Answer:
P ( X > 1800) = 0.1734
Step-by-step explanation:
Given:-
- The mean, u = 1497
- The standard deviation, s.d = 322
Find:-
P(X>1800)
Solution:-
- We will denote a random variable X that follows a normal distribution for the SAT scores in 2014 with parameters mean (u) and standard deviation (s.d) as follows:
X ~ N ( 1497 , 322 )
- The following probability can be calculated by first computing the Z-score value:
P ( X < x ) = P ( X < Z )
Where,
Z = ( x - u ) / s.d
- P(X > 1800) have the corresponding Z-score value:
Z = ( 1800 - 1497 ) / 322
Z = 0.941
- Hence, using Z-table:
P ( X > 1800) = 1 - P ( Z < 0.9471 )
P ( X > 1800) = 1 - 0.8266
P ( X > 1800) = 0.1734
The probability that a randomly selected person scored above 1800 on the SAT is approximately 17.36%, after calculating the corresponding z-score and looking up the probability in the Standard Normal Distribution table.
Explanation:To find P(X>1800), we first need to calculate the z-score for an SAT score of 1800. The z-score is computed as:
z = (X - μ) / σ
Where X is the SAT score, μ is the mean, and σ is the standard deviation. Given μ = 1497 and σ = 322, we have:
z = (1800 - 1497) / 322 = 303 / 322 ≈ 0.941
Once we have the z-score, we can use the Standard Normal Distribution table to find P(Z > 0.941). We find that P(Z > 0.941) ≈ 0.1736. Thus, the probability that a randomly selected college-bound senior has an SAT score above 1800 is approximately 0.1736 or 17.36%.
Lauren coordinates a construction projects for a cement company. A government project requires constructing two rectangular concrete slabs of dimensions 24× 24× 1 feet. Additionally, the company sends a 20% surplus of concrete to ensure the job can be completed. If a cement truck can carry a maximum of 8 cubic yards of cement, what's the fewest number of trucks that Lauren should send? A)1 B)2 C)3 D)4 E)5lar
The fewest number of trucks Lauren should send is D) 4 trucks.
Step-by-step explanation:
Step 1:
The rectangular slab's dimensions are [tex]24 \times 24 \times 1[/tex] feet. Each truck can carry 8 cubic yards of cement.
First, we need to determine the volume of the slabs in yards. 1 foot = 0.333 yards. So 24 feet = [tex]24\times 0.3333[/tex] = 8 yards.
The volume of the slab = [tex]8 \times 8 \times 0.3333[/tex] = 21.3312 cubic yards.
Step 2:
The company sends a surplus of 20% to make sure the job can be completed. So the total cement sent is the required volume and an extra 20%.
The total cement sent = The required cement + 20%.
= 21.3312 + 20% = 25.597 cubic yards.
Step 3:
So to find the number of trucks needed, we divide the cement sent by the load each truck can carry. Each truck can carry 8 cubic yards of cement. So
The number of trucks needed = [tex]\frac{therequiredload}{load per truck} = \frac{25.597}{8} = 3.199625.[/tex]
If 3.199 trucks are needed, it means 4 trucks are needed which is option D.
________________shapes are radical alterations of visible reality simplifications, exaggerations, or transmutation that sometimes bear little resemblance to the original entities from which they were derived.1. geomatric2. organic3. contour4. abstract5. amorphous
Answer:4. Abstract.
Step-by-step explanation: Abstraction is a term used to describe a departure from reality in the expressions of image in art.
This kind of departure from accurate and actual representation can be slight,can be partial, or complete or total.
Abstract shapes are shapes used in depicting the virtual images of certain objects or people,it usually does not actually display reality or, it only shows the radical altering of the visual realities of different things.
PLEASE HELP
Find the range of the function f(n) = 5n −4 for the domain {−3, 0, 4}. List the values in order from least to greatest and use a comma to separate each value..
range: { }
The range of the function is [tex]\{-19,-4,16\}[/tex]
Explanation:
The function is [tex]f(n)=5n-4[/tex]
The domain of the function is [tex]\{-3,0,4\}[/tex]
We need to find the range of the function.
The range can be determined by substituting the values of domain in the function.
Thus, the range of the function when the domain is -3 is given by
[tex]f(-3)=5(-3)-4[/tex]
[tex]=-15-4[/tex]
[tex]=-19[/tex]
Thus, the range is -19 when [tex]n=-3[/tex]
The range of the function when the domain is 0 is given by
[tex]f(0)=5(0)-4[/tex]
[tex]=0-4[/tex]
[tex]=-4[/tex]
Thus, the range is -4 when [tex]n=0[/tex]
The range of the function when the domain is 4 is given by
[tex]f(4)=5(4)-4[/tex]
[tex]=20-4[/tex]
[tex]=16[/tex]
Thus, the range is 16 when [tex]n=4[/tex]
Thus, the range of the function is [tex]\{-19,-4,16\}[/tex] when their corresponding domain is [tex]\{-3,0,4\}[/tex]
Arranging the range in order from least to greatest is given by
[tex]\{-19,-4,16\}[/tex]
Hence, the range of the function is [tex]\{-19,-4,16\}[/tex]
Why does math get so hard that you have an answer but you forget what your answer was because it was so so so so so so so so so so so so so so hard.Why is it hard?
Answer:
because if u write down the steps that u took to get the answer it wont be sosososososososo hard
Step-by-step explanation:
What is the length of the missing side FP? Round answer to the nearest tenth.
Answer:
Step-by-step explanation:
Considering the given triangle KFP, to determine FP, we would apply the sine rule. It is expressed as
a/SinA = b/SinB = c/SinC
Where a, b and c are the length of each side of the triangle and angle A, Angle B and angle C are the corresponding angles of the triangle. Likening it to the given triangle, the expression becomes
FP/SinK = FK/SinP = KP/SinF
Therefore
FP/Sin 49 = 66/Sin 85
Cross multiplying, it becomes
FPSin85 = 66Sin49
0.996FP = 45 × 0.7547
0.996FP = 33.9615
FP = 33.9615/0.996
FP = 34.1
Dan and Carl share a 18-ounce box of cereal. By the end of the week, Dan has eaten 1 6 of the box, and Carl has eaten 2 3 of the box of cereal. How many ounces are left in the box?
Answer: 3 ounces of cereals was left in the box.
Step-by-step explanation:
Dan and Carl share a 18-ounce box of cereal. By the end of the week, Dan has eaten 1/6 of the box. This means that the amount of cereals that Dan ate is
1/6 × 18 = 3 ounces of cereals
Also, by the end of the week, Carl has eaten 2/3 of the box of cereal. This means that the amount of cereals that Carl ate is
2/3 × 18 = 12 ounces of cereals
The total amount of cereals that they ate is 12 + 3 = 15 ounces
Therefore, the amount of cereals left in the box is
18 - 15 = 3 ounces
A purchaser paid $1,539.13 for a computer system that originally cost $1,215.91. If the markup was 21% of the $1,539.13 selling price, then what is the percent markup based on cost?
Answer:
$1272.008264
Step-by-step explanation:
If the mark-up was 21%, then the final price is 121% of the original price. Simply divide $1,539.13 by 1.21 to get the original price of $1272.008264
The percent markup based on cost is calculated by finding the amount of the markup, dividing it by the original cost and multiplying by 100. In this case, the markup was 21% of the sale price, or $323.12. This correlates to a 26.56% markup based on the original cost ($1,215.91).
Explanation:The percent markup based on cost can be calculated by first determining the amount of the markup, then dividing the markup by the original cost of the item, and finally multiplying the result by 100 to express it as a percentage. According to the question, the markup is 21% of the $1,539.13 selling price. Therefore, to calculate the markup we multiply $1,539.13 by 0.21 which results in $323.12. This is the amount by which the original price was increased to get the selling price. To calculate the percent markup based on cost, we divide the markup amount ($323.12) by the original cost of the item ($1,215.91) and then multiply by 100. This gives us a percentage markup of approximately 26.56%. So, the percent markup based on cost is 26.56%.
Learn more about Percent Markup here:https://brainly.com/question/31776242
#SPJ3
Using the formula A=P(1+r)^t calculate the value of an initial investment of $4,500 after 10 years at 4% interest.
The solution is [tex]\$ 6661[/tex]
Explanation:
The initial investment is $4500
The time taken is 10 years.
The rate of interest is 4%
We shall determine the value of A using the formula [tex]A=P(1+r)^t[/tex]
where P is the initial investment,
r is the rate of interest and
t is time
Let us substitute the values [tex]P=4500[/tex] , [tex]t=10[/tex] and [tex]r=4 \%[/tex] in the formula [tex]A=P(1+r)^t[/tex]
Thus, we have,
[tex]A=4500(1+0.04)^{10}[/tex]
Adding the values within the bracket, we have,
[tex]A=4500(1.04)^{10}[/tex]
Simplifying, we get,
[tex]A=4500(1.4802)[/tex]
Multiplying, we have,
[tex]A=6661[/tex]
Thus, the value is $6661