The normal boiling point of liquid methyl acetate is 331 K. Assuming that its molar heat of vaporization is constant at 30.6 kJ/mol, the boiling point of CH3COOCH3 when the external pressure is 1.29 atm is

Answers

Answer 1

Answer:

T_2=338.9026K

Boiling point of CH3COOCH3 at external pressure is 338.9026K

Explanation:

We are going to use Clausius-Clapeyron Equation:

[tex]ln\frac{P_2}{P_1} =-\frac{\Delta H}{R}(\frac{1}{T_2}-\frac{1}{T_1})[/tex]

Where:

P_2 is the external pressure

P_1 is the atmospheric Pressure=1 atm

ΔH is the heat of vaporization

T_2  boiling point of CH3COOCH3 at external pressure

T_1 normal boiling point of liquid methyl acetate

Now:

[tex]\frac{1}{T_2}=-ln\frac{P_2}{P_1}*\frac{R}{\Delta H}+\frac{1}{T_1} \\\frac{1}{T_2}=-ln\frac{1.29}{1}*\frac{8.314}{30.6*10^3}+\frac{1}{331} \\\frac{1}{T_2}=2.9507*10^-^3\\T_2=\frac{1}{2.9507*10^-^3} \\T_2=338.9026K[/tex]

Boiling point of CH3COOCH3 at external pressure is 338.9026K

Answer 2
Final answer:

To find the new boiling point of methyl acetate, use the Clausius-Clapeyron equation with the provided values for the initial boiling point, molar heat of vaporization, and new external pressure.

Explanation:

This question requires us to use the form of the Clausius-Clapeyron equation:

ln(P2/P1) = -ΔHvap/R * (1/T2 - 1/T1)

Where T1 and P1 are the initial temperature and pressure (331K and 1 atm respectively, since normal boiling point is defined as the temperature at which the vapor pressure of a liquid equals 1 atm), and P2 is the new pressure (1.29 atm). ΔHvap is the molar heat of vaporization (30.6 kJ/mol, or 30.6 * 10^3 J/mol to convert kilojoules to joules), and R is the gas constant (8.314 J/mol*K). Solving the equation for T2 (the new boiling point temperature), we rearrange to get T2 = 1/(1/T1 + (R/ΔHvap)*ln(P2/P1)). Plugging in the values, you should find the answer.

Learn more about Boiling Point Calculation here:

https://brainly.com/question/35541255

#SPJ3


Related Questions

The solubility of calcium chromate in water is 4.16 grams per liter. If a calcium chromate solution has a concentration of 4.16 grams per liter, is the solution saturated, unsaturated, or supersaturated?

Answers

Answer:

The concentration is 4.16 grams per liter, we call the solution saturated.

Explanation:

Step 1: Data given

The solubility of calcium chromate in water is 4.16 grams per liter.

Saturated Solution : A solution with solute that dissolves until it is unable to dissolve anymore, leaving the undissolved substances at the bottom.

Unsaturated Solution: A solution (with less solute than the saturated solution) that completely dissolves, leaving no remaining substances.

Supersaturated Solution: A solution (with more solute than the saturated solution) that contains more undissolved solute than the saturated solution because of its tendency to crystallize and precipitate.

Step 2:

If the calcium chromate solution has a concentration of 4.16 grams per liter.

If the concentration is less than 4.16 grams per liter, we call it unsaturated.

If the concentration is more than 4.16 grams per liter, we call it supersaturated.

The concentration is 4.16 grams per liter, we call the solution saturated.

Final answer:

A saturated solution contains the maximum amount of solute that can dissolve in a solvent at a specific temperature.

Explanation:

The solution is saturated because the concentration of calcium chromate in the solution is equal to its solubility in water, which is 4.16 grams per liter.

A saturated solution contains the maximum amount of solute that can dissolve in a given solvent at a specific temperature.

Saturated solutions are in a dynamic equilibrium where the rate of dissolution is equal to the rate of precipitation.

A real gas is in a regime in which it is accurately described by the ideal gas equation of state. 27.1 g of the gas occupies 50.0 L at a pressure of 0.500 atm and a temperature of 449 K. Identify the gas.

Answers

The gas is accurately described by the ideal gas equation. Calculations reveal that the given conditions match Argon (Ar) most closely. Thus, the correct option is B) Ar.

To identify the gas accurately, we can use the ideal gas equation: PV = nRT, where P is pressure, V is volume, n is the number of moles, R is the ideal gas constant, and T is the temperature in Kelvin.

First, let's calculate the number of moles (n) using the given mass (m) of the gas and its molar mass (M). The molar mass of the gas is necessary for this step.

[tex]\[ n = \frac{m}{M} \][/tex]

For this calculation, we need to know the molar mass of each gas option. The molar masses are approximately:

- CO2: 44.01 g/mol

- Ar: 39.95 g/mol

- Ne: 20.18 g/mol

- N2: 28.02 g/mol

Let's go through the calculations step by step.

Given values:

- Mass (m) = 27.1 g

- Volume (V) = 50.0 L

- Pressure (P) = 0.500 atm

- Temperature (T) = 449 K

1. Calculate moles (n) using the given mass:

[tex]\[ n = \frac{m}{M} \][/tex]

For CO2: [tex]\( n_{\text{CO2}} = \frac{27.1 \, \text{g}}{44.01 \, \text{g/mol}} \approx 0.616 \, \text{mol} \)[/tex]

For Ar: [tex]\( n_{\text{Ar}} = \frac{27.1 \, \text{g}}{39.95 \, \text{g/mol}} \approx 0.679 \, \text{mol} \)[/tex]

For Ne: [tex]\( n_{\text{Ne}} = \frac{27.1 \, \text{g}}{20.18 \, \text{g/mol}} \approx 1.342 \, \text{mol} \)[/tex]

For N2: [tex]\( n_{\text{N2}} = \frac{27.1 \, \text{g}}{28.02 \, \text{g/mol}} \approx 0.968 \, \text{mol} \)[/tex]

2. Use the ideal gas equation to calculate moles (n):

[tex]\[ n = \frac{PV}{RT} \][/tex]

Substitute values:

[tex]\[ n = \frac{(0.500 \, \text{atm} \times 50.0 \, \text{L})}{(0.0821 \, \text{L}\cdot\text{atm/mol}\cdot\text{K} \times 449 \, \text{K})} \][/tex]

[tex]\[ n \approx \frac{25}{36.8029} \approx 0.681 \, \text{mol} \][/tex]

3. Compare the calculated moles:

- [tex]\( n_{\text{CO2}} \approx 0.616 \, \text{mol} \)[/tex]

- [tex]\( n_{\text{Ar}} \approx 0.679 \, \text{mol} \)[/tex]

- [tex]\( n_{\text{Ne}} \approx 1.342 \, \text{mol} \)[/tex]

- [tex]\( n_{\text{N2}} \approx 0.968 \, \text{mol} \)[/tex]

 

The closest match is [tex]\( n_{\text{Ar}} \approx 0.679 \, \text{mol} \)[/tex], so the gas is likely Argon (Ar). Therefore, option B) Ar is the correct answer.

Complete question :- A real gas is in a regime in which it is accurately described by the ideal gas equation of state. 27.1 g of the gas occupies 50.0 L at a pressure of 0.500 atm and a temperature of 449 K. Identify the gas.

A) CO2

B) Ar

C) Ne

D) N2

A chemist adds of a iron(III) bromide solution to a reaction flask. Calculate the mass in kilograms of iron(III) bromide the chemist has added to the flask. Round your answer to significant digits

Answers

Answer:

0.246 kg

Explanation:

There is some info missing. I think this is the original question.

A chemist adds 370.0mL of a 2.25 M iron(III) bromide (FeBr₃) solution to a reaction flask. Calculate the mass in kilograms of iron(III) bromide the chemist has added to the flask. Be sure your answer has the correct number of significant digits.

We have 370.0 mL of 2.25 M iron(III) bromide (FeBr₃) solution. The moles of FeBr₃ are:

0.3700 L × 2.25 mol/L = 0.833 mol

The molar mass of iron(III) bromide is 295.56 g/mol. The mass corresponding to 0.833 moles is:

0.833 mol × 295.56 g/mol = 246 g

1 kilogram is equal to 1000 grams. Then,

246 g × (1 kg/1000 g) = 0.246 kg

State whether the following statements are true or false (with justification). (a) 1 mol of N2 has more molecules than 1 mol of Ar. (b) 1 mol of N2 has more mass than than 1 mol of Ar. (c) The molar mass of N2 is greater than the molar mass of Ar

Answers

Answer:

A. False.

Every substance contains the same number of molecules i.e 6.02x10^23 molecules

B. False.

Mass conc. = number mole x molar Mass

Mass conc. of 1mole of N2 = 1 x 28 = 28g

Mass conc. of 1mol of Ar = 1 x 40 = 40g

The mass of 1mole of Ar is greater than the mass of 1mole of N2

C. False.

Molar Mass of N2 = 2x14 = 28g/mol

Molar Mass of Ar = 40g/mol

The molar mass of Ar is greater than that of N2.

Explanation:

How many grams of an 8% w/w progesterone gel must be mixed with 1.45 g of a 4% w/w progesterone gel to prepare a 5.5% w/w gel?

Answers

0.87 grams of an 8% w/w progesterone gel must be mixed with 1.45 g of a 4% w/w progesterone gel to prepare a 2.32 g of 5.5% w/w gel

Let x represent the number of grams of an 8% w/w progesterone gel must be mixed with 1.45 g of a 4% w/w progesterone gel to prepare a (x + 1.45)g of 5.5% w/w gel

Hence:

(x * 8%) + (1.45 * 4%) = (x + 1.45) * 5.5%

0.08x + 0.058 = 0.055x + 0.07975

0.025x = 0.02175

x = 0.87 g

Find out more at: https://brainly.com/question/21105092

Final answer:

To prepare a 5.5% w/w progesterone gel, you should mix 4.383 g of an 8% progesterone gel with 1.45 g of a 4% progesterone gel.

Explanation:

A weight/weight percent (w/w%) refers to the amount of a substance (in this case, progesterone) contained in a total solution. The equation we want to use here is 'mass of solute/mass of solution = concentration'. We know the concentrations of the individual gels and that of the final gel we want to achieve. We need to find out the amount of 8% gel to mix with 1.45 g of 4% gel to get a 5.5% gel.

This would be solved as follows:

Let's denote the weight of the 8% gel as x. The contribution of progesterone from the 8% gel is 0.08x, and from the 4% gel is 0.04*1.45 = 0.058 g. The total weight of the final gel solution is x+1.45 g. The total amount of progesterone is 0.08x + 0.058 g. To get a 5.5% solution, we set up the equation 0.08x + 0.058 / 1.45 + x = 0.055. Solving for x gives us 4.383 g.

Therefore, the answer is that 4.383 g of an 8% progesterone gel should be mixed with 1.45 g of the 4% gel to obtain a 5.5% gel.

Learn more about concentration calculation here:

https://brainly.com/question/17329736

#SPJ11

The solubility of sodium chloride in water is 35.7 g per 100 ml at 0. What is the maximum amount of sodium chloride that will dissolve in 250 ml of water

Answers

Answer:

89.52 gm

Explanation:

35.7 gm of NaCl , dissolves in 100ml of water.

Then amount of NaCl dissolved in 1 ml water = 35.7/100= 3.75 gm

therefore, sodium chloride dissolved in 250 ml of water

= 3.75×250= 89.25 gm

Final answer:

The maximum amount of sodium chloride that will dissolve in 250 ml of water is 89.25 g.

Explanation:

The solubility of sodium chloride in water is 35.7 g per 100 ml at 0°C. To find the maximum amount of sodium chloride that will dissolve in 250 ml of water, we can set up a proportion using the solubility values:

35.7 g / 100 ml = x g / 250 ml

Cross-multiplying and solving for x, we get:

x = (35.7 g * 250 ml) / 100 ml = 89.25 g

Therefore, the maximum amount of sodium chloride that will dissolve in 250 ml of water is 89.25 g.

Define lower end and upper end of a melting point range. (Select all that apply)
O The lower end is the temp at which liquid first appears.
O The upper end is the temp at which liquid first appears.
O The upper end is the temp at which the last trace of crystals disppears.
O The lower end is the temp at which the last trace of crystals disppears.

Answers

Answer:

The lower end is the temp at which liquid first appearsThe upper end is the temp at which the last trace of crystals disappear

Explanation:

Melting range is one of the properties of solid that can help to identify its purity. It is necessary to note the whole range of temperature through which the transition takes place. The change in this range of melting temperature is indicative of impurity in the sample.

The lower end is the starting temperature at which solid starts to melt while the upper end is the temperature at which the last trace of solid converts to liquid.

Predict the reactants of this chemical reaction. That is, fill in the left side of the chemical equation. Note: you are writing the molecular, and not the net ionic equation.
→ CaCl2(aq) + H20(l)

Answers

Answer:

Ca(OH)₂ and HCl(aq)

Explanation:

We have the products of a reaction, CaCl₂ and H₂O. Since the products are a salt and water, this is likely to be a neutralization reaction. In such a reaction, an acid and a base react to form a salt and water.

The acid provides the anion of the salt. Since the anion is Cl⁻, the acid is HCl(aq).The base provides the cation of the salt. Since the cation is Ca²⁺, the base is Ca(OH)₂(aq).

The complete molecular equation is:

Ca(OH)₂ + 2 HCl(aq) → CaCl₂ + 2 H₂O

A chemist prepares a solution of aluminum sulfate (Al2(SO4) by weighing out 116.0 g of aluminum sulfate into a 450. mL volumetric flask and filing the flask to the mark with water Calculate the concentration in g/dL of the chemist's aluminum sulfate solution. Round your answer to 3 significant digits

Answers

Final answer:

The concentration of the aluminum sulfate solution is calculated to be 25.8 g/dL by dividing the mass of the aluminum sulfate (116.0 g) by the volume of the solution (4.5 dL).

Explanation:

The concentration of a solution is given by the ratio of the mass of the solute to the volume of the solution. In this case, we have 116.0 g of aluminum sulfate dissolved in a solution whose total volume is 450.0 mL. To convert this volume to deciliters (dL), we remember that 1 L = 10 dL and 1 L = 1000 mL. Therefore, the volume of the solution is 450.0 mL * (1 L / 1000 mL) * (10 dL / 1 L) = 4.5 dL. The concentration of aluminum sulfate in the solution is thus 116.0 g / 4.5 dL = 25.8 g/dL.

Learn more about Solution Concentration here:

https://brainly.com/question/34412339

#SPJ3

Consider a compound that is 31.17% C, 6.54% H, and 62.29% O by mass. Assume that we have a 100 g sample of this compound. What are the subscripts in the empirical formula for this compound?

Answers

Answer: the empirical formula is CH3O and the subscripts are 1, 3, 1

Explanation:Please see attachment for explanation

Which of the following represents a propagation step in the monochlorination of methylene chloride (CH2Cl2)?a. CHCl3 + Cl. Right arrow .CCl3 + HCl.b. CHCl2 + Cl2 right arrow CHCl3 + Cl..c. CH2Cl + Cl2 right arrow CH2Cl2 + Cl..d. CHCl2 + Cl. Right arrow CHCl3

Answers

Answer:

B = CHCl2 + Cl2 --> CHCl3 + Cl

Explanation:

Free radical halogenation is a chlorination reaction on Alkane hydrocarbons. This involves the splitting of molecules into radicals/ unstable molecules in the presence of sunlight/ U.V light which ensures bonding of the molecules.

Free radical chlorination is divided into 3 steps which are:

The initiation step

The propagation step

The termination step

So in reference to the question, propagation step involves two steps.

The first step is where the molecule in this case the methylene chloride(CH2Cl2) loses a hydrogen atom and then bond with a chlorine atom radical to give a nethylwnw chloride radical and HCl.

The second step involves the reaction of this methylene chloride got in the first step with chlorine molecule to form trichloride methane and a chlorine radical.

You would find in the attachment the 2 step mechanism.

Final answer:

The propagation steps in the monochlorination of methylene chloride (CH2Cl2) are option b and d. Propagation steps are characterized by the reaction of two radicals to form a non-radical species and a new radical, which will then enter the chain cycle. These steps occur after initiation and before termination in a radical chain reaction.

Explanation:

The question asks which options represent a propagation step in the monochlorination of methylene chloride (CH2Cl2). The correct answer is option b and d. These steps depict the reaction of CHCl2 with Cl2 with chlorine radical (.) or molecular chlorine (Cl2) to generate either CHCl3 and Chlorine radical (.) in option b or CHCl3 in option d, which are required for the propagation process in a halogenation reaction. It is essential to distinguish between initiation, propagation and termination steps in radical chain reactions, like this one, where a hydrogen atom on the methylene chloride is replaced by a chlorine atom.

Propagation steps are the 'middle' steps of these reactions. They are characterized by two radicals reacting to form a non-radical species and a new radical, which re-enters the propagation cycle. Both initiation and termination steps involve either the creation or removal of radicals, respectively. Radical chain reactions, halogenation, and methylene chloride are key concepts for understanding this question.

Learn more about Propagation steps in radical reactions here:

https://brainly.com/question/29731038

#SPJ11

Nitrogen fixation is the
conversion of gaseous nitrogen into an organism friendly form (ammonia (NH4 ). preplanned setting of atmospheric levels of nitrogen at 78% stabilizing elemental nitrogen into a gaseous two-atom molecule (N2) the reduction of nitrate (NO3-) to gaseous nitrogen. the repair of D.N.A. by adding nitrogen to the organism's diet

Answers

Answer:

Nitrogen fixation is the  conversion of gaseous nitrogen into an organism friendly form (ammonia) .

Explanation:

Nitrogen fixation -

It is very important and necessary process by which the nitrogen gas present in the atmosphere gets converted to nitrogen derivatives like ammonia  in the soil , is referred to as the process of nitrogen fixation.  

This occurs due to the reason , that the derivatives of nitrogen are of much more importance than the molecular nitrogen.  

Biologically the process is done by the rhizobium bacteria .

Hence ,

From the question,

The correct option is a.

Ammonium perchlorate is a powerful solid rocket fuel, used in the Space Shuttle boosters. It decomposes into nitrogen gas, chlorine gas, oxygen gas and water vapor, releasing a great deal of energy. Calculate the moles of ammonium perchlorate needed to produce of water. Be sure your answer has a unit symbol, if necessary, and round it to significant digits.

Answers

Final answer:

To calculate the moles of ammonium perchlorate needed to produce a certain amount of water, use the balanced chemical equation and the mole ratio between ammonium perchlorate and water.

Explanation:

To calculate the moles of ammonium perchlorate needed to produce a certain amount of water, we need to use the balanced chemical equation. From the equation 10Al(s) + 6NH4C1O4(s) → 4Al2O3 (s) + 2AlCl3 (s) + 12H₂O(g) + 3N2 (8), we can see that for every mole of NH4C1O4, 12 moles of H₂O are produced. Therefore, the moles of ammonium perchlorate needed can be calculated by multiplying the given moles of water by the ratio of moles of NH4C1O4 to moles of water, which in this case is 6.

Calculate the mass of butane needed to produce 59.8 g of carbon dioxide. Express your answer to three digits and include the appropriate units.

Answers

Answer:

We need 19.8 grams of butane

Explanation:

Step 1: Data given

Mass of CO2 produced = 59.8 grams

Molar mass CO2 = 44.01 g/mol

Molar mass butane =     58.12 g/mol

Step 2: The balanced equation

2 C4H10 + 13 O2 → 8 CO2 + 10 H2O

Step 3: Caclulate moles CO2

Moles CO2 = mass CO2 / Molar mass CO2

Moles CO2 = 59.8 grams / 44.01 g/mol

Moles CO2 = 1.36 moles

Step 4: Calculate moles butane

For 2 moles butane we need 13 moles O2 to produce 8 moles CO2 and 10 moles H2O

For 1.36 moles CO2 we need 1.36/4 = 0.34 moles butane

Step 5: Calculate mass butane

Mass butane = moles butane * molar mass butane

Mass butane = 0.34 moles * 58.12 g/mol

Mass butane = 19.76 grams ≈ 19.8 grams

We need 19.8 grams of butane

Element "Z" has 2 naturally occurring isotopes with the following masses and natural abundances:

a. Z-45 44.8776 amu 32.88%
b. Z-47 46.9443 amu 67.12%
c. Calculate the atomic mass of Z.

Answers

Answer: the atomic Mass of Z is 46.26

Explanation:Please see attachment for explanation

Draw a structure for a compound that meets the following description: An optically active compound, C5H10O with an IR absorption at 1730 cm-1.

Answers

Question: A optically active compound, C5H10O, exhibits IR absorption at 1730 cm-1.

Its carbon NMR shifts are given below. The number of hydrogen's at each carbon, determined by DEPT, is given in parentheses after the chemical shift.

13C NMR: δ 22.6 (3), 23.6 (1), 52.8 (2), 202.4 (1)

Draw the structure of this compound in the window below

Explanation:

3-methylbutanal is a butanal substituted by the methyl group at the 3rd position. It is a volatile constituent in the olive. Also, it is used as a flavoring agent and a plant metabolite, it is also a Saccharomyces cerevisiae metabolite. It is also called as the Isovaleraldehyde organic compound. The liquid is colorless at STP, and also found in very low concentrations. It is also seen to be produced commercially for different use. Mostly used compound reagent in the preparation of pharmaceuticals and pesticides.

An ideal gas, initially at 30°C and 100 kPa, undergoes the following cyclic processes in a closed system: (a) In mechanically reversible processes, it is first compressed adiabatically to 500 kPa, then cooled at a constant pressure of 500 kPa to 30°C, and finally expanded isothermally to its original state.

Answers

Answer:

a) compressed adiabatically:

T2 = 576.8 K

ΔU = 3422 J/mol

b) cooled at P contant to 30°C:

Q = - 5965.04 J/mol

c) expanded isotermally to P=100 KPa:

W = - 4054.403 J

Explanation:

ideal gas in a mechanically reversible process:

∴ T1 = 30°C = 303 K

∴ P1 = 100 KPa

a) compressed adiabatically to 500 KPa:

ΔU = Q + W      ∴ Q = 0

⇒ ΔU = W = CvΔT.....(1)

∴ Cv = (3/2)R = 12.5 J/K.mol

∴ W = - PδV........(2)

(1) = (2):

⇒ [(R+Cv)/R] Ln (T2/T1) = Ln (P2/P1)

∴ R+Cv/R = 5/2

⇒ (5/2) Ln(T2/T1) = 1.6094

⇒ LnT2 - LnT1 = 0.64376

⇒ LnT2 = 0.64376 + 5.7137 = 6.3575

⇒ T2 = 576.8 K

⇒ ΔU = W = (12.5 J/K.mol)(576.8 - 303 ) = 3422 J/mol

b)n cooled at constant P = 500KPa to 30°C:

∴ T2 = 303 K

∴ T1 = 576.8 K

∴ ΔU = Q + W

⇒ Q = CpΔT

∴ Cp = (5/2)R = 20.8 J/K.mol

⇒ Q = (20.8 J/K.mol)(303 - 576.8)

⇒ Q = - 5695.04 J/mol

c) expanded isothermally a P=100 KPa

∴ ΔU = 0

∴ T = 303 K

∴ P1 = 500 KPa

∴ P2 = 100 KPa

∴ W = nRT Ln(P2/P1)......assuming n = 1 mol

⇒ W = (1 mol)(8.314 J/K,mol)(303 K) Ln(100/500)

⇒ W = - 4054.403 J

Final answer:

This student's question concerns physics and thermodynamic cycles. It describes an ideal gas's behavior when it undergoes adiabatic compression, isobaric cooling, and isothermal expansion in a closed system.

Explanation:

Let's break these down:

Adiabatic process: In this method, the gas is compressed in such a way that no heat is exchanged with its surroundings. The gas is compressed, raising its pressure and temperature. Isobaric process: During this constant pressure cooling process, as the gas cools, its volume decreases but the pressure stays the same.Isothermal process: In this part, the gas expands and returns to its original state while maintaining a constant temperature.

In the entire cycle, the work done by the gas or on the gas depends on the path the gas follows during each process.

Learn more about thermodynamic cycles here:

https://brainly.com/question/35546325

#SPJ3

Which of the following would be expected to form hydrogen bonds with water? Choose all that apply.

(A) methylamine
(B) N-methylpropanamide
(C) acetaldehyde
(D) cyclopentane
(E) None of the Above

Answers

Answer: C

Explanation:

N-methylpropanamide and methylamine are the compounds that posses hydrogen bonds.

Hydrogen bonds are formed when hydrogen is covalently bonded to a highly electronegative atom. Hydrogen bonds are weaker than covalent bonds but they significantly impact on the chemistry of the molecules in which they occur.

Primary, secondary and tertiary amines all form hydrogen bonds. The compounds that has hydrogen bonds are;

methylamine N-methylpropanamide

Learn more: https://brainly.com/question/7558603

At 298 K, the Henry's law constant for oxygen is 0.00130 M/atm. Air is 21.0% oxygen.
1. At 298 K, what is the solubility of oxygen in water exposed to air at 1.00 atm?

Answers

Answer:

0.000273 M

Explanation:

Henry's states that at constant temperature the amount of a gas that dissolves in a liquid is directly proportional to the partial pressure in of that gas in equilibrium with that liquid.

Pressure of Oxygen = mole fraction of Oxygen × 1.00 atm

Mole fraction Oxygen = 21/100 × 1.00atm = 0.21 atm

Molar solubility of Oxygen = KH × PO2 = 0.0013 × 0.21 = 0.000273 M

The amount of a gas that dissolves in a liquid is proportional to the partial pressure of the gas above the liquid. Solubility of oxygen in water exposed to air at 1.00 atm is 0.000273 M.  

Henry's Law:

It states that at constant temperature the amount of a gas that dissolves in a liquid is proportional to the partial pressure of the gas above the liquid.

C = k P

Where,

C = concentration of a dissolved gas

k = Henry's Law constant = 0.0013 M/atm.

P = partial pressure of the gas = [tex]\bold {\dfrac {21}{100} \times 1.00\ atm = 0.21\ atm}[/tex]

 

Put the values in the formula,

[tex]\bold {C = 0.0013 \times 0.21 = 0.000273\ M }[/tex]

Therefore, solubility of oxygen in water exposed to air at 1.00 atm is 0.000273 M.

To know more about Henry's Law,

https://brainly.com/question/18987224

An igneous rock that contains quartz and potassium feldspar would have a mineralogic content placing it in the range of __________.

Answers

Answer:

The answer is granitic or felsic rocks

Explanation:

Felsic is a term used in geology applied to silicate minerals, magmas and rocks, rich in light elements such as silicon, oxygen, aluminum, sodium and potassium (describs igneous rocks that are relatively rich in elements that form feldspar and quartz). This term is a combination of the words "feldspar" and "silica". Felsic minerals are generally light in color and have a specific gravity of less than 3. The most common felsic minerals are quartz, muscovite, alkaline feldspars (eg orthoclase) and feldspars from the plagioclase series. The most common felsic rock is granite. At the opposite end of the rock spectrum are mafic (rich in iron) and ultramafic (rich in magnesium) rocks and minerals.

Final answer:

An igneous rock with quartz and potassium feldspar has a felsic mineralogic content, rich in silica and light-colored minerals, and typically has a lighter color due to low ferromagnesian content.

Explanation:

An igneous rock containing quartz and potassium feldspar would most likely be classified within the range of felsic igneous rocks. Felsic rocks are rich in silica and characteristically contain light-colored minerals such as quartz and feldspar. Specifically, the presence of quartz, a pure silica mineral, and potassium feldspar, which includes silica along with aluminum and potassium, indicates a felsic composition.

These rocks generally have high silica content (65-75%), and they also commonly include minor amounts of mafic minerals such as biotite mica and amphibole.

Felsic igneous rocks can be further understood by their mineral proportions which can include around 25% K-feldspar and 30% quartz, with additional albitic plagioclase and biotite or amphibole. Their color is generally lighter due to the predominance of light-colored minerals and their low content of ferromagnesian components like iron and magnesium.

When 10.51 g CaCO3 reacts with excess hydrochloric acid, as below, 3.29 g of CO2 is produced.
CaCO3(s) + HCl(aq) → CO2(g) + CaCl2(aq) + H2O(l)
What is the percent yield of CO2?

Answers

Answer:

71.2 %

Explanation:

This is a problem we can solve by making use of the stoichiometry of the balanced  ( very important !) chemical reaction:

CaCO3(s) + 2HCl(aq) → CO2(g) + CaCl2(aq) + H2O(l)

Now  determine  the moles of CaCO3 and CO2 and perform the calculations

# mol CaCO3 = 10.51 g / 100.09 g/mol = 0.105 mol

From the stoichiometry of the reaction, we know 1 mol CO2 is produced per mol of CaCO3, thus whe should expect

0.105 mol CaCO3 x 1 mol CO2/ mol CaCO3 = 0.105 mol

lets compare this theoretical value with the one obtained:

mol CO2 obtained = 3.29 g / 44 g/mol = 0.075

Therefore our yield is

(0.075mol / 0.105 mol) x 100 = 71.2 %

2. At the molecular level, speculate on some ways that the environment might have an influence on DNA and its packaging

Answers

Answer: Histones, DNA methylation

Explanation:

The double stranded DNA are wrapped twice around a histone protein and depending on how loosely or tightly DNA are wounded around histion, DNA can be either read or not. The nature of histones have the ability to control which sections of DNA get copied and expressed. Histone synthesis stops when DNA synthesis ceases, histone are modified by acetylation, methylation ADP--ribosylation and phosphorylation. It has shown that environmental factors such as diet can have an effect on protein structure. Alteration of the histone protein structure can affect the expression of some genes.

DNA methylation can also inhibit the expression of some genes, which can be caused by environmental factit's.

Final answer:

Environmental factors can influence DNA and its packaging at the molecular level through epigenetic regulation and histone modification.

Explanation:

Environmental factors can have an influence on DNA and its packaging at the molecular level. One way is through epigenetic regulation, where environmental factors can cause chemical modifications to DNA and histone proteins. For example, certain environmental factors can lead to the addition of methyl groups to specific cytosine nucleotides in DNA, which can affect gene expression. Another way is through the modification of histone proteins, such as acetylation and deacetylation, which can influence the packaging state of DNA and its accessibility for transcription.

Many drugs are sold as their hydrochloric salts (R2NH2+Cl−), formed by reaction of an amine (R2NH) with HCl. Part 1 out of 4 Draw the major organic product formed from the formation of acebutolol with HCl. Acebutolol is a β blocker used to treat high blood pressure. Omit any inorganic counterions.Figure:a structure of Acebutolol is shown in the figure

Answers

Answer:

Hi

Acebutolol hydrochloride is the form of the hydrochloride salt of acebutolol, a synthetic derivative of butyranide with a hypotensive and antiarrhythmic activity. Acebutolol acts as a cardioselective beta-adrenergic antagonist with very little effect on bronchial receptors, having intrinsic sympathomimetic properties. Acebutolol is used in ventricular arrhythmias. Other indications may include hypertension, alone or in combination with other drugs. The salt scheme is found in the attached file.

Explanation:

Rank the following solutes in order of increasing entropy when 0.0100 moles of each dissolve in 1.00 liter of water.(a) NaBr(b) Cr(NO3)3(c) CaCl2(d) C6H12O6

Answers

Answer:

The rank is: C₆H₁₂O₆ < NaBr < CaCl₂ < Cr(NO₃)₃

Explanation:

To take into account, the greater the number of ions that are produced in a solution, the entropy will be greater. In this case, we have that the number of ions of each compound is:

Cr(NO₃)₃ → Cr³⁺ + 3NO⁻₃ (it has 4 ions)

CaCl₂ → Ca²⁺ + 2Cl⁻ (it has 3 ions)

NaBr → Na⁺ + Br⁻ (it has 2 ions)

C₆H₁₂O₆ (does not ionize)

Predict the major product obtained upon radical bromination of t-butylcyclohexane.

3-bromo-1-tert-butylcyclohexane
4-bromo-1-tert-butylcyclohexane
2-bromo-1-tert-butylcyclohexane
1-bromo-1-tert-butylcyclohexane
1-bromo-1,1-dimethylethylcyclohexane

Answers

Answer:

1-bromo-1-tert-butylcyclohexane

Explanation:

The parent compound comprises of a cyclohexane to with a tertiary butyl carbon attached. We have been told that the reaction occurs by radical mechanism hence we must recall the order of stability of radicals: tertiary>a secondary> a primary. This implies that the reaction will occur at carbon 1 of the cyclohexane which is a tertiary carbon atom. This leads to the formation of a radical at the 1-position and bromination at that position hence the answer chosen above.

The radical bromination of t-butylcyclohexane favors the formation of 1-bromo-1-tert-butylcyclohexane due to the stability of the tertiary radical intermediate formed during the reaction.

The major product obtained upon radical bromination of t-butylcyclohexane will most likely be 1-bromo-1-tert-butylcyclohexane. This is because radical bromination is highly selective for the most stable radical intermediate, which forms at the position with the greatest number of accessible hydrogens. In the case of t-butylcyclohexane, the tertiary carbon adjacent to the t-butyl group will form the most stable tertiary radical upon abstraction of a hydrogen, which leads to substitution by a bromine atom to form the final product.

How many simple distillation columns are required to purify a stream containing five components into five 'pure"products? Sketch all possible sequences.

Answers

Answer: one simple distillation column is required to separate the stream into five pure products. With four different flat bottom flask, for collection of the distilled products

Explanation: simple distillation works with the difference in boiling points of the liquid to be separated. For the separation of five different constituent to be possible, we have to know the boiling points of the constituents.

For your understanding, let's define constituents in the liquid to be A, B, C, D, E. And the boiling points increases respectively. Start by heating the liquid to the boiling point of A to extract A. After a while check if the constituents A is still dropping in the flat bottom flask, if it has stopped dropping, it simply means that we have extracted all A constituents in the liquid, label the Flask A. Get another flask to extract constituent B.

Heat the mixture to the boiling point of B, after a while check if constituent B is still dropping in the flat bottom flask, if it has stopped dropping,it means that we have extracted all B constituent in the liquid, label the Flask B. Get another flask for C.

Repeat the same process for C and D.

After Extracting D we don't need to distillate E because we already have a pure form of E inside to the conical flask.

SEE PICTURE TO UNDERSTAND WHAT A SIMPLE DISTILLATION LOOKS LIKE

Cryolite, Na3AlF6(s), an ore used in the production of aluminum, can be synthesized using aluminum oxide. Balance the equation for the synthesis of cryolite.
Equation: Al2O3(s) + NaOH(l) + HF(g) --------> Na3AlF6 + H2O(g)
1. If 15.8 kg of Al2O3(s), 55.4 kg of NaOH(l), and 55.4 kg of HF(g) react completely, how many kilograms of cryolite will be produced?

Answers

Answer: The mass of cryolite produced is 65.06 kg

Explanation:

To calculate the number of moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]      .....(1)

For aluminium oxide:

Given mass of aluminium oxide = 15.8 kg = 15800 g     (Conversion factor:  1 kg = 1000 g)

Molar mass of aluminium oxide = 102 g/mol

Putting values in equation 1, we get:

[tex]\text{Moles of aluminium oxide}=\frac{15800g}{102g/mol}=154.9mol[/tex]

For the given chemical reaction:

[tex]Al_2O_3(s)+6NaOH(l)+12HF(g)\rightarrow 2Na_3AlF_6+9H_2O(g)[/tex]

As all the reactants are getting completely utilized. So, the amount of product can be determined by any 1 of the reactant.

By Stoichiometry of the reaction:

1 mole of aluminium oxide produces 2 moles of cryolite

So, 154.9 moles of aluminium oxide produces = [tex]\frac{2}{1}\times 154.9=309.8mol[/tex] of cryolite

Now, calculating the mass of cryolite by using equation 1, we get:

Moles of cryolite = 309.8 moles

Molar mass of cryolite = 210 g/mol

Putting values in equation 1, we get:

[tex]309.8mol=\frac{\text{Mass of cryolite}}{210g/mol}\\\\\text{Mass of cryolite}=(309.8mol\times 210g/mol)=65058g=65.06kg[/tex]

Hence, the mass of cryolite produced is 65.06 kg

A solution is made by mixing 30.0 mL of 0.150 M compound A with 25.0 mL of 0.200 M compound B. At equilibrium, the concentration of C is 0.0454 M. Calculate the equilibrium constant, K, for this reaction.

Answers

Final answer:

To calculate the equilibrium constant, K, for the reaction A(aq) + 2B(aq) ⇒ 2C(aq), we can use the concentrations of A, B, and C at equilibrium. The equilibrium constant (K) for this reaction is approximately 5.07 x 10^-3.

Explanation:

To calculate the equilibrium constant, K, for the reaction A(aq) + 2B(aq) ⇒ 2C(aq), we need to use the concentrations of A, B, and C at equilibrium. Given that the equilibrium concentration of C is 0.0454 M, and the initial concentrations of A and B are 0.150 M and 0.200 M respectively, we can set up an expression for K.

The mathematical expression for the equilibrium constant, Kc, is given by:

Kc = [C]² / ([A] * [B]²)

Substituting the given equilibrium concentration and initial concentrations into the expression, we get:

Kc = (0.0454)² / (0.150 * (0.200)²) = 5.06666667 x 10^-3

Therefore, the equilibrium constant (K) for this reaction is approximately 5.07 x 10^-3.

Benzyl ethyl ether reacts with concentrated aqueous HI to form two initial organic products (A and B). Further reaction of product B with HI produces organic product C. Draw the structures of these three products.

Answers

Answer:

See answer for details

Explanation:

In this case, we have the following substract:

Ph-CH2 - O - CH2CH3

That's the benzyl ethyl ether.

When this compound reacts with a concentrated Solution of HI, as we have an acid medium, we will have an SN1 reaction, where the Hydrogen will attach to the oxygen and the iodine will go to the most stable carbon, in this case, the carbon next to the ring is the most stable (because of the double bond of the ring, charges can be stabilized better this way), so product A will be the benzyl with the iodine and product B, will be the alcohol:

A: Ph - CH2 - I

B: CH3CH2OH

When B reacts again with HI, it's promoting another SN1 reaction, where the OH substract the H from the HI, the OH2+ will go out the molecule, leaving a secondary carbocation (CH2+) and then, the Iodine (I-) can go there via SN1 and the final product would be:

C: CH3CH2I

See picture for mechanism:

Final answer:

The student's question pertains to the reaction of benzyl ethyl ether with concentrated aqueous HI, following an SN1 mechanism. The reaction generates a halogenated product (A) and an alcohol (B), with the alcohol further reacting to form a reduction product (C). Specific structures cannot be provided without more information on the starting compound.

Explanation:

The student is inquiring about the reaction of benzyl ethyl ether with concentrated aqueous HI and the subsequent products. The reaction is characteristic of the SN1 mechanism of ether cleavage, particularly with ethers that have benzylic, allylic, or tertiary alkyl groups. In such reactions, the benzyl or allylic group forms a relatively stable carbocation, leading to the formation of a halogen product (product A), while the ether's other alkyl substituent becomes an alcohol (product B).

Further reaction of product B with HI would lead to the formation of product C, which is typically the reduction of the alcohol to an alkane or a similar process depending on the specific structure of product B. Without the detailed structure of benzyl ethyl ether, we cannot provide the exact structures of the final products A, B, and C.

Collision theory states that the rate of a reaction depends on the number of collisions between molecules or ions, the average energy of the collisions, and their effectiveness. Does the general effect of concentration on reaction rate support the collision theory?

Answers

Explanation:

According to the collision theory the rate of chemical reaction directly proportional to number of reaction between the reactant molecules. More the number of collision between the reactant molecules, more would  be the changes of reaction to occur that reactant converting into product.

Moreover, with an increase in concentration of reactant molecules, the chances of collision between the molecules increase and hence the rate of reaction also increase. Thus, we can say higher the concentration higher will be the rate of reaction.

As per the Collision theory, the higher the concentration, the faster the response.

The quantity of particles increases as that the concentration of those same reacting species increases. Whenever there are more particles, there seems to be a greater chance that they will collide, and therefore more collisions result in an improvement or enhancement throughout the response rate.

Thus the above response about the theory is correct.

Learn more about Collision theory here:

https://brainly.com/question/24110608

Other Questions
how does word choice and voice affect the document the virginia plan A cart is pushed to the right with a force of 15 N while being pulled to the left with a force of 20 N. The net force on the cart is? On your quest to discover early hominins in Africa, you find some geologic strata with fossils that resemble early hominins. You would like to know when these hominins lived; of the following, which would be the best way to proceed with finding an age for these fossils? What can happen if your savings account balance goes below the required minimum daily balance? A charge of 0.80nC is placed at the center of a cube that measures 4.0 m along each edge. What is the electric flux through one face of the cube?. 1. 5 N m2/C2. 90 N m2/C3. 45 N m2/C4. 64 N m2/C5. 23 N m2/C What government agencies provide the representatives to chair the ICD-10-CM Coordination and Maintenance Committee, and what is the committees responsibility? A student needs to prepare 250 mL of a 0.550 M aqueous solution of sucrose, C 12 H 22 O 11 ( aq ) , which is used frequently in biological experiments? Express 40 as a percentage of 200 The following are the number of birth per year per 1,000 population for 20 countries: 34, 24, 10, 15, 22, 15, 17, 22, 10, 17, 25, 32, 15, 20, 31, 18, 37, 12, 15, 18.The mean birth per year per 1,000 population is:A.22.3B.19.5C.22.45D.None of the aboveThe median birth per year per 1,000 population isA.15B.18C.22D.None of the aboveThe mode birth per year per 1,000 population isA.15B.18C.22D.None of the aboveThe range birth per year per 1,000 population isA.15B.18C.28D.None of the above Consider the following yields to maturity on various one-year zero-coupon securities:Security Yield (%)Treasury 4.6AAA corporate 4.8BBB corporate 5.6B Corporate 6.2The credit spread of the BBB corporate bond is closest to:A) 1.0% B) 5.6% C) 0.8% D) 1.6% You were supposed to make an important presentation at work, but you overslept, the bus was late, and you just missed the meeting. If you are able to generate many different ways in which to "undo" this terrible outcome, you will experience ________ emotional reaction. A mineral sample is obtained from a region of the country that has high arsenic contamination. An elemental analysis yields the following elemental composition: Element Atomic Weight (g/mol) Percent Composition Ca 40.078 22.3% As 74.9216 41.6% O 15.9994 35.6% H 1.00794 60%What is the empirical formula of this mineral? A major line of evidence for continental drift is that unusual sequences of rocks, unique fossils, and glacial deposits lined up ______. Which of the following is an advantage of a written constitution?A. A written constitution establishes the different branches of government.OB. A written constitution gives the people sovereignty.OC. A written constitution defines the powers of the government.OD. A written constitution tells the government how to make laws for the state. Consider the difference of the thirteenth and fourteenth amendment John Maynard Keynes and his followers argued that the Great Depression was primarily the result of:_________ We run a linear regression and the slope estimate is 0.5 with estimated standard error of 0.2. What is the largest value of for which we would NOT reject the null hypothesis that ? Which is a short term effect of nicotine and tobacco use Leaders who have succeeded in mitigating the adverse effects of stress on their service members have done so by fostering and encouraging ________________ by reducing environmental and operational stress where possible, normalizing physiological and psychological responses to stressors and encouraging the use of appropriate coping skills Find the number z, if 1 4/11 of z is 45. (FIRST PERSON TO ANSWER CORRECTLY GETS 5 STARS AND A THANKS.) Steam Workshop Downloader