac{kq}{r}[/tex]

[tex]V = \frac{ (9*10^9)*(1.8*10^{-11})}{(1.2*10^{-3})}[/tex]

[tex]V = 135 V[/tex]

Therefore the potential at the surface of the raindrop is 135 V

Suppose the B string on a guitar is 24" long and vibrates with a frequency of about 247 Hz. You place your finger on the 5th fret, which changes the length of the string to 18". Which note do you hear when you play the string?
a. D (about 294 Hz)
b. E (about 329 Hz)
c. G (about 392 Hz)

Answers

Answer:

b. E (about 329 Hz)

Explanation:

Given data:

Initial length of the string l1= 24 in

initial frequency f1= 247 Hz

changed length l2= 18 in

Then we have to find the changed frequency f2= ?

We already now that

frequency f ∝ 1/length of the string l

therefore,

[tex]\frac{f_1}{f_2} =\frac{l_1}{l_2}[/tex]

⇒[tex]{f_2}=\frac{l_1}{l_2}\times{f_1}[/tex]

⇒[tex]{f_2}=\frac{24}{18}\times{247}[/tex]

⇒[tex]{f_2}=329.33 Hz[/tex]

A particle's position along the x-axis is described by. x(t)= At+Bt^2where t is In seconds: x is in meters: and the constants A and B are given below.Randomized Variables A= -3.5 m/s B= 3.9 m/s^2 a. What is the velocity, in meters per second. of the particle at the time t1= 3.0 s? b. What is the velocity, in meters per second: of the particle when it is at the origm (x=0) at time to> 0?

Answers

Answer

given,

position of particle

x(t)= A t + B t²

A = -3.5 m/s

B = 3.9 m/s²

t = 3 s

a)  x(t)= -3.5 t + 3.9 t²

   velocity of the particle is equal to the differentiation of position w.r.t. time.

[tex]\dfrac{dx}{dt}=\dfrac{d}{dt}(-3.5t + 3.9t^2)[/tex]

[tex]v= -3.5 + 7.8 t [/tex]------(1)

velocity of the particle at t = 3 s

  v = -3.5 + 7.8 x 3

 v = 19.9 m/s

b) velocity of the particle at origin

  time at which particle is at origin

  x(t)= -3.5 t + 3.9 t²

   0 = t (-3.5  + 3.9 t )

   t = 0, [tex]t=\dfrac{3.5}{3.9}[/tex]

   t = 0 , 0.897 s

speed of the particle at t = 0.897 s

from equation (1)

 v = -3.9 + 7.8 t

 v = -3.9 + 7.8 x 0.897

  v = 3.1 m/s

To solve the problem we should know about velocity.

Velocity

Velocity is the rate of change of its position with respect to time.

[tex]V = \dfrac{dy}{dt}[/tex]

Given to us

x(t)= At+Bt^2A= -3.5 m/s B= 3.9 m/s^2

Velocity of Particle

x(t)= At+Bt²

[tex]V(t) = \dfrac{dy}{dt} = \dfrac{d(At+Bt^2)}{dt} = A+2Bt[/tex]

A.)  the velocity, in meters per second. of the particle at the time t1= 3.0 s,

Velocity of particle(t = 3.0 s)

[tex]V(t) = A +2Bt[/tex]

Substituting the values,

[tex]V(t_1=3) = (-3.5) +2(3.9)(3.0)\\\\V(t_1=3) = 19.9\ m/s[/tex]

B.)  the velocity, in meters per second: of the particle when it is at the origin (x=0) at t ≥ 0

Displacement, x = 0

[tex]x(t)= At+Bt^2\\\\0 = At+Bt^2\\\\[/tex]

Taking t as common,

[tex]0 = t(A+Bt)\\\\[/tex]

[tex]0 = (A+Bt)\\\\[/tex]

Substituting the values and solving or t,

[tex]0 = A+ Bt\\0 = -3.5 + (3.9)t\\3.5=3.9t\\t= \dfrac{3.5}{3.9}\\\\t = 0.8974\ s[/tex]

Velocity of particle(t = 0.8974 s)

Substituting the value in the formula of velocity,

[tex]V(t) = A +2Bt[/tex]

Substituting the values,

[tex]V(t_1=0.8974) = (-3.5) +2(3.9)(0.8974)\\\\V(t_1=3) = 3.5 \ m/s[/tex]

Hence, the velocity of the particle is 3.5 m/s.

Learn more about Velocity:

https://brainly.com/question/862972

A piano wire with mass 2.95 g and length 79.0 cm is stretched with a tension of 29.0 N . A wave with frequency 105 Hz and amplitude 1.80 mm travels along the wire.

(a) Calculate the average power carried by the wave.
(b) What happens to the average power if the wave amplitude is halved?

Answers

The new power is: New P_avg = 2.52 W / 4 ≈ 0.63 W

Average Power Carried by a Wave

To solve this problem, we need the following information:

Mass of piano wire: 2.95 g = 0.00295 kg

Length of wire: 79.0 cm = 0.79 m

Tension: 29.0 N

Frequency: 105 Hz

Amplitude: 1.80 mm = 0.00180 m

First, calculate the linear mass density (μ) of the wire:

μ = mass / length = 0.00295 kg / 0.79 m ≈ 0.00373 kg/m

Next, find the wave speed using the formula for the speed of a wave on a string:

v = [tex]\sqrt{Tension / \mu}[/tex] =[tex]\sqrt{29.0 N / 0.00373 kg/m}[/tex]≈ 88.19 m/s

Now, we calculate the average power (P_avg) carried by the wave using the formula:

P_avg = 0.5 x μ x v x ω² x A²

Where:

ω = 2πf (angular frequency)

ω = 2 x π x 105 ≈ 659.73 rad/s

Therefore,

P_avg = 0.5 x 0.00373 kg/m x 88.19 m/s x (659.73 rad/s)² x (0.00180 m)² ≈ 2.52 W

Average Power if Amplitude is Halved

If the amplitude (A) is halved, the new amplitude is:

New A = 0.00180 m / 2 = 0.00090 m

Since power is proportional to the square of the amplitude (A²), halving the amplitude reduces the power by a factor of 4.

Thus, the new power is:

New P_avg = 2.52 W / 4 ≈ 0.63 W

How many times a minute does a boat bob up and down on ocean waves that have a wavelength of 40.0 m and a propagation speed of 5.00 m/s?

Answers

Answer:

n = 7.5 times/minute

Explanation:

Given that,

Wavelength of the ocean wave, [tex]\lambda=40\ m[/tex]

The speed of the ocean wave, v = 5 m/s

To find,

Number of times a minute does a boat bob up and down on ocean waves.

Solution,

The relation between the speed of wave, wavelength and frequency is given by :

[tex]v=f\times \lambda[/tex]

[tex]f=\dfrac{v}{\lambda}[/tex]

[tex]f=\dfrac{5\ m/s}{40\ m}[/tex]

f = 0.125 Hz

The number of times per minute the bob moves up and down is given by :

[tex]n=f\times t[/tex]

[tex]n=0.125\times 60[/tex]

n = 7.5 times/minute

So, its will move up and down in 7.5 times/minute. Therefore, this is the required solution.

Taking into account the definition of wavelength, frecuency and propagation speed, the number of times per minute the bob moves up and down is 7.5 times per minute.

Wavelength

Wavelength is the minimum distance between two successive points on the wave that are in the same state of vibration. It is expressed in units of length (m).

Frequency

Frequency is the number of vibrations that occur in a unit of time. Its unit is s⁻¹ or hertz (Hz).

Propagation speed

Finally, the propagation speed is the speed with which the wave propagates in the medium, that is, it is the magnitude that measures the speed at which the wave disturbance propagates along its displacement.

The propagation speed relate the wavelength (λ) and the frequency (f) inversely proportional using the following equation:

v = f× λ

Amount of times in a minute that a boat bob up and down on ocean waves

In this case, you know:

v= 5 [tex]\frac{m}{s^{2} }[/tex]f= ?λ= 40 m

Replacing in the definition of propagation speed:

5 [tex]\frac{m}{s^{2} }[/tex]= f× 40 m

Solving:

f= 5 [tex]\frac{m}{s^{2} }[/tex]÷ 40 m

f= 0.125 Hz= 0.125 [tex]\frac{1}{seconds}[/tex]

Then, a boat bob up and down on ocean waves 0.125 times in a second.

So, the number of times per minute the bob moves up and down is given by:

n= f× time

n= 0.125 Hz× 60 minutes in 1 second

n=7.5 times per minute

Finally, the number of times per minute the bob moves up and down is 7.5 times per minute.

Learn more about wavelength, frecuency and propagation speed:

brainly.com/question/2232652

brainly.com/question/7321084

brainly.com/question/14946166

A block of mass 3.1 kg, sliding on a horizontal plane, is released with a velocity of 2.3 m/s. The blocks slides and stops at a distance of 1.9 m beyond the point where it was released.
How far would the block have slid if its initial velocity were quadrupled?

Answers

To solve this problem we will apply the concepts given by the kinematic equations of motion. For this purpose it will be necessary with the given data to obtain the deceleration. With this it will be possible again to apply one of the kinematic equations of motion that does not depend on time, but on distance, to find how far the block would slide with the quadruplicate velocity

Our values are given as,

[tex]\text{Initial speed} =V_i = 2.3 m/s[/tex]

[tex]\text{Final speed}= V_f = 0 m/s[/tex]

[tex]\text{Stopping distance = }d = 1.9 m[/tex]

[tex]a = acceleration[/tex]

[tex]\text{mass} = m = 3.1kg[/tex]

Using the kinematic equation of motion we have

[tex]V_f^2 = V_i^2 + 2 a d[/tex]

[tex]0^2 = 2.3^2 + 2 a (1.9)[/tex]

[tex]a = -1.39211 m/s^2[/tex]

Now if the initial velocity is quadrupled we have that,

[tex]\text{Initial speed} =V_i' = 2.3*4 m/s = 9.2m/s[/tex]

[tex]\text{Final speed}= V_f' = 0 m/s[/tex]

[tex]\text{Stopping distance = }d'[/tex]

[tex]V_f^2' = V_i^2' + 2 a d'[/tex]

Replacing the values

[tex]0^2 = 9.2^2+ 2 (-1.39211) d'[/tex]

[tex]d' = 30.44m[/tex]

Therefore the block would have slipped around 30.44 if its initial velocity quadrupled.

Suppose quantity s is a length and quantity t is a time. Suppose the quantities vand aare defined by v = ds/dt and a = dv/dt. (a) What is the dimension of v? (b) What is the dimension of the quantity a?
What are the dimensions of (c)vdt, (d) a dt, and (e) da/dt?

Answers

Explanation:

(a) Velocity is given by :

[tex]v=\dfrac{ds}{dt}[/tex]

s is the length of the distance

t is the time

The dimension of v will be, [tex][v]=[LT^-1][/tex]      

(b) The acceleration is given by :

[tex]a=\dfrac{dv}{dt}[/tex]

v is the velocity

t is the time

The dimension of a will be, [tex][a]=[LT^{-2}][/tex]

(c) Since, [tex]d=\int\limits{v{\cdot}dt} =[LT^{-1}][T]=[L][/tex]

(d) Since, [tex]v=\int\limits{a{\cdot}dt} =[LT^{-2}][T]=[LT^{-1}][/tex]

(e)

[tex]\dfrac{da}{dt}=\dfrac{[LT^{-2}]}{[T]}[/tex]

[tex]\dfrac{da}{dt}=[LT^{-3}]}[/tex]

Hence, this is the required solution.

Mark Watney begins his day 15 km West and 25 km North of his Mars Habitat. a. Set up a co-ordinate system (draw labeled axis and tickmarks showing the scale) and draw a vector representing the initial position of Mark Watney. b. Mark spends his day driving his Mars Rover towards Schiaparelli Crater and manages to make it an additional 20 km West but has to go around a hill so ended up 5 km South of his starting point for the day. Draw a vector representing Mark's total position change for the day. c. Using vector addition find Mark's position relative to the Mars Habitat. Give both the numerical description of the vector and show it on your plot.

Answers

Answer:

a, b) part a and b on diagram attached

c) sf = -35 i + 20 j

35 km West and 20 km North

Explanation:

For part a and b refer to the attached co-ordinate system:

Note: unit vector i is in West/East direction and unit vector j is in North/South direction.

si = -15 i + 25 j

sf-si  = -20 i - 5 j

Hence,

Mark relative position from habitat sf = si + sf/i

sf = ( -15 i + 25 j ) + ( -20 i - 5 j )

sf = -35 i + 20 j

35 km West and 20 km North

 

The car's motion can be divided into three different stages: its motion before the driver realizes he's late, its motion after the driver hits the gas (but before he sees the police car), and its motion after the driver sees the police car. Which of the following simplifying assumptions is it reasonable to make in this problem? a. During each of the three different stages of its motion, the car is moving with constant acceleration. b. During each of the three different stages of its motion, the car is moving with constant velocity. c.The highway is straight (i.e., there are no curves). d. The highway is level (i.e., there are no hills or valleys).Enter all the correct answers in alphabetical order without commas. For example, if statements C and D are correct, enter CD.

Answers

Final answer:

The assumptions we can reasonably make in this scenario include the highway being straight and level, corresponding to options C and D. Assuming constant acceleration or velocity for each stage of the car's motion, options A and B, is not necessarily accurate.

Explanation:

In analyzing the motion of a car in different stages, we can make reasonable assumptions to simplify the problem. For each stage, assuming the car is moving with constant acceleration (option a) or velocity (option b) is not necessarily accurate because acceleration and velocity may change due to various factors like interaction with driver, road conditions, or appearance of a police car. The assumptions more likely to hold are that the highway is straight (option c), meaning there are no curves, and the highway is level (option d), indicating no hills or valleys. Thus, the correct answers would be C and D.

Learn more about Motion Assumptions here:

https://brainly.com/question/32922193

#SPJ3

According to one set of measurements, the tensile strength of hair is 196 MPa , which produces a maximum strain of 0.380 in the hair. The thickness of hair varies considerably, but let's use a diameter of 50.0 μm
Part A
What is the magnitude of the force giving this tensile stress?
F = ? N

Part B
If the length of a strand of the hair is 12.0 cm at its breaking point, what was its unstressed length? original length = ?cm

Answers

Answer:

(a). The magnitude of the force is 0.38416 N.

(b). The original length is 0.0869 m.

Explanation:

Given that,

Tensile strength = 196 MPa

Maximum strain = 0.380

Diameter = 50.0 μm

Length = 12.0 cm

We need to calculate the area

Using formula of area

[tex]A=\dfrac{\pi}{4}\times d^2[/tex]

Put the value into the formula

[tex]A=\dfrac{\pi}{4}\times(50.0\times10^{-6})^2[/tex]

[tex]A=1.96\times10^{-9}\ m^2[/tex]

We need to calculate the magnitude of the force

Using formula of force

[tex]F=\sigma A[/tex]

Put the value into the formula

[tex]F=196\times10^{6}\times1.96\times10^{-9}[/tex]

[tex]F=0.38416\ N[/tex]

(b). If the length of a strand of the hair is 12.0 cm at its breaking point

We need to calculate the unstressed length

Using formula of strain

[tex]strain=\dfrac{\Delta l}{l_{0}}[/tex]

[tex]\Delta l=strain\times l_{0}[/tex]

Put the value into the formula

[tex]\Delta l=0.380\times l_{0}[/tex]

Length after expansion is 12 cm

We need to calculate the original length

Using formula of length

[tex]l=l_{0}+\Delta l[/tex]

Put the value into the formula

[tex]I=l_{0}+0.380\times l_{0}[/tex]

[tex]l=1.38l_{0}[/tex]

[tex]l_{0}=\dfrac{l}{1.38}[/tex]

[tex]l_{0}=\dfrac{12\times10^{-2}}{1.38}[/tex]

[tex]l_{0}=0.0869\ m[/tex]

Hence, (a). The magnitude of the force is 0.38416 N.

(b). The original length is 0.0869 m.

Why isn't Coulomb's law valid for dielectric objects, even if they are spherically symmetrical?

Answers

Answer:

Explanation:

The "traditional" form of Coulomb's law, explicitly the force between two point charges. To establish a similar relationship, you can use the integral form for a continuous charge distribution and calculate the field strength at a given point.

In the case of moving charges, we are in presence of a current, which generates magnetic effects that in turn exert force on moving charges, therefore, no longer can consider only the electrostatic force.

A juggler throws a bowling pin straight up in the air. After the pin leaves his hand and while it is in the air, which statement is true?(a) The velocity of the pin is always in the same direction as its acceleration.(b) The velocity of the pin is never in the same direction as its acceleration.(c) The acceleration of the pin is zero.(d) The velocity of the pin is opposite its acceleration on the way up. (e) The velocity of the pin is in the same direction as its acceleration on the way up.

Answers

Answer:

The velocity of the pin is opposite its acceleration on the way up.

(d) option is correct.

Explanation:

when the juggler throws a bowling pin straight in the air, the acceleration working on the pin is in the downward direction due to the gravitational force of the earth.

According to Newton's Universal Law of Gravitation

''The gravitational force is a force that attracts any objects with mass''

Final answer:

The acceleration due to gravity is always downward, so when the pin is thrown up, its velocity is opposite to its acceleration. At the peak, the velocity is zero and then aligns with the direction of gravity on the descent.

Explanation:

When a juggler throws a bowling pin straight up in the air, the acceleration due to gravity is always directed towards the ground, which means it is downwards. As the pin moves upwards, its velocity is in the opposite direction of the acceleration. At the peak of its motion, the velocity of the pin is zero, after which it starts to fall back down, and its velocity is then in the same direction as acceleration. Thus, the correct statement is (d) The velocity of the pin is opposite its acceleration on the way up.

As additional resistors are connected in series to a constant voltage source, how is the power supplied by the source affected?

(A) The power supplied by the sources remains constant.
(B) The power supplied by the source increases.
(C) The effect on the power supplied by the source cannot be determined without knowing the voltage of the source.
(D) The power supplied by the source decreases.

Answers

Final answer:

As additional resistors are connected in series to a constant voltage source, the power supplied by the source decreases.

Explanation:

As additional resistors are connected in series to a constant voltage source, the power supplied by the source decreases.

This can be explained by Ohm's Law, which states that power is equal to the voltage squared divided by the resistance. When resistors are connected in series, the total resistance increases, which leads to a decrease in the power supplied by the source.

For example, if you connect two resistors in series to a constant voltage source, the total resistance would be the sum of the resistances of the two resistors. As a result, the power supplied by the source would decrease.

Learn more about Power supplied by source here:

https://brainly.com/question/33821968

#SPJ12

Final answer:

Adding more resistors in series to a constant voltage source results in an increase in total resistance, which leads to a decrease in current. Because power is proportional to the square of the current, the power supplied by the voltage source decreases.

Explanation:

When additional resistors are connected in series to a constant voltage source, the power supplied by the source is affected in a specific way. Given that power (P) is calculated by P = I^2R for a given resistance (R) and current (I), and by P = V^2/R for a given voltage (V) and resistance, we can understand the impact of adding resistors in series.

In a series circuit, the current remains constant throughout the resistors, but the total resistance (sum of all individual resistances) increases as more resistors are added. Since the voltage is constant, an increase in the total resistance will result in a decrease in current according to Ohm's law (I = V/R). Consequently, if the current decreases, the power supplied by the source also decreases (P = I^2R), because the power is proportional to the square of the current flowing through the circuit. Therefore, the correct answer is (D) The power supplied by the source decreases.

A magnetic field of magnitude 1.30x10-3 T is measured a distance of 0.03 m from a long straight wire. What is the current through the wire?

Answers

Final answer:

The current through the wire is 1.95 A.

Explanation:

To find the current through the wire, we can use Ampere's law. Ampere's law states that the magnetic field around a long straight wire is directly proportional to the current through the wire and inversely proportional to the distance from the wire.

So, we can use the equation B = μ0 * I / (2π * r), where B is the magnetic field, μ0 is the magnetic constant, I is the current, and r is the distance from the wire.

Plugging in the given values, we have 1.30x10-3 T = (4πx10-7 T*m/A) * I / (2π * 0.03 m). Solving for I, we get I = 1.30x10-3 * (2*0.03)/(4x10-7) = 1.95 A.

Maximum current problem. If the current on your power supply exceeds 500 mA it can damage the supply. Suppose the supply is set for 37 V. What is the smallest resistance you can measure?

Answers

To solve this problem we will apply Ohm's law. The law establishes that the potential difference V that we apply between the ends of a given conductor is proportional to the intensity of the current I flowing through the said conductor. Ohm completed the law by introducing the notion of electrical resistance R. Mathematically it can be described as

[tex]V = IR \rightarrow R = \frac{V}{I}[/tex]

Our values are

[tex]I = 500mA = 0.5A[/tex]

[tex]V = 37V[/tex]

Replacing,

[tex]R = \frac{V}{I}[/tex]

[tex]R = \frac{37}{0.5}[/tex]

[tex]R = 74 \Omega[/tex]

Therefore the smallest resistance you can measure is [tex]74 \Omega[/tex]

For the merry-go-round problem, do the magnitudes of the position, velocity, and acceleration vectors change with time?

Answers

Answer:

No

Explanation:

Although the direction of position, velocity or acceleration of an object in marry-go-round problem changes continuously,however the magnitude of the position, velocity and acceleration do remains the same. Marry-go-round is nothing but a machine found in fairs that turn round in circular motion. So, the laws of circular motion are applicable in it.

A sailor drops a wrench from the top of a sailboat's vertical mast while the boat is moving rapidly and steadily straight forward. Where will the wrench hit the deck?

(A) ahead of the base of the mast
(B) at the base of the mast
(C)behind the base of the mast
(D)on the windward side of the base of the mast
(E)None of the above choices

Answers

Answer:

B

Explanation:

The sailor, the boat and the wrench are all moving at he same constant rate, so the wrench will appear to fall straight down. This due to that fact there is no relative motion among them and all are at rest w.r.t to one another. Hence the correct answer would be B.

The correct option is (B). The wrench will fall straight down relative to the moving boat and will land directly at the base of the mast.

To determine where the wrench will hit the deck, let's analyze the motion of the wrench.

1. Horizontal Motion:

When the wrench is dropped from the top of the mast, it has the same horizontal velocity as the sailboat. This is because, in the absence of air resistance and assuming no external horizontal forces act on the wrench, it retains the horizontal component of its velocity that it had while it was still in the sailor's hand. Therefore, as the wrench falls, it will continue to move forward with the same horizontal velocity as the boat.

2. Vertical Motion*: The wrench will accelerate downwards due to gravity.

Since the wrench maintains its horizontal velocity and is only influenced vertically by gravity, it will fall straight down from the perspective of someone moving with the boat. From the perspective of an observer on the boat, the wrench will fall directly downwards.

An electric current of 202.0 mA Transports 56.0 C of charge. Calculate the time this took.

Answers

Answer:

277 s

Explanation:

Given data

Electric current (I): 202.0 mA = 202.0 × 10⁻³ A = 0.2020 A = 0.2020 C/sTransported charge (C): 56.0 CoulombsElapsed time (t): to be determined

We can find the elapsed time using the following expression.

I = C/t

t = C/I

t = 56.0 C/(0.2020 C/s)

t = 277 s

It took 277 seconds.

In his famous 1909 experiment that demonstrated quantization of electric charge, R. A. Millikan suspended small oil drops in an electric field. With a field strength 0f 20 MN/C, what mass drop can be suspended when the drop carries a net charge of 10 elementary charges?

Answers

Answer:

[tex]3.26198\times 10^{-12}\ kg[/tex]

Explanation:

E = Electric field = 20 MN/C

q = Charge of electron = [tex]1.6\times 10^{-19}\ C[/tex]

g = Acceleration due to gravity = 9.81 m/s²

m = Mass of drop

The electrical force will balance the weight

[tex]Eq=mg\\\Rightarrow 20\times 10^{6}\times 10\times 1.6\times 10^{-19}=m\times 9.81\\\Rightarrow m=\dfrac{20\times 10^{6}\times 10\times 1.6\times 10^{-19}}{9.81}\\\Rightarrow m=3.26198\times 10^{-12}\ kg[/tex]

The mass that can be suspended is [tex]3.26198\times 10^{-12}\ kg[/tex]

From charge to mass ratio, the mass of the charges is 3.2  × 10^-12 Kg.

The charge to mass ratio experiment was used by R. A. Millikan to accurately determine the charge to mass ratio of the electron. We have the following information from the question;

Field strength = 20 MN/C

Number of charges = 10

Now;

The magnitude of electric field strength is obtained from;

E = F/q

F = Eq

Where;

F = electric force

E = electric field intensity

q = magnitude of charge

F = 10 × 20  × 10^6  × 1.6 × 10^-19 = 3.2  × 10^-11 N

Where the charges fall freely under gravity;

F = mg

m = F/g

m = 3.2  × 10^-11 N/10 ms-2

m = 3.2  × 10^-12 Kg

Learn more about charge to mass ratio: https://brainly.com/question/5558260

A circular ring of charge with radius b has total charge q uniformly distributed around it.
What is the magnitude of the electric field at the center of the ring?

a) 0
b) kₑq/b²
c) kₑq²/b²
d) kₑq²/b
e) None of these

Answers

Answer:

Option A is correct (0) ( The electric field at the center of circular charged ring is zero)

Explanation:

Option A is correct (0) ( The electric field at the center of circular charged ring is zero)

The reason why electric field at the center of circular charged ring is zero because the fields at the center of the circular ring due to any point are cancelled by electric fields of another point which is at 180 degree to that point i.e opposite to that charge.

Answer: a) 0

The electric field from opposite directions at the centre of the circular ring cancel each other out and give a resultant of zero

Explanation:

Given that the ring is perfectly circular with radius b which has a uniform distributed charge q around it.

The electric field experienced at the centre of the ring from opposite directions are given as

E1 = kₑq/b²

E2 = -kₑq/b²

It experience the two electric field E1 and E2 from opposite directions at the centre. So the resultant electric field is given by:

E = E1 + E2

E = kₑq/b² - kₑq/b²

E = 0

The electric field from opposite directions at the centre of the circular ring cancel each other out and give a resultant of zero

Other Questions
A fungal spore germinates, giving rise to a mycelium that grows outward into the soil surrounding the site where the spore originally landed. which of the following accounts for the fungal movement, as described here?a. breezes distributing sporesb. cytoplasmic streaming in hyphaec. mycelial flagellad. karyogamy Which of the following neurotransmitters plays an important role in regulating emotional well-being and aggressive impulses?A) DopamineB) Norepinephrine C) Acetylcholine D) GABAE) Serotonin How does a rubber rod become negatively charged through friction?a. It touches a negatively charged object, and protons move off of the rod.b. It touches a positively charged object, and electrons move onto the rod.c. It is rubbed with another object, and electrons move onto the rod.d. It is rubbed with another object, and protons move off of the rod. A record turntable rotates through 5.0 rad in 2.8 s as it is accelerated uniformly from rest. What is the angular velocity at the end of that time? One of the advantages of the database approach to data storage over the traditional file processing approach is that it helps to prevent the ____________ of data. A survey of 500 farmers showed that of the farmers, 121 grew only wheat, 113 grew only corn, 90 grew only oats, 199 grew wheat, 60 grew wheat and corn, 57 grew wheat and oats, and 182 grew corn. Determine the number of farmers who a) grew at least one of the three. b) grew all three, c) did not grow any of the three, d) grew exactly two of the three A line passes through the point (4,-7) and has a slope of 3/2. Write an equation in point-slope form for this line. Many songbirds breed in North America in the spring and summer, and then migrate to Central and South America in the fall. They spend the winter in these warmer areas where they feed and prepare for the spring migration north and another breeding season. Two hypothetical species of sparrow. A and B. overwinter together in mixed flocks in Costa Rica. In spring. species A goes to the east coast of North America, and species B goes to the west coast. What can you say about the isolating mechanisms of these two species? A) They must have strong postzygotic isolating mechanisms to spend winter in such close proximity B) They must have strong prezygotic isolating mechanisms to spend winter in such close proximity. C) These two species mate in different climates. D) Reinforcement must be occurring when they winter together. Who were code talkers? The articles of partnership for Pal-Trotter Partnership provide for a salary allowance of $5,000 per month for partner Trotter, with the balance of net income to be divided equally. If Trotter made an additional investment of $10,000 during the year and withdrew $4,000 per month, and net income for the year was $80,000, by what amount did Trotter's capital increase during the year? a.$32,000 b.$10,000 c.$60,000 d.$48,000 The gravitational force between two objects is 2400 N. What will be the gravitational force between the objects if the mass of one object is doubled? Solving a right triangle Can someone help me find A,a and c (Round to the nearest tenth) Reread this paragraph from the speech: For those of you who are black and are tempted to fill with -- be filled with hatred and mistrust of the injustice of such an act, against all white people, I would only say that I can also feel in my own heart the same kind of feeling. I had a member of my family killed, but he was killed by a white man.What mode of persuasion is Kennedy appealing to when he states that he had a member of his family killed by a white man?Group of answer choicesethosrhetros ( It's not rhetros )pathos ( It's not pathos )logos Convert 7 kl 345 L to liters. (Enter a number as an exact integer or decimal.) Weaver Company had 100,000 shares of common stock issued and outstanding at January 1. On July 1, Weaver issued a 10% stock dividend. Unexercised call options to purchase 20,000 shares of Weavers common stock (adjusted for the stock dividend) at $20 per share were outstanding at the beginning and end of the year. The average market price of Weavers common stock (which was not affected by the stock dividend) was $25 per share during the year. Net income for the year ended December 31 was $550,000. What should be Weavers diluted earnings per share (DEPS) for the year? Water tower. Model depth 32cm actual depth is ?m In hybrid zones where reinforcement is occurring, you should see a decline in ________. After the previous sales representative in his territory infuriated an important customer, Benjamin visited the customer once a month, never asking for business but hoping to rebuild trust through listening and expressing concern. Finally, after more than two years, the customer gave Benjamin an order. Benjamin was providing the important marketing function of____________. Parents are discovering that there are many applications (or "apps") available on computer and tablet devices that are educational. Some of these apps teach counting, simple math skills, and calculating prices when you are shopping. Others focus on literacy skills like decoding letters or reading and writing short stories. Judging by the details in the passage, which concluding sentence would NOT match the tone?A)Some apps are really cool, but some are also really lame and not worth playing.B)Some educators are beginning to use apps in their classrooms on a regular basis.C)While parents are discovering that apps are educational, kids are discovering that they are fun.D)App developers are currently in the process of making even more educational apps for the future. In the piece-wise function graphed below, which is the correct equation for when 2 x 2y=-2x+2y=-1/2x+2y=-2x+4y=-1/2x+4 Steam Workshop Downloader