The temperature in Miami, Florida is 22 degrees warmer than three times the temperature in Bangor, Maine. The temperature in Miami is 82 degrees. Write an equation to determine the temperature in Bangor. 3x + 82 = 22 3x + 22 = 82 3x ? 22 = 82 3x ? 82 = 22

Answers

Answer 1

Answer:

[tex]82=3x+22[/tex]

The temperature in Bangor is [tex]x=20\°[/tex]

Step-by-step explanation:

Let

x -----> the temperature in Bangor

y ----> the temperature in Miami

we know that

The linear equation that represent this situation is

[tex]y=3x+22[/tex] ----> equation A

[tex]y=82[/tex] ----> equation B

substitute equation B in equation A and solve for x

[tex]82=3x+22[/tex]

[tex]3x=82-22[/tex]

[tex]3x=60[/tex]

[tex]x=20\°[/tex]

Answer 2

Answer:

3x + 22 = 82

Step-by-step explanation:

I am positive its correct


Related Questions

A company increases their rates from $98 a month to $101.92 a month. What is the percent of increase??

Answers

Answer:

Step-by-step explanation:

98*x = 101.92

x = 101.92/98 = 1.04

The % increase is 1.04%

Final answer:

The percent increase of the company's rates from $98 to $101.92 is 4%. It is calculated by dividing the increase in rates by the original rate and then multiplying by 100.

Explanation:

To calculate the percent increase for a company's rate change from $98 a month to $101.92 a month, we first find the difference in rates. The increase is $101.92 - $98 = $3.92. To find the percentage, we divide the increase by the original amount and multiply by 100. Therefore, the percent increase is ($3.92/$98)  imes 100.

Calculating this gives us a percent increase of approximately 4%. So, the company's rates have increased by 4 percent. The percentage change, or growth rate, indicates how significantly the rates have increased in comparison to the starting rate.

Use the drawing tool(s) to form the correct answer on the provided number line.
Eric wants to make sure he keeps an average speed of 70 miles/hour while testing his car’s engine. He allows the car’s speed to vary a certain number of miles/hour which can be modeled by the inequality |x − 70| ≤ 4. Plot the range of speeds Eric would not drive at under the given conditions.

Answers

Answer:

  see below

Step-by-step explanation:

Eric will drive between 70 -4 = 66 mph and 70+4 = 74 mph. He will not drive less than 66 or more than 74 mph.

Answer:

Step-by-step explanation:

In general, solutions to absolute value inequalities, as in this case, take two forms:

If | x | <a, then x<a or x> -a.

If | x |> a, then x> a or x <-a.

In this case, you have |x − 70| ≤ 4. So, you have two cases:

x − 70 ≤ 4 and x − 70 ≥ -4

Solving both equations:

x − 70 ≤ 4      

x ≤ 4 + 70

x≤ 74

and

x - 70 ≥ -4

x ≥ -4+70

x ≥ 66

It is convenient to graph both solutions, as shown in the attached image .

The intersection between both conditions is the solution to the inequality (that is, in the image it is shown as the interval painted by both colors). In this case, the solution is 66≤x≤74

This indicates that Eric can drive within this speed range.

The range of speeds Eric would not drive at under the given conditions is x≤66 and x≥74,  as shown in the other image.

9. Find the area of each figure to the nearest tenth 140,110,180,50 8,8,10

Answers

Answer:

18550 cm²88 ft²

Step-by-step explanation:

1. There are several ways the area can be divided up so that formulas for common figures can be used to find the areas of the pieces. In the attached figure, we have identified an overall rectangle ABXE and a trapezoid BXDC that is subtracted from it.

The area of the rectangle is the product of length and width:

  area ABXE = (180 cm)(140 cm) = 25,200 cm²

The area of a trapezoid is the product of its height (DX = 70 cm) and the average of its base lengths ((BX +DC)/2 = 95 cm).

  area BXDC = (70 cm)(95 cm) = 6650 cm²

Then the area of figure ABCDE is the difference of these areas:

  area ABCDE = area ABXE - area BXDC = (25,200 - 6,650) cm²

  area ABCDE = 18,550 cm²

__

2. In order to find the area of the figure, we need to know the length DE. That length is one leg of right triangle DEA, so we can use the Pythagorean theorem. That theorem tells us ...

  DE² + EA² = AD²

  DE² + (8 ft)² = (10 ft)² . . . . . substitute the given values

  DE² = 36 ft² . . . . . . . . . . . . .subtract 64 ft²

  DE = 6 ft . . . . . . . . . . . . . . . take the square root

Now, we can choose to add the area of triangle DEA to that of square ABCE, or we can treat the whole figure as a trapezoid with bases AB=8 ft and DC=14 ft. In the latter case, the average base length is ...

  (8 ft + 14 ft)/2 = 11 ft

and the area is the product of this and the 8 ft height:

  area ABCD = (11 ft)(8 ft) = 88 ft²

Write an equation that fits this:

The new car decreased in value at a rate of 7% each year. the initial value of the car was was $8227

Answers

[tex]\bf \qquad \textit{Amount for Exponential Decay} \\\\ A=P(1 - r)^t\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{initial amount}\dotfill &8227\\ r=rate\to 7\%\to \frac{7}{100}\dotfill &0.07\\ t=\textit{elapsed time}\ \end{cases} \\\\\\ A=8227(1-0.07)^t\implies A=8227(0.93)^t[/tex]

Final answer:

An exponential decay model represents the car's value decreasing each year by 7%, with the equation V = 8227 x (1 - 0.07)^t, where V is the car's value and t is the time in years.

Explanation:

The student is dealing with a depreciation problem in which a car decreases in value by a fixed percentage each year. To express this situation mathematically, we can use an exponential decay model. With an initial value of $8227 and an annual decrease rate of 7%, the equation to represent the car's value V at any time t in years can be written as:

V = 8227 times (1 - 0.07)^t

This equation models the car's value as it depreciates 7% per year from its initial value. When t is 0 (at the time of purchase), V will be $8227, indicating the initial value.

Please help! Thank you! ♥

Answers

Law of cosines.

Cos(angle) = Adjacent Leg / Hypotenuse

Cos(60) = 20 / x

X = 20/cos(60)

x = 40 ft.

Answer:

40

Step-by-step explanation:

You have a 30-60-90 right triangle. The hypotenuse is twice the length of the short leg.

BC = 2 * 20 = 40

Alicia drove 265 miles in 5 hours. What is the average rate that she traveled?
a. 49 miles per hour
b. 51 miles per hour
c. 53 miles per hour
d. 55 miles per hour

Answers

The answer is 53 265 /5

Answer:

53 miles per hour

Step-by-step explanation:

This is the correct answer

I hope this helps you!

Jillian’s school is selling tickets for a play. The tickets cost $10.50 for adults and $3.75 for students. The ticket sales for opening night totaled $2071.50. The equation 10.50a+3.75b=2071.50, where a is the number of adult tickets sold and b is the number of student tickets sold, can be used to find the number of adult and student tickets. If 82 students attended, how may adult tickets were sold?]

Answers

Answer:

168

Step-by-step explanation:

The first equation given as  [tex]10.50a+3.75b=2071.50[/tex]

Where a is the number of adults and b is the number of students

Since, the number of students are given as 82, we can plug 82 into b and then do algebra and solve for a (shown below):

[tex]10.50a+3.75b=2071.50\\10.50a+3.75(82)=2071.50\\10.50a+307.5=2071.50\\10.50a=2071.50-307.5\\10.50a=1764\\a=\frac{1764}{10.50}\\a=168[/tex]

Thus, 168 adult tickets were sold

Drag each symbol and number to the correct location on the inequality. Not all symbols and numbers will be used. Sam initially invested $4,500 into a savings account that offers an interest rate of 3% each year. He wants to determine the number of years, x, for which the account will have less than or equal to $7,020. Determine the solution set to the inequality that represents this situation.

Answers

The inequality that represents Sam's situation is: x <= 18.67

To determine the inequality that represents Sam's situation, we can use the following formula for compound interest:

A = P(1 + r/n)^(nt)

where:

A is the final amount

P is the principal amount

r is the interest rate

n is the number of compounding periods per year

t is the number of years

We know that Sam initially invested $4,500 (P = 4500) and that the interest rate is 3% (r = 0.03). We also know that Sam wants to determine the number of years, x (t = x), for which the account will have less than or equal to $7,020 (A = 7020).

Substituting these values into the formula, we get the following inequality:

7020 <= 4500(1 + 0.03/1)^(1x)

Solving for x, we get:

x <= log(7020/4500) / (0.03/1)

x <= 18.67

Therefore, the inequality that represents Sam's situation is:

x <= 18.67

For such more question on inequality

https://brainly.com/question/30238989

#SPJ6

16.
The circumference of a circle is 55/7.
What is the diameter of the circle?

(Hint: Circumference = xD)
*Use 22/7 for pie​

Answers

Answer:

D=5/2

Step-by-step explanation:

Circumference of a circle = πD where D is the diameter of the circle.

In the question Circumference is =55/7 and π provided =22/7

55/7 = (22/7)D

We multiply both sides with the reciprocal f 22/7

D = (55/7) (7/22)

D = 5/2

A robot's height is 1 meter 20 centimeters. how tall is the robot in millimeters?

Answers

Answer: The height of the robot is 200 millimeters

Step-by-step explanation:

Answer:

It is 1,200

Step-by-step explanation:

Need help with this math question

Answers

ANSWER

The vertex of this parabola is (-7,4)

EXPLANATION

The given parabola has equation:

[tex] {y}^{2} - 4x - 8y - 12 = 0[/tex]

[tex] {y}^{2} - 8y = 4x +12[/tex]

Complete the square for the quadratic equation in y.

[tex]{y}^{2} - 8y + {( - 4)}^{2} = 4x + 12 + {( - 4)}^{2} [/tex]

[tex]{y}^{2} - 8y + {( - 4)}^{2} = 4x + 12 + 16[/tex]

[tex]{( y- 4)}^{2} = 4x + 28[/tex]

[tex]{( y- 4)}^{2} = 4(x +7)[/tex]

The vertex of this parabola is (-7,4)

Answer:

(-7, 4)

Step-by-step explanation:

We are given the following equation for which we have to complete the square in order to find the vertex of this parabola:

[tex] y ^ 2 - 4 x - 8 y - 1 2 = 0 [/tex]

[tex]y^2-(\frac{8}{2} )^2-4x-12=(\frac{8}{2} )^2\\[/tex]

[tex] y ^ 2 - 1 6 - 4 x - 1 2 = 1 6 [/tex]

[tex] ( y - 4 ) ^ 2 - 4 x - 1 2-16=0[/tex]

[tex](y-4)^2=4x+28[/tex]

[tex](y-4)^2=4(x+7)[/tex]

[tex]x+7=0, y-4=0[/tex]

x = -7, y = 4

Therefore, the vertex of this parabola is (-7, 4).



At a competition with 6 runners, 6 medals are awarded for first place through

sixth place. Each medal is different. How many ways are there to award the

medals?

Decide if the situation involves a permutation or a combination, and then find

the number of ways to award the medals.

O

A. Permutation; number of ways = 720

O

B. Combination; number of ways = 720

O

c. Combination; number of ways = 1

O

D. Permutation; number of ways = 1

Answers

Answer:

A. Permutation; number of ways = 720

Step-by-step explanation:

For the first medal, we have 6 runners that can earn it.  

For the second medal, we have 5 runners because there's one who won the first one.

For the third, we have 4 runners.

And so on up to the 6th medal where we have just one runner left.

As this happens all at the same time, we have to multiply them.

Ways to award the medals = 6*5*4*3*2*1 = 6! = 720

Remember that a permutation is a combination where the order matters. So, in this case, is a permutation because each medal is different.

Answer:

a) Permutation; number of ways = 720

Step-by-step explanation:

NEED HELP WITH A MATH QUESTION

Answers

Answer:

56.3 cm

Step-by-step explanation:

(sinA)/(27) = (sinC)/c

(sin28°)/(27) = (sin102°)/c

For this case we have that by definition, the sum of the internal angles of a triangle is 180 degrees.

Then we look for the measure of the third angle:

[tex]102 + 28 + x = 180\\x = 180-102-28\\x = 50[/tex]

According to the Law of sines:

[tex]\frac {sin (50)} {a} = \frac {Sin (28)} {27}\\a = \frac {27 * sin (50)} {sin (28)}\\a = \frac {0.76604444 * 27} {0.46947156}\\a = 44.06[/tex]

Answer:

[tex]a = 44.1[/tex]

Find the constant difference for each table of values and use it to describe the data(linear, quadratic,or exponential

Answers

Answer:

  6.  quadratic

  7.  linear

Step-by-step explanation:

6. First differences are ...

5 -2 = 36 -5 = 15 -6 = -12 -5 = -3

Second differences are ...

1 -3 = -2-1 -1 = -2-3 -(-1) = -2

These are constant at -2, so the data are quadratic. The data can be described by y = 6-(x-3)^2.

__

7. The x-values are evenly spaced (though decreasing). For our purpose, we can still look at the first differences of the table values in the order given. First differences are ...

8 -4 = 412 -8 = 416 -12 = 420 -16 = 4

These are constant at +4, so the data are linear. The data can be described by y = -4x +12.

In a geometric sequence, the common ratio is -5. The sum of the first 3 terms is 147. What is the value of the first term of the sequence?

Answers

[tex]\bf \qquad \qquad \textit{sum of a finite geometric sequence} \\\\ \displaystyle S_n=\sum\limits_{i=1}^{n}\ a_1\cdot r^{i-1}\implies S_n=a_1\left( \cfrac{1-r^n}{1-r} \right)\quad \begin{cases} n=\textit{last term's}\\ \qquad position\\ a_1=\textit{first term}\\ r=\textit{common ratio} \end{cases} \\\\[-0.35em] ~\dotfill[/tex]

[tex]\bf \begin{cases} r=-5\\ n=3\\ S_3=147 \end{cases} \implies 147=a_1\left( \cfrac{1-(-5)^3}{1-(-5)} \right)\implies 147=a_1\left( \cfrac{1-(-125)}{1+5} \right) \\\\\\ 147=a_1\cdot \cfrac{126}{6}\implies 147=21a_1\implies \cfrac{147}{21}=a_1\implies 7=a_1[/tex]

The first term of the geometric sequence with a common ratio of -5 and the sum of the first 3 terms being 147 is 7.

The first term of a geometric sequence where the common ratio is -5 and the sum of the first 3 terms is 147. A geometric sequence is denoted by a, ax, ax2, ax3, ..., where 'a' is the first term and 'x' is the common ratio.

Given the common ratio (x) is -5, we can express the first three terms of this geometric sequence as:

First term: a

Second term: a(-5) = -5a

Third term: a(-5)2 = 25a

The sum of these three terms equals 147:

a - 5a + 25a = 147

Combining like terms we get:

21a = 147

Now, dividing both sides by 21 to isolate 'a', we find:

a = 7

Therefore, the value of the first term of the sequence is 7.

a train has 1 first class carriage and 6 standard carriages.

the first class carriage has 64 seats, 3/8 are being used.

each standard carriage has 78 seats, 7/13 are being used.

Are more than half the seats on the train being used?

Answers

Answer:

  Yes

Step-by-step explanation:

(3/8)·64 = 24 seats in the first class carriage are being used.

(7/13)·(78)·3 = 126 seats in the standard carriages are being used, for a total of ...

  24 + 126 = 150 . . . occupied seats

The number of available seats is ...

  64 +3·78 = 298

so half the seats on the train will be 298/2 = 149 seats.

  150 > 149, so more than half the seats on the train are being used.

Myron put $5000 in a 2-year CD playing 3% interest, compounded monthly. After 2 years, he withrew all his money. What was the amount of the withdrawal?

Answers

Answer:

  $5308.79

Step-by-step explanation:

The future value can be computed from ...

  FV = P(1 +r/n)^(nt)

where P is the principal invested, r is the annual interest rate, n is the number of times per year it is compounded, and t is the number of years.

Filling in the given numbers, we have ...

  FV = $5000(1 +.03/12)^(12·2) ≈ $5308.79

Myron's withdrawal will be in the amount of $5308.79.

Solve for x.

5(2x - 1) = 6

x = 1/10
x = 11/10
x = 1/2

Answers

The value of x is 11/10.

To solve for x in the equation 5(2x - 1) = 6, we need to follow these steps:

Distribute the 5 into the parenthesis:

5 × 2x - 5 × 1

= 10x - 5

Set up the equation:

10x - 5 = 6

Add 5 to both sides of the equation to get

10x = 11

To solve for x, which gives us

x = 11/10

A museum is building a scale model of Sue, the largest Tyrannosaurus rex skeleton ever found. Sue was 13 feet tall and 40 feet long, and her skull had a length of 5 feet. If the length of the museum's scale model skull is 3 feet, 1.5 inches, what is the difference between the scale model's length and its height?

A) 8 feet, 1.5 inches
B) 16 feet, 10.5 inches
C) 22 feet, 6.5 inches
D) 27 feet, 4 inches

Answers

Answer:

B) 16 ft, 10.5 in

Step-by-step explanation:

There are a few different ways you can work this. Since we want to know the difference between length and heigh of the model and we are given skull length of the model, it makes a certain amount of sense to find the corresponding measurements of the actual skeleton.

The actual skeleton's length was 40 ft and its height was 13 ft, so the difference between these dimensions is ...

40 ft - 13 ft = 27 ft

The actual skull is 5 ft long, so the difference is ...

(27 ft)/(5 ft) = 5.4

times the length of the skull.

The same ratio will apply to the model, so the difference between the model height and model length is 5.4 times the length of the model skull:

desired difference = 5.4 × 3 ft 1.5 in = 16.2 ft + 8.1 in

= 16 ft 10.5 in

The motion of a weight that hangs from a spring is represented by the equation h=8sin(2pi/3t). It models the weight’s height above or below the rest position as a function of time. Approximately when will the object be 3 inches above the rest position?

Answers

Answer:

0.18 seconds

Step-by-step explanation:

Using the given function, it is found that the object will be 3 inches above the rest position after 0.18 seconds.

What is the function?

The function for an object's height after t seconds is given by:

[tex]h(t) = 8\sin{\left(\frac{2\pi}{3}t\right)}[/tex]

The height is of 3 inches when h(t) = 3, hence:

[tex]h(t) = 8\sin{\left(\frac{2\pi}{3}t\right)}[/tex]

[tex]3 = 8\sin{\left(\frac{2\pi}{3}t\right)}[/tex]

[tex]\sin{\left(\frac{2\pi}{3}t\right)} = \frac{3}{8}[/tex]

[tex]\sin^{-1}{\sin{\left(\frac{2\pi}{3}t\right)}} = \sin^{-1}{\left(\frac{3}{8}\right)}[/tex]

[tex]\frac{2\pi}{3}t = 0.3844[/tex]

[tex]t = \frac{3 \times 0.3844}{2\pi}[/tex]

[tex]t = 0.18[/tex]

The object will be 3 inches above the rest position after 0.18 seconds.

More can be learned about functions at https://brainly.com/question/25537936

Colton bought a CD for $760 that earns a 3.8% APR and is compounded monthly. The CD matures in 3 years. How much will this CD be worth at maturity

Answers

Answer:

  $851.62

Step-by-step explanation:

The value multiplier wll be ...

  (1 +r/n)^(nt)

where r is the annual interest rate (3.8%), n is the number of compoundings per year (12), and t is the number of years (3). Filling in these numbers, we see the ending value will be ...

  A = $760(1 +.038/12)^(12·3) = $760(1.0031667^36) = $851.62

Answer:

$851.62

Step-by-step explanation:

HELP PLZZ will give brainliest <3

Given the measures a = 10, b = 40, and
A = 30°, how many triangles can possibly be formed?

Given the measures b = 10, c = 8.9, and
B = 63°, how many triangles can possibly be formed?

Answers

Answer:

0

1

Step-by-step explanation:

First question:

You are given a side, a, and its opposite angle, A. You are also given side b. Use that in the law of sines and solve for the other angle, B.

[tex] \dfrac{a}{\sin A} = \dfrac{b}{\sin B} [/tex]

[tex] \dfrac{10}{\sin 30^\circ} = \dfrac{40}{\sin B} [/tex]

[tex] \dfrac{1}{0.5} = \dfrac{4}{\sin B} [/tex]

[tex] \sin B = 2 [/tex]

The sine function can never equal 2, so there is no triangle in this case.

Answer: no triangle

Second question:

You are given a side, b, and its opposite angle, B. You are also given side c. Use that in the law of sines and solve for the other angle, C.

[tex] \dfrac{b}{\sin B} = \dfrac{c}{\sin C} [/tex]

[tex] \dfrac{10}{\sin 63^\circ} = \dfrac{}{\sin C} [/tex]

[tex] \sin C = \dfrac{8.9\sin 63^\circ}{10} [/tex]

[tex] C = \sin^{-1} \dfrac{8.9\sin 63^\circ}{10} [/tex]

[tex] C \approx 52.5^\circ [/tex]

One triangle exists for sure. Now we see if there is a second one.

Now we look at the supplement of angle C.

m<C = 52.5°

supplement of angle C: m<C' = 180° - 52.5° = 127.5°

We add the measures of angles B and the supplement of angle C:

m<B + m<C' = 63° + 127.5° = 190.5°

Since the sum of the measures of these two angles is already more than 180°, the supplement of angle C cannot be an angle of the triangle.

Answer: one triangle

Final answer:

In the first case with measures a=10, b=40, A=30°, no triangle can be formed as a is smaller than b sin(A). In the second case with measures b=10, c=8.9, B=63°, one triangle can be formed because b is greater than c.

Explanation:

In the context of the Ambiguous Case of the Law of Sines, we can find the number of triangles formed given the measures. For the first case, a = 10, b = 40, and A = 30°, no triangle can be formed because a is less than b sin(A), which means the given side (a) is too short to reach the other side (b).

For the second case, b = 10, c = 8.9, and B = 63°, one triangle can be formed. Here, b is greater than c and therefore capable of forming one valid triangle as per the Ambiguous Case of the Law of Sines.

Learn more about Law of Sines here:

https://brainly.com/question/31921882

#SPJ11


TIMING TEST!!!!!!!!!!!!!!!!!!


The graph of f(x) = |x| is reflected across the x-axis and translated to the right 6 units. Which statement about the domain and range of each function is correct?


a)Both the domain and range of the transformed function are the same as those of the parent function.

b) Neither the domain nor the range of the transformed function are the same as those of the parent function.

c)The range but not the domain of the transformed function is the same as that of the parent function.

d)The domain but not the range of the transformed function is the same as that of the parent function

Answers

Answer:

Domain is 2 and range is 4

Step-by-step explanation:

on a cm grid, point P has coordinates (3,-1) and point Q has coordinates (-5,6) calculate the shortest distance between P and Q Give your answer to 1 decimal place

Answers

Answer:

PD = 10.6

Step-by-step explanation:

Point P has coordinates (3,-1) and point Q has coordinates (-5,6)

(3 - (-5) ) = 8

-1 - 6 = -7

PD = √8^2 + (-7)^2

PD = √(64 + 49)

PD = √113

PD = 10.6

What is the value of x in the figure below? In this diagram, ABD~CAD

Answers

Answer:

x = 25/4

Step-by-step explanation:

Because of the known similarity of the triangles, we know that

10       x

----- = ----

16      10

Cross-multiplying, we get 16x = 100, and thus x = 100/16 = 50/8 = 25/4

x = 25/4

For the given triangle the value of x is 25/4.

Hence the correct option is E.

The Pythagorean theorem states that,

For a right-angle triangle,

(Hypotenuse)²= (Perpendicular)² + (Base)²

Given that,

In ΔBAC

CB = 16

DB = x

AB = 10

Then CD = 16-x

Apply the Pythagorean theorem in ΔBAC,

Hypotenuse = CB

Perpendicular = AC

Base = AB

(Hypotenuse)²= (Perpendicular)² + (Base

(CB)²= (AC)² + (AB)²

(16)²= (AC)² + (10)²

(AC)² = 256 - 100

(AC)² = 156 ......(i)

Apply the Pythagorean theorem in ΔADB,

Hypotenuse = AB

Perpendicular = AD

Base = DB

Therefore,

(AB)²= (AD)² + (DB)²

(10)²= (AD)² + x²

(AD)²= 100 - x²   ......(ii)

Again apply the Pythagorean theorem in ΔADC,

Hypotenuse = AC

Perpendicular = AD

Base = CD

Therefore,

(AC)²= (AD)² + (CD)²

(AC)²= (100 - x²) + (16-x)²                          [ from (ii) ]

(AC)²= 100 - x² + 256 + x² - 32x              [Since (a-b)² = a² + b² -2ab ]

(AC)²= 356 - 32x  ....(iii)

Equating the equation (i) and (iii)

356 - 32x = 156

32x = 200

x = 200/32

x = 25/4

Hence, the value of x is 25/4.

To learn more about the triangle visit;

brainly.com/question/1058720

#SPJ4

Solve the equation. 2(4 - 2x) - 3 = 5(2x + 3)

A. 3/5
B. 2/3
C. 3/2
D. 7/2

Answers

Answer:

x= -5/7

Step-by-step explanation:

The equation involves only one variable x.

so, we have to isolate the variable to get the solution of the equation

Given

[tex]2(4 - 2x) - 3 = 5(2x + 3)\\8-4x -3 = 10x+15\\5-4x = 10x+15\\-4x = 10x +15 -5\\-4x-10x=10\\-14x = 10\\x = \frac{10}{-14}\\ x = -\frac{x=5}{7}[/tex]

Hence the value of x or solution is

x= -5/7

Need help with math question

Answers

Answer:

(-7,4)

Step-by-step explanation:

goal: (y-k)^2=4p(x-h)

y^2-8y=4x+12    Rearranged and added 4x and 12 on both sides

y^2-8y+(-8/2)^2=4x+12+(-8/2)^2 complete square time (add same thing on both sides)

y^2-8y+(-4)^2=4x+12+(-4)^2 (simplify inside the squares)

(y-4)^2=4x+12+16  (now write the left hand side as a square)

(y-4)^2=4x+28

(y-4)^2=4(x+7)    factored...

vertex is (-7,4)

Answer:

(-7,4)

Step-by-step explanation:

#10 Please help me :)

Answers

Answer:

The third choice is the one you want.

Step-by-step explanation:

The formula for an arithmetic sequence is as follows:

[tex]a_{n}=a_{1}+d(n-1)[/tex]

Our first number is 8, so a1 = 8.  If the second term is 5, then d = -3.  Filling in our formula gives us this:

[tex]a_{n}=8-3(n-1)[/tex]

Now we need domain.  Our choices are n ≥ 1 and n ≥ 0 so let's try both.  Replace n in the formula with each one, one at a time, and see what the result is.

If n ≥ 0:

[tex]a_{0}=8-3(0-1)[/tex] so [tex]a_{0}=8-(-3)[/tex] which gives you that the first term, defined by [tex]a_{0}[/tex] is 11.  That's not correct.  Let's check n ≥ 1[tex]a_{1}=8-3(1-1)[/tex]

and [tex]a_{1}=8-0[/tex] which is 8, the first term.

Simplify: squareroot 64r^8 8r2 8r4 32r2 32r4

Answers

Answer:

  8r^4

Step-by-step explanation:

√(64r^8) = √((8r^4)^2) = 8r^4

_____

You can make use of either or both of these rules of exponents:

  (a^b)^c = a^(b·c) . . . . . used above

  [tex]\sqrt[n]{a}=a^{\frac{1}{n}}[/tex]

Using the second rule, you can write the expression as ...

[tex]\sqrt{64r^8}=\sqrt{64}\cdot r^{8\cdot\frac{1}{2}}=8r^4[/tex]

Answer:

B

Step-by-step explanation:

edg21

Find the derivative of f(x) = 12x2 + 8x at x = 9.
256
-243
288
224
I answer questions for you but no one ever answers my questions. You're all are so ungrateful. I've been trying to find the answer for several hours and nothing. Yes I did try to teach myself but I just cant understand it.

Answers

Answer:

It's 224.

Step-by-step explanation:

We use the power rule for a derivative.

If f(x) = ax^n then the derivative  f'(x) = anx^(n-1).

So the derivative of 12x^2 + 8x

= 2*12 x^(2-1) + 8x^(1-1)

= 24x + 8x^0

= 24x + 8.

When x = 9 the derivative = 24(9) + 8

=  224.

The value of first order derivative with x=9 is 224. Therefore, option D is the correct answer.

What is the differentiation?

The process of finding derivatives of a function is called differentiation in calculus. A derivative is the rate of change of a function with respect to another quantity.

The given function is f(x)=12x²+8x at x=9.

Here, first order derivative is

f'(x)=24x+8

= 24×9+8

= 224

Therefore, option D is the correct answer.

To learn more about the differentiation of an equations visit:

https://brainly.com/question/25731911.

#SPJ3

Other Questions
Which function has a range of {yly < 5}?f(x) = (x - 4)^2 +5f(x) = -(x-4)^2 + 5f(x) = (x - 5)^2 + 4f(x) = -(x 5)^2 + 4 what is the slope of the line shown below? Which terms describe the countries with which the United States and Soviet Union attempted to ally during the proxy wars? Check all that apply. unstable newly industrialized colonial newly independent developing militaristic resource rich _______ was a major reason why the United States changed more towards a mixed market economy.A. The civil warB. The American revolution C. The Great Depression D. The 9/11 Attacks If f(x) = 5 + 40, what is f(x) when x=-5? A scientist has two solutions, which she has labeled Solution A and Solution B. Each contains salt. She knows that Solution A is 70% salt and Solution B is 95% salt. She wants to obtain 150 ounces of a mixture that is 75% salt. How many ounces of each solution should she use? What is the y-intercept of the line perpendicular to the line y = 3/4x+3 that includes the point (3, 1)? D) Use only one .cpp and provide comments inside the code. Eukaryotes have a nucleus, and prokaryotes have a nucleoid.True or False Which of the following functions is graphed below? the american government was concerned about the assimilation of native American peoples. a. segregation from culture b. mixing into a culture c. complete annihilation d. population declinedoing test rn HELP!!!!!! what do bacteria have in common with cells of other living organisms?a. no waterb. all the same sizec.contain parameciumd.contain cytoplasm which event from the middle ages ended in the creation of the Tudor dynasty ? Federal government initiatives to prevent the future development of Dust Bowl conditions included the creation of shelterbelts, soil erosion education, and __________.A.the development of playa lakes into larger ponds for irrigation useB.the damming of rivers to provide more consistent access to irrigation waterC.the mining and storing of aquifer water for future irrigation useD.the collecting of weather data to predict future major dust storms Common static electricity involves charges ranging from nanocoulombs to microcoulombs. How many electrons must be removed from a neutral object in order to leave a net charge of 9.7 C? The weighted average of the masses of the isotopes of an element A fire truck with sirens on, is driving north on a street. A car is driving south on the same street and sees the fire truck ahead. The car is moving at a speed of 15.7 m/s and the fire truck is moving at a speed of 31.8 m/s. The siren of the fire truck produces a 965 Hz sound. The speed of sound in air is 343 m/s. What frequency does the person in the car hear? If the sound from the siren is produced at 45.2 W, what is the reading on the decibel meter held by the person when the car is 36.8 m away from the fire truck? Assume the sound from the horn is emitted uniformly in all directions (A = 4 pi r^2). What is the farthest distance from the fire truck that a person could hear the siren? Which of the following is an example of a microaggression? (a) a pregnant woman who is not given paid maternity leave by her employer (b) an employer who pays his female employees less than his male employees (c) men who whistle at and catcall a woman who is walking down the street (d) a sports team that refuses to allow female athletes to play Question 7 4 pts To borrow money, you pawn your mountain bike. Based on the value of the bike, the pawnbroker loans you $552. One month later, you get the bike back by paying the pawnbroker $851. What annual interest rate did you pay? Write as a percentage. What happened in Poland in 1989?