Answer:
New price of DVD is $9.84
Answer:
The answer is C. $9.84
Step-by-step explanation:
The original price of the DVD is $12.
So, In order to calculate the price reduced by 18%
Original price - ( rate x Original price) = price reduced
18% = 18/100 = 0.18
$12 - (0.18 x $12) = price reduced
Solving
price reduced = $12 - $2.16
price reduced = $9.84
The new price of the DVD with the price reduced by 18% is $9.84
Water and orange squash is mixed in the ratio 7 : 4 Find how much water is needed to dilute 120 cl of orange squash.
Answer:
210
Step-by-step explanation:
Divide 120 by 4 and get 30 and multiply 7 by 30 and you get 210
Final answer:
To dilute 120 cl of orange squash with a ratio of 7:4 (water to squash), you need 210 cl of water. The total mixture will be 330 cl (7+4 parts), of which 120 cl is the squash and the remainder is water.
Explanation:
The student is asking how much water is needed to dilute 120 cl of orange squash if the mixture ratio of water to orange squash is 7:4. To solve this, you need to work with ratios.
First, add the parts of the ratio together: 7 (water) + 4 (orange squash) = 11 parts in total. Now, find out how many parts of the total mixture the 120 cl of orange squash represents. Since the ratio of orange squash is 4 parts, this means that 120 cl is 4 parts of the total mixture.
We can then set up the proportion: 4 parts / 11 parts total = 120 cl / total mixture in cl. Solving for the total mixture gives us: 11 parts * 120 cl / 4 parts = 330 cl.
Finally, to find out how much water is needed, subtract the volume of orange squash from the total mixture volume: 330 cl - 120 cl = 210 cl of water.
Which statement is correct about the function y = x2 – 2x – 143?
A)In factored form, the function is y = (x – 13)(x + 11), so the zeros of the function are x = –13 and x = 11.
B)In factored form, the function is y = (x + 13)(x – 11), so the zeros of the function are x = –13 and x = 11.
C)In factored form, the function is y = (x – 13)(x + 11), so the zeros of the function are x = 13 and x = –11.
D)In factored form, the function is y = (x + 13)(x – 11), so the zeros of the function are x = 13 and x = –11.
Answer:
C: f(x) = (x - 13)(x + 11)
Step-by-step explanation:
Please use " ^ " to indicate exponentiation: y = x^2 – 2x – 143.
x^2 – 2x – 143 factors into (x - 13)(x + 11). Note that -13x + 11x = -2x, which matches the middle term of the given function.
Thus, the zeros are {-11, 13}
Answer C is correct: f(x) = (x - 13)(x + 11).
In factored form, the function is y = (x – 13)(x + 11), so the zeros of the function are x = 13 and x = –11. Option C is correct.
What is simplification?The process in mathematics to operate and interpret the function to make the function or expression simple or more understandable is called simplifying and the process is called simplification.
Here,
Given function,
y = x² – 2x – 143
y = x² -13x + 11x - 143
y = (x - 13)(x + 11)
Let,
y = 0
(x - 13)(x + 11) = 0
Now,
zeros is given as,
x = 13 and x = -11
Thus, in factored form, the function is y = (x – 13)(x + 11), so the zeros of the function are x = 13 and x = –11. Option C is correct.
Learn more about simplification here:
https://brainly.com/question/12501526
#SPJ5
If there are 850 students at school and eats 4oz of hamburger for lunch how many pounds did the students eat
Answer:
1800
Step-by-step explanation:
850*4=1800
Answer:
212.5 lb
Step-by-step explanation:
850 students × 4oz/student = 3400 oz
There are 16 ounces in a pound, so:
3400 oz × (1 lb / 16 oz) = 212.5 lb
Which statement is always true
Answer:
Step-by-step explanation:
The sine of any acute angle is equal to the cosine of its complement. The cosine of any acute angle is equal to the sine of its complement. of any acute angle equals its cofunction of the angle's complement. Yes, there is a "relationship" regarding the tangent of the two acute angles (A and B) in a right triangle.
hope this helps u
10. Jaime is running a marathon, which is a 26 2/5 Mile Race. At 6 3/4 miles from the start, she passes Friends cheering on her. After she passes a water stop 9 1/2 miles farther along the route, How Far From The Finish Line is Jaime?
Answer:
A
Step-by-step explanation:
6 3/4 + 9 1/2 = 65/4
26 2/5 - 65/4 = 203/20 or 10 3/20
how many millimeters are in a centimeter
Answer:
1 centimeter = 10 millimeters
Step-by-step explanation:
we have to find about how many millimeters are in a centimeter.
We know that 1 centimeter = 10 millimeters
or 10 millimeters = 1 centimeter
divide both sides by 10
or \frac{10}{10} millimeters = \frac{1}{10} centimeter
or 1 millimeters = 0.1 centimeter
But we need millimeters in centimeters so we should write :
final answer as 1 centimeter = 10 millimeters.
A parabola with a vertex at (0,0) has a directrix that crosses the negative part of the y-axis.
Which could be the equation of the parabola?
[tex]\boxed{x^2=4py}[/tex]
Step-by-step explanation:A parabola is the set of all points that lies on a plane and are equidistant from a fixed line called the directrix and a fixed point called focus, that doesn't lies on the line. If the vertex is at the origin and the directrix crosses the negative part of the y-axis, then the equation takes the following forms:
[tex]\boxed{x^2=4py}[/tex]
Where the focus lies on the axis [tex]p \units[/tex] (directed distance) from the vertex.
The representation of this problem is shown below. As you can see, the vertex lies on the origin while the directrix crosses the negative part of the y-axis.
Answer:
The actually answer is x(2) = 4y
The ratio of 3 to 4 and the ratio of 4 to 3____ the same number. A)Are or B)are not
Answer: Option B
Step-by-step explanation:
By definition, the ratio is a comparison between two different things. It can be written in:
Odd notation
[tex]a:b[/tex]
Fractional notation
[tex]\frac{a}{b}[/tex]
Or in words:
[tex]a\ to\ b[/tex]
Given the ratio 3 to 4 and the ratio of 4 to 3, you can rewrite them the fractional form:
[tex]\frac{3}{4}\\\\\frac{4}{3}[/tex]
To know if these ratios are the same number, divide the numerator by the denominator of each one of them:
[tex]\frac{3}{4}=0.75\\\\\frac{4}{3}=1.33[/tex]
Therefore, the ratio of 3 to 4 and the ratio of 4 to 3 ARE NOT the same number.
Assume that the lines that appear to be tangent are tangent. O is the center of the circle. Find the value of x to the nearest tenth
X=3.6
See the attached photo
Without specific diagram or context, this answer is based on the relationship between tangent lines and circles. The angle between a tangent and a radius of a circle is always 90 degrees. Understanding this along with the Pythagorean theorem and trigonometric ratios will help solve for 'x'.
Explanation:Based on the information provided, it seems the question is related to circular geometry, however, we need more specific information to solve your problem such as a diagram or more context. However, if we consider that we're dealing with a tangent and a radius of a circle, it's important to know that the angle between a tangent and a radius of a circle is always 90 degrees. So, if we have an angle opposite a 90-degree angle in a right triangle, we could use tangent properties, Pythagorean theorem, or trigonometric ratios to solve for 'x'
For example, in a right triangle, tangent of an angle is equal to the opposite side length divided by the adjacent side length (tan(θ) = opposite/adjacent). Also, the Pythagorean theorem tells us that the square of the hypotenuse (radius) is equal to the sum of the squares of the other two sides (c² = a² + b²).
Those concepts and formulas are key to understanding the intersection between lines and circles, and they should assist you in solving queries closely related to this problem.
Learn more about Circle Geometry here:https://brainly.com/question/27802544
#SPJ3
what is the inverse of y=4x-16
Answer:
x=y/4 + 4
Step-by-step explanation:
y=4x-16
-need to isolate x
add 16 to both sides.
y+16=4x
divide by 4 on both sides.
y/4 + 4 = x
What is the absolute value of 1 -321?
it’s 321 because whether negative or positive it’s absolute value
1 minus 321 is -320. Since you’re finding the absolute value it’s 320
What is the percent approximate percent decrease when a fish count goes down from 850 to 500
the answer is 40% hope this helps
Answer:
Aproximately 40% is the correct option)))
Find the value of x to the nearest tenth tan x =5
Answer:
x ≈ 78.7° (in degree)
x ≈ 1.4 (in radians)
Step-by-step explanation:
Given in the question an equation
tan(x) = 5
x = [tex]tan^{1}(5)[/tex]
x = 78.69
x ≈ 78.7°
In radian:
x ≈ 1.4
Answer:
The correct answer is x = 78.7°
Step-by-step explanation:
It is given that,
Tan x = 5
To find the value of x
If tan ∅ = x then ∅ = tan⁻¹ x =
Here we have tan x = 5
x = tan⁻¹ 5 = 78.69 ≈ 78.7°
Therefore the value of x = 78.7°
The correct answer is 78.7°
find the 107 terms of sequence -9,-5,-1,3,7
Answer:
415
Step-by-step explanation:
the nth term of the sequence is -13 + 4n
the sequence is an arithmetic progression with nth term a + (n - 1)d
a = -9, d = a5- a4 = 7 -3 =4
nth = -9 + (n -1) 4
= -9 + 4n -4
= -13 + 4n
hence the 107th term; -13 + 4*107
-13 + 428 = 415
what is the quotient when x^3 -5x^2 + 3x -8 is divided by x-3 ?
For this case we have that the parts of a division are:
Dividend, divisor, quotient and remainder.
To make the division of polynomials, we must build a quotient that when multiplied by the divisor (and when the sign is changed), eliminate the terms of the dividend until reaching the remainder of the division.
It must be fulfilled that:
[tex]Dividend = Quotient * Divider + Remainder[/tex]
Then, if we look at the attached figure, the quotient is:
[tex]x ^ 2-2x-3[/tex]
Answer:
[tex]x ^ 2-2x-3[/tex]
The height of a flare fired from a gun can be described by: h=-16+60t where t is time in seconds and h is the height in feet. How long will it take for for the flare to reach 36 feet?
A- .75 sec B- 1 sec C- 1.5 sec D- 3 sec
We are to find the time it takes a flare to reach 36 feet. After rearranging the given equation and solving for the time 't', we find that the time is approximately 0.867 seconds. However, this value is not listed in the provided options. The closest given answer choice is 0.75 seconds.
Explanation:The given equation for the height of a flare is: h = -16 + 60t where 'h' stands for height and 't' stands for time. First, we need to solve the equation for 't', as we're looking to find the time it takes for the flare to reach 36 feet.
So, the equation becomes: 36 = -16 + 60t.
We add 16 to both sides of the equation to isolate the term with 't': 52 = 60t.
Then, we divide both sides of the equation by 60. We now have: t = 52/60. Solving it returns t = 0.867 seconds.
However, this value is not listed in the given answer choices. Among the choices, the closest is 0.75 seconds, or option A. Hence, 0.75 seconds is likely the approximate value considered correct for this problem.
Learn more about Solving Equations here:https://brainly.com/question/14410653
#SPJ12
1 2/7 divide (-2 1/4)
The answer is -4/7 or in decimal it’s -0571429
If you can explain your answer that’d be great!! Thank you!
Answer:
[tex]A(t)=A_{0}e^{\frac{ln(\frac{1}{2})}{22}t}[/tex]
Step-by-step explanation:
This half life exponential decay equation goes by the formula:
[tex]A(t)=A_{0}e^{kt}[/tex]
Where
[tex]k=\frac{ln(\frac{1}{2})}{Half-Life}[/tex]
Since half life is given as 22, we plug that into "Half-Life" in the formula for k and then plug in the formula for k into the exponential decay formula:
So,
[tex]k=\frac{ln(\frac{1}{2})}{Half-Life}\\k=\frac{ln(\frac{1}{2})}{22}[/tex]
Now
[tex]A(t)=A_{0}e^{\frac{ln(\frac{1}{2})}{22}t}[/tex]
third choice is correct.
Triangle ABC is similar to triangle WYZ. select all angles whose tangent equals 3/4
Answer:
∠B
∠Y
Step-by-step explanation:
we know that
In the right triangle ABC
[tex]tan(B)=\frac{AC}{BC}[/tex] ----> opposite side to angle B divided by the adjacent side to angle B
substitute the values
[tex]tan(B)=\frac{3}{4}[/tex]
Remember that
If two triangles are similar, then the corresponding sides are proportional and the corresponding angles are congruent
so
∠A=∠W
∠B=∠Y
∠C=∠Z
therefore
[tex]tan(B)=tan(Y)[/tex]
Base on the fact that the triangle ABC and WYZ are similar, the angles whose tangent equals 3 / 4 are ∠B and ∠Y
What are similar triangles?Similar triangle are only different in sizes but are of the same shape.
Similar triangles, corresponding sides are always in the same ratio. Corresponding angles of similar triangles are always congruent. Therefore,
∠A = ∠W
∠B = ∠Y
∠C = ∠Z
Therefore, let's find all angles in the similar triangles whose tangent is equal to 3 / 4 .
tan ∅ = opposite / adjacent
Since,
tan B = 3 / 4
Then
tan Y = 3 / 4
Therefore,
The angles whose tangent equals 3 / 4 are ∠B and ∠Y
learn more on similar triangle here: https://brainly.com/question/11969453
Can someone please help me
Answer:
Lines RQ and SP are perpendicular to SR
Step-by-step explanation:
SR are parallel to PQ so that means that RQ and SP are perpendicular to SR
Among all fractions x that have a positive integer numerator and denominator and satisfy 9/11 ≤ x ≤ 11/13 which fraction has the smallest denominator?
PLZ HELP WIIL MARK BRAINIEST
We want to find a fraction a/b such that
[tex]\dfrac{9}{11}\leq\dfrac{a}{b}\leq\dfrac{11}{13}[/tex]
This is true if and only if
[tex]\dfrac{9b}{11}\leq a \leq\dfrac{11b}{13}[/tex]
We can choose a value for a only if the two extremes include at least one integer, i.e. if
[tex]\dfrac{11b}{13}-\dfrac{9b}{11}\geq 1[/tex]
Solving for b, we have [tex]b>35[/tex]
So, the smallest fraction is given for [tex]b=36[/tex]. We have
[tex]\dfrac{9}{11}\leq \dfrac{a}{36} \leq \dfrac{11}{13}[/tex]
Solving for a, we have a=30.
The fraction 30/36 can be simplified to 5/6. So, we have
[tex]\dfrac{9}{11}\leq \dfrac{5}{6} \leq \dfrac{11}{13}[/tex]
and this is the smallest possible denominator.
We want to find a fraction a/b such that
\dfrac{9}{11}\leq\dfrac{a}{b}\leq\dfrac{11}{13}
11
9
≤
b
a
≤
13
11
This is true if and only if
\dfrac{9b}{11}\leq a \leq\dfrac{11b}{13}
11
9b
≤a≤
13
11b
We can choose a value for a only if the two extremes include at least one integer, i.e. if
\dfrac{11b}{13}-\dfrac{9b}{11}\geq 1
13
11b
−
11
9b
≥1
Solving for b, we have b>35b>35
So, the smallest fraction is given for b=36b=36 . We have
\dfrac{9}{11}\leq \dfrac{a}{36} \leq \dfrac{11}{13}
11
9
≤
36
a
≤
13
11
Solving for a, we have a=30.
The fraction 30/36 can be simplified to 5/6. So, we have
\dfrac{9}{11}\leq \dfrac{5}{6} \leq \dfrac{11}{13}
11
9
≤
6
5
≤
13
11
and this is the smallest possible denominator.
A solid piece of wood shaped as a cylinder with an 8-centimeter diameter is cut as shown.
What is the surface area of the figure? Express the answer in terms of π.
96 + 64π cm2
96 + 80π cm2
96 + 112π cm2
96 + 128π cm2
Answer:
The surface area of the figure is 96 + 64π ⇒ 1st answer
Step-by-step explanation:
* Lats revise how to find the surface area of the cylinder
- The surface area = lateral area + 2 × area of one base
- The lateral area = perimeter of the base × its height
* Lets solve the problem
- The figure is have cylinder
- Its diameter = 8 cm
∴ Its radius = 8 ÷ 2 = 4 cm
- Its height = 12 cm
∵ The perimeter of the semi-circle = πr
∴ The perimeter of the base = 4π cm
∵ The area of semi-circle = 1/2 πr²
∴ The area of the base = 1/2 × π × 4² = 8π cm²
* Now lets find the surface area of the half-cylinder
- SA = lateral area + 2 × area of one base + the rectangular face
∵ LA = perimeter of base × its height
∴ LA = 4π × 12 = 48π cm²
∵ The dimensions of the rectangular face are the diameter and the
height of the cylinder
∴ The area of the rectangular face = 8 × 12 = 96 cm²
∵ The area of the two bases = 2 × 8π = 16π cm²
∴ SA = 48π + 16π + 96 = 64π + 96 cm²
* The surface area of the figure is 96 + 64π
Answer:
A
Step-by-step explanation:
edge 2021
The product of -11.4 and zero is?
A. positive
B.zero
C.negative
Answer:
B. 0
Step-by-step explanation:
Anything multiplied by 0 is 0
ANSWER
B Zero
EXPLANATION
The product of any number and zero is still zero.
It doesn't matter how huge or small the number is.
It doesn't also matter whether the number is negative or positive.
Even the product of zero and itself is still zero.
Therefore:
[tex] - 11.4 \times 0 = 0[/tex]
The correct choice is B
30 POINTS! x + 1 = 2 ÷ x + 1
In the equation above, which choice is a possible value of x + 1?
A) 1 - √2
B) √2
C) 2
D) 4
For this case we have the following equation:
[tex]x + 1 = \frac {2} {x + 1}[/tex]
We must find the value of [tex]x + 1[/tex]:
Multiplying both sides of the equation by[tex]x + 1:[/tex]
[tex](x + 1) ^ 2 = 2[/tex]
Applying square root on both sides of the equation to eliminate the exponent:
[tex]x + 1 = \sqrt {2}[/tex]
Answer:
Option B
Answer: B
Step-by-step explanation:
Find all solutions for a triangle with a=26, b=29, and A=58
Answer:
i think its C
Step-by-step explanation:
Final answer:
To solve the triangle with sides a=26, b=29, and angle A=58 degrees, apply the Law of Sines to find another angle, use the sum of angles to find the third angle, and then the Law of Cosines to find the remaining side, ensuring all conditions are satisfied for a valid triangle.
Explanation:
To find all solutions for a triangle given a=26, b=29, and A=58 degrees, we use the Law of Sines, which relates the lengths of sides to the sine of their opposite angles. Since sin A > sin a (opposite side to angle A) would result in no solution and considering the given values, we don't encounter this issue. Instead, we have:
sin B / b = sin A / a
Rearranging for B, we have:
B = sin⁻¹(sin A / a × b)
Plugging in our numbers:
B = sin⁻¹((sin 58°) / 26 × 29)
Once B is calculated, we can find angle C since the interior angles of a triangle sum to 180 degrees. Following that, we can use the Law of Cosines to find the third side, c. The process is:
Calculate B using the Law of Sines.Calculate C by subtracting A and B from 180 degrees.Calculate c using the Law of Cosines: c² = a² + b² - 2ab cos C.After finding all angles and sides, verify the solution by checking if the interior angles sum to 180 degrees and the sides satisfy the Triangle Inequality Theorem.
Evaluate the following expression 2+(3-2x2)x1
Answer:
answer: 1
Step-by-step explanation:
using pemdas you would first go into the parenthesis and multiply 2 by 2 the subtract that from three giving you -1. then, you would multiply that by 1 and add that to 2.
"Complete the square" to convert the equation of each circle to graphing form. Identify the center and the radius.
x² + 6x + y2 – 4y= -9
Answer:
The center is (-3,2) and the radius is r=2
Step-by-step explanation:
The general equation of the given circle is
[tex]x^2+6x+y^2-4y=-9[/tex]
Add the square of half the coefficient of the linear terms to both sides of the equation to obtain;
[tex]x^2+6x+3^2+y^2-4y+(-2)^2=-9+3^2+(-2)^2[/tex]
[tex]x^2+6x+9+y^2-4y+4=-9+9+4[/tex]
[tex]x^2+6x+9+y^2-4y+4=4[/tex]
The quadratic trinomials in x and y on the left side of the equations are perfect squares.
We factor to obtain;
[tex](x+3)^2+(y-2)^2=4[/tex]
[tex](x--3)^2+(y-2)^2=2^2[/tex]
Comparing to:
[tex](x-h)^2+(y-k)^2=r^2[/tex]
The center is (-3,2) and the radius is r=2
To complete the square and put the equation into graphing form, group x's and y's, add appropriate constants to each group, and rewrite. The circle's equation becomes (x + 3)² + (y - 2)² = 4, with the center at (-3, 2) and a radius of 2.
Explanation:To complete the square for the equation x² + 6x + y² - 4y = -9 and convert it to graphing form, we need to group the x's and y's together and add the right constants to each group.
First, group the x terms and the y terms: (x² + 6x) + (y² - 4y).Next, for x terms, add and subtract (6/2)², which is 9, inside the parentheses: (x² + 6x + 9) - 9.For y terms, add and subtract (-4/2)², which is 4, inside the parentheses: (y² - 4y + 4) - 4.Combine the constant terms with -9, the constant on the right side of the equation: -9 - 9 - 4.The equation becomes (x + 3)² + (y - 2)² = 4.Now, the equation is in the graphing form of a circle ((x-h)² + (y-k)² = r²), where (h, k) is the center and r is the radius. Hence, the circle's center is at (-3, 2) and its radius is 2.
Find the rate of change of the function h(x)=2x^2 in the interval 2<_ x<_4
[tex]\bf slope = m = \cfrac{rise}{run} \implies \cfrac{ f(x_2) - f(x_1)}{ x_2 - x_1}\impliedby \begin{array}{llll} average~rate\\ of~change \end{array}\\\\[-0.35em] \rule{31em}{0.25pt}\\\\ h(x)= 2x^2\qquad 2\leqslant x \leqslant 4 \qquad \begin{cases} x_1=2\\ x_2=4 \end{cases}\implies \cfrac{h(4)-h(2)}{4-2} \\\\\\ \cfrac{2(4)^2~~-~~2(2)^2}{2}\implies \cfrac{32-8}{2}\implies \cfrac{24}{2}\implies 12[/tex]
A line passes through the origin and has a slope of -3 what is the equation of the line that is perpendicular to the first line and passes through the point (3,4)?
Answer: [tex]y=\frac{1}{3}x+3[/tex]
Step-by-step explanation:
The equation of the line is Slope-intercept form is:
[tex]y=mx+b[/tex]
Where "m" is the slope and "b" the y-intercept.
The slopes of perpendicular lines are negative reciprocal.
Then, if the slope of the first line is -3, the slope of the other line must be:
[tex]m=\frac{1}{3}[/tex]
Substitute the point (3,4) into the equation and solve for b:
[tex]4=\frac{1}{3}(3)+b\\ 4-1=b\\b=3[/tex]
Then the equation of this line is:
[tex]y=\frac{1}{3}x+3[/tex]
ANSWER
[tex]y= \frac{1}{3} x + 3[/tex]
EXPLANATION
We want to find the equation of a line which is perpendicular to another line with slope -3 and passes through (3,4).
Our line of interest is has a slope that is the negative reciprocal of -3
[tex]m = - \frac{1}{ - 3} = \frac{1}{3} [/tex]
The equation is given by
[tex]y-y_1=m(x-x_1)[/tex]
We substitute the point and slope to get:
[tex]y-4= \frac{1}{3} (x-3)[/tex]
Expand
[tex]y-4= \frac{1}{3} x-1[/tex]
[tex]y= \frac{1}{3} x-1 + 4[/tex]
[tex]y= \frac{1}{3} x + 3[/tex]
Can someone help please
.18/.48= .375x 100= 37.5%