Answer:44
Step-by-step explanation:
The equation relates Alice’s and Martha's ages in years. Alice’s age (a) = Martha’s age (m) + 22 The blank spots on table are filled by 33-11 and 48-26.
What does it mean to solve an equation?An equation represents the equality of two or more mathematical expressions.
When someone asks you to solve an equation, then they usually mean to find the values of the unknowns for which that equation would be true (the equality between expressions should hold true for those values).
Solutions to an equation are those values of the variables involved in that equation for which the equation is true.
The table shows Alice's age (a) and her daughter Martha's age (m).
In order to find the blank spots, we need to find the difference in the filled spots. We are trying to figure out the difference which is subtraction.
28 - 6 = 22
37 - 15 = 22
To find Martha's age when Alice was 33, we would subract 22.
33 - 22 = 11
similarly, when Alice was 48.
48 - 22 = 26
And the last equation is asking the difference between them, which is 22.
Learn more about solving equations here:
https://brainly.com/question/18015090
#SPJ2
A membership at a swimming pool costs a flat fee of $100, plus $50 per person. If x stands for the number of people, then the membership cost is modeled by which equation?
y=150x
y=100+50+x
y=100x+50
y=50x+100
Answer:
y=50x+100
Step-by-step explanation:
y=mx+b
100 is b because its a flat fee
The slope is 50 because it is dependent on x, the amount of people.
The correct answer is y=150x.For example, if I were to equal 300. Then that would mean two people would have bought the membership. So, X equals two.
Jay had to paint part of the outside of his house he spent 7 hours painting one side and 12 hours painting another how long did it take him to paint both sides
Jay spent 19 hours painting both parts of his house, which is obtained by adding the time he spent painting each side: 7 hours and 12 hours.
Explanation:The question is asking about the total time Jay spent painting two sides of his house. We know that he spent 7 hours painting one side and 12 hours painting another side. To find the total time spent, we simply need to add the two times together. So, 7 hours + 12 hours equals 19 hours. Therefore, Jay spent 19 hours in total painting both parts of his house.
Learn more about addition here:https://brainly.com/question/35006189
#SPJ2
Melanie is taking flute lessons. Her flute teacher charges $32.50 per hour. If Melanie has 2.5 hours of lessons each week, what is the weekly charge for her lessons?
2.5 x 32.50 = 81.25 a week
Answer:
32.50× 2 = 65
32.50 ÷ 2 = 16.25
65+16.25 = 81.25(this is the answer)
A:
Calculate the length of CE
B:
Calculate the length of DE
C:
The area of a triangle ABD is 36cm
Calculate the area of the quadrilateral BDEC
Step-by-step explanation:
it is solved directly by using the formula
To calculate the length of CE, use the properties of similar triangles. Use the same proportion to calculate the length of DE. To find the area of the quadrilateral BDEC, calculate the area of the triangle CDE and subtract it from the area of ABCD.
Explanation:To calculate the length of CE, we need to use the properties of similar triangles. Since ABC and AED are similar, we can set up the proportion AB/AC = AD/AE. We know that AB = 5cm and AC = 10cm, and we need to solve for AE. Rearranging the proportion, we get AE = AD * AC / AB. Plugging in the values, AE = 6cm.
To calculate the length of DE, we can use the same proportion from above, but this time solving for DE. Rearranging the proportion, we get DE = AD * AC / AB. Plugging in the values, DE = 3cm.
The area of triangle ABD is given as 36cm. To calculate the area of the quadrilateral BDEC, we need to find the area of the triangle CDE and subtract it from the area of the quadrilateral ABCD. Since triangles CDE and ABC share the same height, we can use the ratios of their bases to calculate the area of CDE. The ratio of CE to CB is 6/10, so the ratio of the areas of CDE to ABC is (6/10)^2 = 0.36. Therefore, the area of CDE is 0.36 times the area of ABC, or 0.36 * 36cm = 12.96cm.
Learn more about Calculate length and area here:https://brainly.com/question/32864195
#SPJ2
How do you construct a regular polygon inside a circle?
You could use a ruler, think about how you want the polygon inside of the circle or how you want the circle to surround the polygon. When you use a ruler, make sure your co-ordinates inside of the circle are correct though before drawing the line.
I hope this info helps! :3
To construct a regular polygon inside a circle, divide the circle into "n" equal sectors using "n" radii, where "n" represents the number of sides in the polygon. Connect the center of the circle to each of the marked points on the circumference to create the regular polygon.
Determine the Circle: Start by drawing the given circle with a compass, and label its center as "O."
Select the Number of Sides: Decide on the number of sides for the regular polygon. Let's assume "n" as the number of sides.
Construct Diameter: Draw a diameter of the circle passing through the center "O," using a straightedge.
Construct Central Angle: To create a regular polygon with "n" sides, divide the circle into "n" equal sectors by constructing "n" radii (lines from the center to the circumference) evenly spaced around the circle. Each of these radii forms a central angle of 360°/n.
Find Vertices: On the circumference of the circle, mark "n" points (labeled A₁, A₂, A₃, ..., Aₙ) evenly spaced. These points will serve as the vertices of the regular polygon.
Connect Vertices: Use a straightedge to draw lines connecting the center "O" of the circle to each of the marked points (A₁, A₂, ..., Aₙ).
Construct Regular Polygon: The polygon with vertices A₁, A₂, ..., Aₙ, and center "O" is the regular polygon inscribed inside the circle.
To know more about circle here
https://brainly.com/question/483402
#SPJ2
Which statement best compares the spread of the data sets?
Answer:
Choice B is correct
Step-by-step explanation:
The Interquartile Range (IQR) for Florida, 11, is greater than the IQR for Australia, 4.
The spread of a data set is a measure of the dispersion or variability of the data set. The spread can be measured by various statistical quantities depending on the nature of the data (skewed or symmetric);
The IQR
Variance
Standard Deviation
Range
A box plot is a graphical representation of the five number summary;
The minimum, first quartile, median, third quartile, and the maximum value in that order.
The IQR is defined as;
third quartile - first quartile
With this definition, the Interquartile Range (IQR) for Florida is;
28 - 17 = 11
while the Interquartile Range (IQR) for Australia is;
14 - 10 = 4
Therefore, the Interquartile Range (IQR) for Florida, 11, is greater than the IQR for Australia, 4.
Complete the point-slope equation of the line through (-5,4) and (1,6). Use exact numbers.
y-6=____
Answer:
as you all saw the rating of the above answer, it is incorrect. here is the correct answer with proof down in the photo below
The point-slope equation of the line passing through the points (-5,4) and (1,6) is y - 6 = 1/3(x - 1). This is derived from the standard point-slope formula y - y1 = m(x - x1) where m is the slope of the line.
Explanation:In mathematics, specifically in linear algebra, the point-slope formula is used to determine the equation of a line given a point on the line and its slope. The point-slope equation of the line through the points (-5,4) and (1,6) is found by first calculating the slope between these two points, defined as the change in y divided by the change in x. So, y2 - y1 divided by x2 - x1. In this case, (6-4) / (1 - (-5)) = 2/6 = 1/3. So, the slope of the line is 1/3. We can then use one of these coordinates (for instance, 1, 6) and the slope in the point-slope formula: y - y1 = m(x - x1). Therefore, the point-slope equation of the line through (-5,4) and (1,6) is y - 6 = 1/3(x - 1).
Learn more about Point-slope equation here:https://brainly.com/question/33918645
#SPJ11
What is the value expression 10p-5/5+3(p-1) when p = 2
For this case we have the following expression:
[tex]\frac {10p-5} {5 + 3 (p-1)}[/tex]
We must find the value of the expression when c[tex]p = 2[/tex].
Substituting the value of "p" we have:
[tex]\frac {10 (2) -5} {5 + 3 ((2) -1)} =\\\frac {20-5} {5 + 3 (1)} =\\\frac {20-5} {5 + 3} =\\\frac {15} {8}[/tex]
Thus, the value of the expression when [tex]p = 2, is\ \frac {15} {8}[/tex]
ANswer:
[tex]\frac {15} {8}[/tex]
what is the value of x? enter your answer in the box.
To solve this problem, you would have to apply the Pythagorean Theorem: a^2+b^2=c^2
X is the hypotenuse; therefore:
24^2+7^2=x^2
576+49=x^2
625=x^2
To solve this you would have to figure out what the square root of 625 is.
Answer: 25
Step-by-step explanation:
Pythagoreans theory
a2 + b2 = c2
24(square) + 7(square) =c(square)
576 + 49= c square
625=c square
c=√625
c=25
If m1=45 degrees, which other angles have a measure of 45 degrees? Select all that apply.
∠ 2
∠3
∠4
∠5
∠6
Answer:
∠4 and ∠5
Step-by-step explanation:
we know that
If a is parallel to b
then
∠5=∠1 -----> by corresponding angles
∠4=∠1 -----> by alternate interior angles
which values are within the domain of the function? check all that apply
Answer:
-6 -4 -2 4
Step-by-step explanation:
A B C F
Answer:
A. B. C. F.
Step-by-step explanation:
If you were to solve the following system by substitution, what would be the best variable to folve for and from what equation?
3x+6y=9
2x-10y=13
A) y in the first equation
B) y in the second equation
C) x in the second equation
D) x in the first equation
Answer:
D
Step-by-step explanation:
It's easiest to divide everything by 3.
The best variable to solve for is x in the first equation.
How to solve the equations 3x+6y=9 and 2x-10y=13 by substitution?Let 3x+6y=9 be equation (1)
and 2x-10y=13 be equation (2)
2x-10y=13
10y = 2x - 13
y =[tex]\frac{2x - 13}{10}[/tex]
substitute the value of y in equation (1)
3x+6y=9
3x + [tex]6(\frac{2x - 13}{10})[/tex] = 9
3x + [tex]3(\frac{2x - 13}{5})[/tex] = 9
[tex]\frac{15x + 6x - 39}{5}[/tex] = 9
21x - 39 = 45
21x = 84
x = [tex]\frac{84}{21}[/tex]
x = 4
Therefore, option D) x in the first equation is the correct answer
To learn more about substitution method, refer :
https://brainly.com/question/22340165
#SPJ2
Factor the polynomial: -x^3-2x^2-3x
Answer:
-x(x^2+2x+3)
Step-by-step explanation:
Answer:
Step-by-step explanation:
-x is common to all three terms. Thus, -x^3-2x^2-3x = -x(x^2 + 2x + 3).
Use the quadratic formula to find the roots (and thus the factors) of
x^2 + 2x + 3: a = 1; b = 2; c = 3.
Thus, the discriminant is b^2-4ac, or 4 - 4(1)(3), or -8.
Because this discriminant is negative, x^2 + 2x + 3 has two complex, unequal roots. They are:
-2 ± i√8
x = -------------- or -1 ± i*2*√2
Thus, the three factors of the given polynomial are:
-x, (x + 1 + 2i√2), and (x + 1 - 2i√2)
2
Need the answers for letter “B”
Answer:
b=10
Step-by-step explanation:
A=1/2bh
The A and h are already given
100=1/2b(20)
So what times 20 equals 2 times as much as 100? Its 10
100=1/2(10)(20)
100=1/2(200)
100=100
So the answer is b=10
Find an equation for the nth Term of a geometric sequence where the second and fifth terms or -8 and 512, respectively
Answer:
32
Step-by-step explanation:
Answer:
Tn = -4^n/2
Step-by-step explanation:
The formula for nth tern of a geometric sequence is given as:
Tn = ar^n-1 where;
a is the first term
r is the common ratio
n is the number of terms
Since we are looking for the nth term if the geometric sequence, we will write our answer as a function if 'n'.
Given the second and fifth terms to be -8 and 512, respectively, this can be interpreted as;
T2 = ar^2-1 = -8
T5 = ar^5-1 = 512
From the equations above, we have;
ar = -8... (1)
ar⁴ = 512
Dividing both equation, we have;
ar⁴/ar = -512/8
r³ = -64
r = -4
Substituting r = -4 into equation 1, we have;
a(-4) = -8
-4a = -8
a = 2
Since nth term Tn = ar^n-1
Substituting the value of a and r into the equation will give;
Tn = 2(-4)^n-1
2(-4^n × -4^-1)
2(-4^n × -1/4)
= -4^n/2
do these numbers make a right triangle... square root of 63 then 9 then 12?
Answer:
9^2 = 81
12^2 = 144
63^= 3969
A^2 + B^2 = C^2
81 + 144 = 225
so these numbers do not make a right triangle
Final answer:
The numbers square root of 63, 9, and 12 do make a right triangle as their squares satisfy the Pythagorean theorem. The sum of the squares of 9 and square root of 63 equals the square of 12, which validates that we have a right triangle.
Explanation:
To determine if the numbers square root of 63, 9, and 12 make a right triangle, we can apply the Pythagorean theorem, which states that in a right triangle, the sum of the squares of the two shorter sides must be equal to the square of the longest side (the hypotenuse). Let's calculate the squares of each provided number:
The square root of 63 squared is 63 (because \ \ \ equals 63).9 squared is 81.12 squared is 144.Since the longest side here must be 12 (as it is the largest number), the Pythagorean theorem for these numbers would be as follows:
81 + 63 = 144?
That simplifies to:
144 = 144?
This is a true statement, which means that these numbers do indeed represent the sides of a right triangle.
Choose the slope-intercept form of 3x + 2y = 5.
Answer:
[tex]y=\frac{-3}{2}x +\frac{5}{2} \\or \\y=\frac{5}{2} -\frac{3}{2} x[/tex]
Step-by-step explanation:
slope-intercept form is: [tex]y= mx+b[/tex]
3x + 2y = 5.
rearrange
[tex]2y=5-3x\\y=\frac{5}{2} -\frac{3x}{2}[/tex]
Answer:
b on ed2020
IG: user_6232003
Step-by-step explanation:
HURRY I NEED HELP PLEASE
Answer:
The volume of the shape is 343 cm
Step-by-step explanation:
Because the formula is length x width x height
Answer:
343 cm³
Step-by-step explanation:
V = lwh
V = 7·7·7, since the sides are all 7
V = 49·7 because 7·7 = 49
V = 343 cm³
help please with this
Answer:
None of these
Step-by-step explanation:
the answer can't have anything to do with perpendicular because you don't know if any of the angles are 90 degrees (and honestly none of them look right anyways... pun intended) and the only answer that isn't perpendicular is wrong because the lines are intersececting.
What is (x+y)(x^2-xy+y^2)
The answer is:
[tex](x+y)(x^{2}-xy+y^{2})=x^{3}+y^{3}[/tex]
Why?To find the resultant expression, we need to apply the distributive property.
It can be defined by the following way:
[tex](a+b)(c+d)=ac+ad+bc+bd[/tex]
Also, we need to remember how to add like terms: The like terms are the terms that share the same variable and exponent, for example:
[tex]x+x+x^{2}=2x+x^{2}[/tex]
We were able to add only the two first terms since they were like terms (they share the same variable and the same exponent)
So , we are given the expression:
[tex](x+y)(x^{2}-xy+y^{2})[/tex]
Then, applying the distributive property, we have:
[tex](x+y)(x^{2}-xy+y^{2})=x*x^{2}-x*xy+x*y^{2}+y*x^{2}-y*xy+y*y^{2}\\\\x*x^{2}-x*xy+x*y^{2}+y*x^{2}-y*xy+y*y^{2}=x^{3}-x^{2}y+xy^{2}+yx^{2}-xy^{2}+y^{3}\\\\x^{3}-x^{2}y+xy^{2}+yx^{2}-xy^{2}+y^{3}=x^{3}+y^{3}[/tex]
Hence, the answer is:
[tex](x+y)(x^{2}-xy+y^{2})=x^{3}+y^{3}[/tex]
Have a nice day!
If the first term of the series is 30 and the 14th term is 95, what is the sum of all the terms of the series?
A. 813
B. 423
C. 455
D. 875
Answer:
D) [tex]S_{14} = 875[/tex].
Step-by-step explanation:
Given : If the first term of the series is 30 and the 14th term is 95,
To find : what is the sum of all the terms of the series.
Solution : We have given
First term = 30 .
14 th term = 95.
Sum of all term = [tex]S_{n} =\frac{n(first\ term +\ last\ term)}{2}[/tex].
Here, n = 14.
[tex]S_{14} =\frac{14(30 +95)}{2}[/tex].
[tex]S_{14} =\frac{14(125)}{2}[/tex].
[tex]S_{14} =\frac{1750}{2}[/tex].
[tex]S_{14} = 875[/tex].
Therefore, D) [tex]S_{14} = 875[/tex].
Answer:
The sum of all the terms in series is 875.
Step-by-step explanation:
Given : If the first term of the series is 30 and the 14th term is 95,
To find : What is the sum of all the terms of the series?
Solution :
The first term of the series is 30 i.e. a=30
The 14th term of series is 95 i.e. [tex]a_{14}=95[/tex]
We know that in arithmetic series the 14th term is defined as
[tex]a_{14}=a+13d[/tex]
Substitute the value of a,
[tex]95=30+13d[/tex]
[tex]95-30=13d[/tex]
[tex]65=13d[/tex]
[tex]d=\frac{65}{13}[/tex]
[tex]d=5[/tex]
The common difference is 5.
The sum of the series is given by,
[tex]S_{n}=\frac{n}{2}[2a+(n-1)d][/tex]
[tex]S_{14}=\frac{14}{2}[2(30)+(14-1)5][/tex]
[tex]S_{14}=7[60+(13)5][/tex]
[tex]S_{14}=7[60+65][/tex]
[tex]S_{14}=7[125][/tex]
[tex]S_{14}=875[/tex]
Therefore, The sum of all the terms in series is 875.
PLEASE HELP ~ 15 POINTS
Which expression is equivalent to (n^3/2 ÷ n^-1/6)
A. n^27
B. n^-27
C. n^-4
D. n^-5
For this case we must simplify the following expression:
[tex](\frac {n ^ {\frac {3} {2}}} {n ^ {- \frac {1} {6}}}) ^ {- 3}[/tex]
By definition of power properties we have:
[tex]a ^ {- 1} = \frac {1} {a ^ 1} = \frac {1} {a}[/tex]
Then, rewriting the expression:
[tex](n ^ {\frac {3} {2}} * n ^ {\frac {1} {6}}) ^ {- 3} =[/tex]
To multiply powers of the same base, we put the same base and add the exponents:
[tex](n ^ {\frac {3} {2} + \frac {1} {6}}) ^ {- 3} =\\(n ^ {\frac {18 + 2} {12}}) ^ {- 3} =\\(n ^ {\frac {20} {12}}) ^ {- 3} =\\(n ^ {\frac {5} {3}}) ^ {- 3} =[/tex]
We multiply the exponents:
[tex]n ^ {\frac {-15} {3}} =\\n^{-5}[/tex]
ANswer:
Option D
Drag the tiles to the boxes to form correct pairs. Not all tiles will be used.
Match the circle equations in general form with their corresponding equations in standard form.
Answer:
# x² + y² - 4x + 12y - 20 = 0 ⇒ (x - 2)² + (y + 6)² = 60
# 3x² + 3y² + 12x + 18y - 15 = 0 ⇒ (x + 2)² + (y + 3)² = 18
# 2x² + 2y² - 24x - 16y - 8 = 0 ⇒ (x - 6)² + (y - 4)² = 56
# x² + y² + 2x - 12y - 9 = 0 ⇒ (x + 1)² + (y - 6)² = 46
Step-by-step explanation:
* Lets study the problem to solve it
- Use the terms of x and y in the general form to find the standard form
∵ x² + y² - 4x + 12y - 20 = 0
- Use the term x term
∵ -4x ÷ 2 = -2x ⇒ x × -2
∴ (x - 2)²
- Use the term y term
∵ 12y ÷ 2 = 6y ⇒ y × 6
∴ (y + 6)²
∵ (-2)² + (6)² + 20 = 4 + 36 + 20 = 60
∴ x² + y² - 4x + 12y - 20 = 0 ⇒ (x - 2)² + (y + 6)² = 60
∵ x² + y² + 6x - 8y + 10 = 0
- Use the term x term
∵ 6x ÷ 2 = 3x ⇒ x × 3
∴ (x + 3)²
- Use the term y term
∵ -8y ÷ 2 = -4y ⇒ y × -4
∴ (y - 4)²
∵ (3)² + (-4)² - 10 = 9 + 16 - 10 = 5
∴ x² + y² + 6x - 8y + 10 = 0 ⇒ (x + 3)² + (y - 4)² = 5 ⇒ not in answer
∵ 3x² + 3y² + 12x + 18y - 15 = 0 ⇒ divide all terms by 3
∴ x² + y² + 4x + 6y - 5 = 0
- Use the term x term
∵ 4x ÷ 2 = 2x ⇒ x × 2
∴ (x + 2)²
- Use the term y term
∵ 6y ÷ 2 = 3y ⇒ y × 3
∴ (y + 3)²
∵ (2)² + (3)² + 5 = 4 + 9 + 5 = 18
∴ 3x² + 3y² + 12x + 18y - 15 = 0 ⇒ (x + 2)² + (y + 3)² = 18
∵ 5x² + 5y² - 10x + 20y - 30 = 0 ⇒ divide both sides by 5
∴ x² + y² - 2x + 4y - 6 = 0
- Use the term x term
∵ -2x ÷ 2 = -x ⇒ x × -1
∴ (x - 1)²
- Use the term y term
∵ 4y ÷ 2 = 2y ⇒ y × 2
∴ (y + 2)²
∵ (-1)² + (2)² + 6 = 1 + 4 + 6 = 11
∴ 5x² + 5y² - 10x + 20y - 30 = 0 ⇒ (x - 1)² + (y + 2)² = 11 ⇒ not in answer
∵ 2x² + 2y² - 24x - 16y - 8 = 0 ⇒ divide both sides by 2
∴ x² + y² - 12x - 8y - 4 = 0
- Use the term x term
∵ -12x ÷ 2 = -6x ⇒ x × -6
∴ (x - 6)²
- Use the term y term
∵ -8y ÷ 2 = -4y ⇒ y × -4
∴ (y - 4)²
∵ (-6)² + (-4)² + 4 = 36 + 16 + 4 = 56
∴ 2x² + 2y² - 24x - 16y - 8 = 0 ⇒ (x - 6)² + (y - 4)² = 56
∵ x² + y² + 2x - 12y - 9 = 0
- Use the term x term
∵ 2x ÷ 2 = x ⇒ x × 1
∴ (x + 1)²
- Use the term y term
∵ -12y ÷ 2 = -6y ⇒ y × -6
∴ (y - 6)²
∵ (1)² + (-6)² + 9 = 1 + 36 + 9 = 46
∴ x² + y² + 2x - 12y - 9 = 0 ⇒ (x + 1)² + (y - 6)² = 46
need answer will name the brainliest!!!!!!! PLZ PLZ
What question do you need answered?
Answer:
Option A.
Step-by-step explanation:
Anastasia worked for = 7 hours per day
Number of weeks she worked = 52 weeks
Number of hours she worked = 7×52
= 364 hours
Per hour earning of Anastasia = $20
Total earning of Anastasia = 364×20
= $7280
Let the monthly expenses of Anastasia = $x
Then total expenses = $12x
At the end of the year total saving = Total earning - Total expenses
= $7280 - 12x
Since she saved $2000 in a year therefore, expression that represents the savings will be
2000 = 7280 - 12x
12x = 7280 - 2000
12x = 5280
x = [tex]\frac{5280}{12}[/tex]
x = $440
Option A will be the answer.
Our math team had m students last year, but this year it has already n students! By what percent did the number of students grow? need percentage only 24 points
Answer:
Since is the total amount of students now and m were the students before, you subtract them both (n-m) and divide that by m. Then, since to get a percentage from a fraction you have to multiply by 100, your answer should look like this: n-m/m*100
Please help me thank you
ANSWER
[tex]\theta = 0 ,\frac{7\pi}{6} ,\frac{11\pi}{6 } [/tex]
EXPLANATION
We want to solve
[tex] \sin( \theta) + 1 = \cos(2 \theta) [/tex]
on the interval
[tex]0 \leqslant \theta \: < \: 2\pi[/tex]
Use the double angle identity to obtain:
[tex] \sin( \theta) + 1 = 1 - 2\sin ^{2} \theta[/tex]
Simplify to get;
[tex] 2\sin ^{2} \theta + \sin( \theta) + 1 - 1 = 0[/tex]
[tex]2\sin ^{2} \theta + \sin( \theta) = 0[/tex]
Factorize to obtain:
[tex]\sin \theta (2\sin \theta + 1) = 0[/tex]
Either
[tex]\sin \theta = 0[/tex]
This gives us
[tex] \theta = 0[/tex]
on the given interval.
Or
[tex]2\sin \theta + 1= 0[/tex]
[tex]\sin \theta = - \frac{1}{2} [/tex]
This gives us
[tex]\theta = \frac{7\pi}{6} ,\frac{11\pi}{6 } [/tex]
Therefore the solutions within the interval are:
[tex]\theta = 0 ,\frac{7\pi}{6} ,\frac{11\pi}{6 } [/tex]
Please help me with this word problem!
Answer:
[tex]f(g)=25g[/tex]
Step-by-step explanation:
Let [tex]g[/tex] be the number of gallons so [tex]f(g)[/tex] is the number of miles traveled per [tex]g[/tex] gallons.
We know for our problem that Brian's car gets 25 miles per gallon. Since the gallons is represented by [tex]g[/tex], his car will travel a total distance of 25g (where g is the number of gallons.
We also know that the total distance is given by [tex]f(g)[/tex], so we can put the two expressions together to get our function:
[tex]f(g)=25g[/tex]
Let's check:
- If he uses 1 gallon (g=1), so
[tex]f(1)=25(1)[/tex]
[tex]f(1)=25[/tex] miles
He will travel 25 miles with one gallon.
- If he uses 2 gallons (g=2), so
[tex]f(2)=25(2)[/tex]
[tex]f(2)=50[/tex]
He will travel 50 miles with two gallon.
−0.7+
8
2
=
minus, 0, point, 7, plus, start fraction, 2, divided by, 8, end fraction, equals
Enter the answer as an exact decimal or simplified fraction.
[tex]-0.7+\frac{2}{8} =[/tex]
[minus, 0, point, 7, plus, 2, divided by, 8, equals]
You can make the denominators the same to combine them, so you can multiply -0.7 by [tex]\frac{8}{8}[/tex]
[tex]-0.7(\frac{8}{8})+\frac{2}{8}[/tex]
[tex]-\frac{5.6}{8}+\frac{2}{8}=-\frac{3.6}{8}= - 0.45[/tex]
Final answer:
The sum of −0.7 and ⅔ is −0.45 when the fraction is simplified to 0.25 and then added to −0.7.
Explanation:
Fractions are used extensively in mathematics, particularly in arithmetic, algebra, geometry, and calculus, as well as in everyday situations such as cooking, measurements, and financial calculations. They provide a convenient way to express quantities that are not whole numbers and to perform operations such as addition, subtraction, multiplication, and division.
The student is asking for the sum of -0.7 and the fraction 2/8. To find the answer, first simplify the fraction 2/8, which can be reduced to 1/4. Now, convert 1/4 into decimal form, which is 0.25. Next, add this decimal to -0.7 to find the sum:
-0.7 + 0.25 = -0.45.
Therefore, the exact decimal for the expression −0.7 + ⅔ is -0.45.
In the figure, a∥b and m∠3 = 34°.
What is the m∠7 ?
Enter your answer in the box.
Answer:
∠7 = 34°
Step-by-step explanation:
Since a and b are parallel lines then
∠3 and ∠7 are corresponding angles and congruent, so
∠7 = ∠3 = 34°
Answer:
34 degrees
Step-by-step explanation:
If ON = OL find mOML
A. 26°
B. 48°
C. 52°
D. 64°
Please select the best answer from the choices provided
Answer:
A. 26°
Step-by-step explanation:
If ON =OL, then the two triangles are are similar.
The base angles must be equal.
[tex](9x-8)\degree=(7x+8)\degree[/tex]
We group the similar terms to obtain:
[tex]9x-7x=8+8[/tex]
[tex]2x=16[/tex]
Divide through by 2 to get:
x=8
[tex]m\angle OML=90-(7x+8)[/tex]
Substitute x=8
[tex]m\angle OML=90-(7(8)+8)[/tex]
[tex]m\angle OML=90-(56+8)[/tex]
[tex]m\angle OML=26\degree[/tex]
Answer:
The correct answer is option A. 26°
Step-by-step explanation:
From the figure we can see that,
ON = OL
OM ⊥ NL
Therefore m<N = m<L
To find the value of x
m<N = m<L
7x + 8 = 9x -8
9x - 7x = 8 + 8
2x = 16
x = 8
To find the value of m<OML
x = 8
m<L = 9x - 8
= 9*8 - 8 = 72 - 8 = 64
m<OML = 180 - (<L + <O)
= 180 - ( 64 + 90)
= 26°
Therefore the correct answer is option A. 26°