Answer:
False
Explanation:
The temperature at which a solid melts, known as its melting point is highly characteristic of a compound and element.
The melting point of pure substances, compounds and elements is definite and not varied.
Melting point is an intensive property of matter. It does not depend on the amount of matter present. It is an innate or intrinsic property of every matter. For example, no matter the volume or mass of water, it will always boil at 100°C, all things being equal.Therefore, melting point of most solids is characteristic of compounds and elements.
H2 + NO → H2O + N2
If 180.5 grams of N2 are produced, how many grams of H2 were reacted?
Answer:
12.89 moles
Explanation:
Before we solve the question, we have to balance the equation of the reaction first. The balanced reaction will be:
2 NO + 2 H2→ N2 + 2 H2O
There are 180.5g of N2 produced, the number of produced in moles will be: 180.5g / (28g/mol)= 6.446 moles
The coefficient of H2 is two and the coefficient of N2 is one. Mean that we need two moles of H2 for every one mole of N2 produced. The number of H2 reacted will be: 2/1 * 6.446 moles = 12.89 moles
In the following reaction, how many moles of CO2 will form if 10 moles of C3H4 are reacted? How many moles of O2 will also be consumed?
C3H4+4O2->3CO2+2H2O
If 10 moles of C3H4 are reacted, 30 moles of CO2 will form and 40 moles of O2 will be consumed.
Explanation:In the given reaction, C3H4 reacts with 4 O2 to form 3 CO2 and 2 H2O. The stoichiometry of the reaction tells us that for every 1 mole of C3H4 reacted, 3 moles of CO2 are produced. Therefore, if 10 moles of C3H4 are reacted, we can use the ratio of moles to determine the number of moles of CO2 produced, which would be (10 moles C3H4) x (3 moles CO2 / 1 mole C3H4) = 30 moles of CO2.
In the same reaction, 4 moles of O2 react for every 1 mole of C3H4. So if 10 moles of C3H4 are reacted, we can use the ratio of moles to determine the number of moles of O2 consumed, which would be (10 moles C3H4) x (4 moles O2 / 1 mole C3H4) = 40 moles of O2.
30 moles of CO₂ will be formed for 10 moles of C₃H₄ that reacted; 40 moles of O₂ will be consumed.
To determine how many moles of CO₂ will form and how many moles of O₂ will be consumed when 10 moles of C₃H₄ are reacted, we need to use the stoichiometry of the given chemical equation:
[tex]C_3H_4 +4O_2 \rightarrow 3CO_2 +2H_2O[/tex]
Step 1: Moles of CO₂ formed:
One mole of C₃H₄ creates three moles of CO₂ according to the balancing equation.
Therefore, if 10 moles of C₃H₄ are reacted, the moles of CO₂ formed can be calculated as follows:
Moles of CO₂ = 10 moles of C₃H₄ × 3 moles go CO₂ / 1 mole of C₃H₄ = 30 moles of CO₂Step 2: Moles of O₂ consumed:
The balanced equation indicates that 1 mole of C₃H₄ consumes 4 moles of O₂.
Therefore, if 10 moles of C₃H₄ are reacted, the moles of O₂ consumed can be calculated as follows:
Moles of CO₂ = 10 moles of C₃H₄ × 4 moles go O₂ / 1 mole of C₃H₄ = 40 moles of O₂This analysis shows that if you start with 10 moles of C₃H₄, you will produce 30 moles of CO₂ and consume 40 moles of O₂ in the reaction.
A 0.50 L container at 305 K holds a 0.22 g sample
of carbon dioxide gas (CO2). Assuming ideal
gas behavior, what is the pressure, in kilopascals,
exerted by the gas?
A 23 kPa
B 25 kPa
C 41 kPa
D 67 kPa
Answer:
Option B. 25 kPa
Explanation:
First, let us calculate the number of mole of CO2 in the container. This is illustrated below:
Molar Mass of CO2 = 12 + (2x16) = 12 + 32 = 44g/mol
Mass of CO2 = 0.22g
Number of mole of CO2 = 0.22/44 = 0.005mol
From the question, we obtained the following data:
V = 0.5L
T = 305K
R = 0.082atm.L/K /mol
n = 0.005mol
P =?
PV = nRT
P = nRT/V
P = (0.005x0.082x305)/0.5
P = 0.2501atm
Recall:
1atm = 101325Pa
0.2501atm = 0.2501 x 101325 = 25341.4Pa = 25341.4/ 1000 = 25KPa
Empirical formula of C6H12O6
Answer:
The empirical formula of glucose is CH2O
Explanation:
The formula for glucose is C6H12O6
To calculate the empirical formula of glucose, we need to know the number of mole of each element present in the compound.
Since the moles have been given in the formula of glucose C6H12O6
There are 6 moles of carbon, 12 moles of hydrogen and 6 moles of oxygen
Since we've known the number of moles already,so we pick the mole with the smallest number and divide through with it
C - 6/6 = 1
H - 12/6 = 2
O - 6/6 = 1
Therefore, the empirical formula of glucose C6H12O6 is CH2O
What is the pOH of a solution with [OH^ - ]=1.4*10^ -13
Answer:
12.9
Explanation:
From the question given, the concentration of the hydroxide ion is given:
[OH^-] = 1.4 x 10^ -13M
pOH =?
pOH = —Log [OH^-]
pOH = —Log 1.4 x 10^ -13
pOH = 12.9
Which substance is commonly used to produce biomass fuel?
corn stalks
yellowcake
coal
natural gas
Answer:
Corn stalks
Explanation:
Biomass fuel is produced by living or once-living organisms.
The most common biomass fuels used for energy come from plants, such as corn and soy.
B is wrong. Yellowcake is a refined form of uranium ore.
C and D are wrong. Coal and natural gas are not biomass fuels.
can someone please help me with this asap
what is the value of d
The value of "d" is 80°
Explanation:
Cyclic quadrilaterals are the special group of quadrilaterals with all its base lying on the circumference of the circle. In other words, a quadrilateral inscribed in a circle is called a cyclic quadrilateral.
Cyclic quadrilateral are characterised by some special features such as
Sum of opposite angles of a cyclic quadrilateral is always a supplementary angle. If one of the sides of a cyclic quadrilateral is produced, then the exterior angle so formed is always double of the corresponding interior angle.Using the property 1
We find that since the quadrilateral is cyclic, opposite pairs must be supplementary
100° +∠D must be equal to 180°
D=180° -100° =80°
What is the molarity of 0.8 moles of KCL in 2L of solution
Answer:
The molarity is 0,4M
Explanation:
The molartity is moles of compound (in this case KCl) in 1 liter of solution :
2 L----------0,8 moles KCl
1 L-----------x= (1L x0,8 moles KCl)/2L= 0,4 moles KCl--> 0,4M
If the attractive forces in a substance is much less than the
molecular motion, then the substance will be in
state.
a
Solid
b Liquid
c Gaseous
d Both Solid and Liquid
Answer:
If the attractive forces in a substance is much less than the
molecular motion, then the substance will be in a "Gaseous" state.
Explanation:
When decreasing the attractive forces in a substance and making it "much" less than the molecular motion in the substance, the substance should be in a gaseous state.
When the average kinetic energy of a substance or object is small enough that the attractive forces is stable enough to hold all of the particles close together, the molecules in liquids and solids do not move apart.
If the average kinetic energy of a substance or object is great enough (greater than the attractive forces) to overpower the attractive forces between them, the molecules are able to move apart. This would mean that the substance is in a gaseous state.
Overall, if the attractive forces are less than the molecular motion then the molecular motion will over power the attractive forces, breaking the molecules apart and letting them move freely as molecules in a gaseous substance would.
If the forces of attraction are less than the molecular motion , then substance will be in gaseous state.
What are forces of attraction?Forces of attraction is a force by which atoms in a molecule combine. it is basically an attractive force in nature. It can act between an ion and an atom as well.It varies for different states of matter that is solids, liquids and gases.
The forces of attraction are maximum in solids as the molecules present in solid are tightly held while it is minimum in gases as the molecules are far apart . The forces of attraction in liquids is intermediate of solids and gases.
The physical properties such as melting point, boiling point, density are all dependent on forces of attraction which exists in the substances.
Learn more about forces of attraction,here:
https://brainly.com/question/10957144
#SPJ2
please help me out...
a. how many atoms are in 1.008 grams of hydrogen?
b. how many atoms are in 12.011 grams of carbon?
c. how many atoms are in 22. 989 grams of sodium?
d. how many atoms are in 63.55 grams of copper?
e. what is the mass of 1 mole of Br atoms?
f. what is the mass of 1 mole of Ag atoms?
g. what is the mass of 1 mole of Ca atoms?
This response uses the concept of a mole and the principles of molar mass to calculate the number of atoms in various substances as well as the corresponding molar masses for different elements.
Explanation:To solve these problems, we need to understand the concept of a mole. A mole is a quantity in chemistry that helps us count entities at the atomic and molecular scale. One mole equals Avogadro's number (6.02214076 x 10^23 entities).
Also, one mole of any element in grams is equal to its molar mass (usually found under the symbol in the periodic table).
The molar mass of Hydrogen (H) is 1.008 g/mol. So 1.008 g of Hydrogen contains 1 mole or 6.022 x 10^23 atoms.The molar mass of Carbon (C) is 12.011 g/mol, which implies that a 12.011 g sample of Carbon contains the same number of atoms, 6.022 x 10^23 atoms.In 22.989 g of Sodium (Na), there are also 6.022 x 10^23 atoms since Sodium's molar mass is 22.989 g/mol.Similarly, in 63.55 g of Copper (Cu), being Copper's molar mass, there are also 6.022 x 10^23 atoms.The molar mass of Bromine (Br) is roughly 79.904 g/mol.The molar mass of Silver (Ag) is roughly 107.87 g/mol.The molar mass of Calcium (Ca) is roughly 40.078 g/mol.Learn more about Mole Calculations here:https://brainly.com/question/33652783
#SPJ3
1. Imagine you enter your favorite pizza restaurant. Describe what happens at the
particle level that allows you to smell the pizza. Use a particle diagram.
Answer:
i like cheese pizza the best
Explanation:
it smacks
How may moles are in 145.54 g of SIO2
Answer:
The number of mole is 2.422 moles
Explanation:
To calculate the number of mole, we have to use the formula n = m /Mm
n - moles
m - mass
Mm - molar mass
Let's calculate the molar mass of the compound SiO2
Si - 28.0855
O - 15.999
Note: there are two atoms of oxygen in the compound
Mm of SiO2= 28.0855+ 2* 15.999
= 60.0835g/mol
Now, we calculate the number of moles
n = 145.54g/ 60.0835g/mol
= 2.422mol
Express in scientific notation. Choose the answer with the proper number of significant figures.
9.10^9
4.5 x 10
The scientific notation for the value [tex]\frac{9 \times 10^9}{4.5 \times 10^1}[/tex] is 2 [tex]\times[/tex] 10 ^8 .
Explanation:
Scientific notation is a method for communicating numbers that are too enormous or too little to even think about being easily written in a decimal structure. To compose a number in scientific notation: Put the decimal after the main digit and drop the zeroes. Now calculating the values in scientific notation using the following formula,a ^x / a^ y = a ^(x − y )
= 9 × 10 ^9 / 4.5 × 10 ^1
= 9 / 4.5 × 10 ^(9 − 1)
= 2 [tex]\times[/tex] 10 ^8
The scientific notation for the value [tex]\frac{9 \times 10^9}{4.5 \times 10^1}[/tex] is 2 [tex]\times[/tex] 10 ^8 .
What information can you infer from the Lewis structure diagram shown below? (2 points)
Group of answer choices
Boron has three valence electrons.
Oxygen has three valence electrons.
Boron has one valence electron.
Oxygen has one valence electron.
Answer:
FLVS
Boron has three valence electrons.
Explanation:
I put the one and it was incorrect.
Answer:
Boron has 3 valence electrons
Explanation:
A swimmer can swim at a speed of 2.8 m/s for 6
minutes. What distance will she cover in that
time?
Answer: 1008 metres
Explanation:
speed of swimmer = 2.8 m/s
Time taken = 6minutes
(since speed is in metres per second, convert time in minutes to seconds
If 1 minute = 60 seconds
6 minute = 6 x 60 = 360 seconds
distance = ?
Since, speed is the distance covered divided by time taken in seconds, thus
Speed = distance / time
Distance = speed x time taken
distance = 2.8m/s x 360
= 1008 metres
Thus, the swimmer cover a distance of 1008 metres
What is the mass , in grams, of 0.802 mol of salicylic acid?
Answer:
110.76 are the grams I think?
Explanation:
If you see a large “L” on the weather map, what type of weather can you expect there?
Answer:
low pressure which means means stormy weather
Explanation:
welcome to brainily, and hope this helps
Answer:
Low pressure
Explanation:
When there is a L it means low pressure which means rainy weather.It usually brings lots of rain and wind.
You want to minimize an objects thermal energy loss on a cold day. How does heat energy transfer affect thermal energy loss?
1- A material that transfers heat energy at any rate will not experience any change in the thermal energy because this material will be able to absorb energy from its surroundings.
2- A material that transfers heat energy more easily than other material will experience a slower rate of thermal energy loss than an object that does not transfer heat energy easily.
3- A material that transfers heat energy at any rate will experience an increase in thermal energy because this material will be able to absorb cold energy from its surroundings.
4- A material that transfers heat energy more easily than another material will experience a greater rate of thermal energy loss than an object that does not transfer heat energy easily.
Answer:
4- A material that transfers heat energy more easily than another material will experience a greater rate of thermal energy loss than an object that does not transfer heat energy easily.
Explanation:
Thermal energy loss has to do with loss of heat energy by a body to another body or its environment. The aim of the process is usually the attainment of thermal equilibrium between the body and its environment.
On a cold day, a material that transfers thermal energy more easily will loose thermal energy faster than an object that does not transfer thermal energy. The rate of heat transfer of a body determines its rate of loss of thermal energy.
The correct statement is 4. A material that transfers heat energy more easily than another material will experience a greater rate of thermal energy loss than an object that does not transfer heat energy easily.
To understand why option 4 is correct, let's consider the principles of heat transfer. Heat energy can be transferred in three ways: conduction, convection, and radiation. A material that transfers heat energy more easily is a better conductor of heat. This means that it allows heat to move through it more readily, either from a warmer to a cooler region or vice versa.
On a cold day, an object's thermal energy will naturally tend to flow towards the cooler surroundings because of the temperature difference. If the material of the object is a good conductor of heat (i.e., it transfers heat energy more easily), it will lose its thermal energy to the environment at a faster rate compared to a material that is a poor conductor of heat (an insulator). This is because the good conductor does not impede the flow of heat energy, allowing it to move towards the colder surroundings more quickly.
Conversely, a material that does not transfer heat energy easily, such as an insulator, will impede the flow of heat energy. This means that less thermal energy will be lost from the object to the environment over a given period of time, thus minimizing thermal energy loss.
Let's analyze the incorrect options:
1. This statement is incorrect because a material that transfers heat energy at any rate will experience a change in thermal energy. If it transfers heat energy to its surroundings, it will lose thermal energy, not maintain the same level of energy.
2. This statement is the opposite of the correct principle. A material that transfers heat energy more easily will actually lose thermal energy faster, not slower.
3. This statement is incorrect because a material that transfers heat energy at any rate will not necessarily experience an increase in thermal energy. On a cold day, the material will lose heat energy to its surroundings, not gain it.
In summary, to minimize an object's thermal energy loss on a cold day, one should use materials that do not transfer heat energy easily, as they will resist the flow of heat away from the object, thus keeping it warmer for a longer period of time.
Which type of nuclear radiation is being emitted here?
Answer:
b.Beta
Explanation:
mass number remains constant while atomic number has been increased by 1 unit . beta is electron like element where its mass number is 0 and atomic number is -1.
The nuclear radiation being is emitted in the given radioactive decay is beta radiation.
Beta radio decay :
It is the type of radioactive decay in which negative beta particles and are emitted resulting in isobaric nucleus with 1 extra proton.
Characteristics
It occurs in the nucleus that has too many neutrons than protons.A neutron change into proton and emits beta particles and electrons.The atomic number of the resulting nucleus increased by one but the atomic mass remains the same.In the picture atomic number is increased by one but atomic mass remains the same.
Therefore, the nuclear radiation being is emitted in the given radioactive decay is beta radiation.
To know more about beta radiation,
https://brainly.com/question/16935100
Given the following equation: 2 Ca + O2 --> 2 CaO How many moles CaO produced from 4 moles O2?
8 moles of CaO produced from 4 moles O2.
Explanation:
Balanced chemical equation for the reaction:
2 Ca + O2 --> 2 CaO
Data given:
moles of O2 = 4
Moles of CaO =?
From the reaction it is seen that 1 mole of O2 is used in the reaction to produce 2 moles of CaO
hence, 4 moles of O2 will give x moles of CaO
[tex]\frac{2}{1}[/tex] = [tex]\frac{x}{4}[/tex]
x =8
So, 8 moles of CaO will be produced when 4 moles of O2 will be used in the reaction. Since oxygen is the limiting reagent in the reaction.
What is the specific heat of a substance if 6527 J are required to raise the temperature of a 312 g sample by 15 degrees Celsius?
Answer:
1.395J/g°C
Explanation:
The following were obtained from the question:
Q = 6527J
M = 312g
ΔT = 15°C
C =?
Q = MCΔT
C = Q/MΔT
C = 6527/(312 x 15)
C = 1.395J/g°C
The specific heat capacity of the substance is 1.395J/g°C
The specific heat of the substance is 1.385 J/g·°C. To identify the substance, compare its specific heat with substances listed in Table 5.1.
Explanation:The specific heat can be calculated using the formula:
specific heat = energy / (mass x temperature change)
In this case, the energy is given as 6527 J, the mass is 312 g, and the temperature change is 15 degrees Celsius. Plugging in these values, we get:
specific heat = 6527 J / (312 g x 15 °C) = 1.385 J/g·°C
The specific heat of the substance is 1.385 J/g·°C.
To identify the substance, we would need to compare its specific heat with substances listed in Table 5.1.
Which of the following is the correct Lewis structure diagram for Neon? (2 points)
Group of answer choices
The letters Ne with eight dots
The letters Ne with seven dots
The letters Ne with six dots
The letters Ne with five dots
2C4H10(g) + 13O2(g) → 8CO2(g) + 10 H2O(g) How many moles of O2 are required to react completely with 5.00 moles C4H10?
Answer:
32.5 moles of oxygen are required.
Explanation:
Given data:
Number of moles of C₄H₁₀ = 5.00 mol
Number of moles of oxygen required = ?
Chemical equation:
2C₄H₁₀ + 13O₂ → 8CO₂ + 10H₂O
Now we will compare the moles of oxygen with C₄H₁₀ through balanced chemical equation.
C₄H₁₀ : O₂
2 : 13
5.00 : 13/2×5 = 32.5
So when 5 moles of C₄H₁₀ are present 32.5 moles of oxygen are required to react completely.
Answer:
32.5
Explanation:
1. What is the smallest unit of life in all living things called?
Answer:
The answer is Cell
Explanation:
Answer:
The answer is cell. A cell is the smallest unit of a living thing.
What do chemists express the rates of chemical reaction?
Answer:
They represented rate of chemical reactions are the rate of change in concentration of products or reactants in a reaction
Answer:
Rate of a chemical reaction = change in concentration of a reactant or product per unit time.
It can be expressed in two terms:
1) The rate of decrease in concentration of any of the reactants.
2) The rate of increase in the concentration of any of the products.
Explanation:
Rate of reaction is the speed at which reactants are converted into products or the rate at which products are produced from reactants.
How many molecules are in 4.5 moles of CO2?
Answer:
2.71 × 10^24 molecules
Explanation:
We are given;
Moles of CO₂ as 4.5 moles
We are required to determine the number of molecules
From the Avogadro's constant;
1 mole of a molecular compound contains 6.022 × 10^23 molecules
Therefore;
Molecules of CO₂ = Moles of CO₂ × Avogadro's constant
That is;
= 4.5 moles × 6.022 × 10^23 molecules/mole
= 2.71 × 10^24 molecules
Hence, 4.5 moles of CO₂ contains 2.71 × 10^24 molecules
Avogadro's constant is a proportionality factor, which relates to the number of units in one mole of any substance. The value of Avogadro constant is 6.022 [tex]\times 10^{23}[/tex].
Given that:
Moles of CO₂ = 4.5 moles
Number of molecules = ?
Avogadros constant = 6.022 [tex]\times 10^{23}[/tex]
Molecules in the Carbon dioxide can be calculated as:
Molecules of CO₂ = Moles of carbon dioxide x Avogadro constant
Molecules of CO₂ = [tex]4.5\times 6.022[/tex] [tex]\times 10^{23}[/tex]
Molecules of CO₂ = [tex]2.71 \times 10 ^{24}[/tex] molecules
Thus, the 4.5 moles of carbon dioxide will have [tex]2.71 \times 10 ^{24}[/tex] molecules.
To know more about Avogadro constant, refer to the following link:
https://brainly.com/question/10732432
0.50 mol A, 0.60 mol B, and 0.90 mol C are reacted according to the following reaction
A + 2B + 3C → 2D + E
Identify the limiting reactant(s) in this scenario.
Reactant C should be considered as the limiting reactant in this given situation.
Identification of the limiting reactant(s):Since
A balanced chemical reaction is:
A + 2B + 3C → 2D + E
And, number of moles should be
A = 0.50 mole
B = 0.60 moles
C = 0.90 moles
Now here we considered A as the reactant
So,
1 mole of A reacted to form 2 moles of D
0.50 moles of A will produce = 1 mole of D
Now considered B as the reactant
2 moles of B reacted to form 2 moles of D
0.60 moles of B reacted to form x moles of D
x = 2 moles of D is produced.
Now considered C as the reactant:
3 moles of C reacted to form 2 moles of D
O.9 moles of C reacted to form x moles of D
= 0.60 moles of D is formed.
Learn more about reaction here: https://brainly.com/question/12127509
I’ve been up all night doin chemistry, can someone please give me the answers
can someone help, like I need an answer now ಥ‿ಥ
Answer:
cell - basic unit of structure and function of all living things
tissue - a group of cells that work together to perform a common function
organ - a group of tissues that work together to perform a common function
organ system - group of organs that work together to perform a common function
Explanation:
What you have there is the biological level of organization. It is how living things are organized from the simplest to the most complex. Each level makes up another level.
As you can see in your exercise, the basic unit of life is the cell and cells make up tissues, while tissues make up organs and so forth. There are higher levels of organizations passed organ system.
Cell - tissue - organ - organ system - organism - population - community - ecosystem - biosphere
What is the precipitate form of NaOH+FeSO4?
Answer:
(Fe(OH)2 + Na2SO4
Explanation:
Iron (II) hydroxide precipitate. Iron (II) hydroxide precipitate (Fe(OH)2) formed by adding few drops of a 1M solution of sodium hydroxide (NaOH) to 0.2 M solution ferrous sulfate (FeSO4). The reaction is FeSO4 + NaOH -> Fe(OH)2 + Na2SO4. This is an example of a double replacement reaction. Pure iron (II) hydroxide is white, however even trace amounts of oxygen make it greenish.