The distance from the earth to the sun is about 1.50×1011 m . Find the total power radiated by the sun.

Answers

Answer 1

Answer:

Power, [tex]P=3.93\times 10^{26}\ W[/tex]

Explanation:

Given that,

The distance from the earth to the sun is about, [tex]d=1.5\times 10^{11}\ m[/tex]

let us assume that the average intensity of solar radiation at the upper atmosphere of earth,. [tex]I=1390\ W/m^2[/tex]

We need to find the total power radiated by the sun. The intensity is defined as the total power divided by the area of a sphere of radius equal to the average distance between the earth and the sun. It is given by :

[tex]I=\dfrac{P}{4\pi r^2}[/tex]

P is total power

[tex]P=4\pi r^2\times I[/tex]

[tex]P=3.93\times 10^{26}\ W[/tex]

So, the total power radiated by the sun is [tex]P=3.93\times 10^{26}\ W[/tex]. Hence, this is the required solution.

Answer 2

Final answer:

The total power radiated by the Sun is calculated using the area of the Sun and the power radiated per square meter at its surface. The Sun's total power output is found to be 3.82×1026 W. This value is important for understanding the energy Earth receives from the Sun, known as the solar constant (1360 W/m²).

Explanation:

The distance from the Earth to the Sun is about 1.50×1011 meters. The total power radiated by the Sun can be determined by using the following physics principle: The Sun, behaving as a perfect black body with an emissivity of exactly 1, radiates power uniformly across its surface area. The power radiated per square meter on the Sun's surface is found to be 6.3×107 W/m². The sun's radius is approximately 7.00×108 meters. Using the formula Power = Area × Intensity, we calculate the Sun's total power output.

The area of a sphere is given by 4πR2, where R is the radius of the sphere. Therefore, the total power output of the Sun is 4πR2σT4, which calculates to 3.82×1026 W. This immense amount of power is what we refer to as the solar luminosity.

At the distance of the Earth, this power is spread over a spherical area with a radius equal to the Earth-Sun distance. We can find the power per square meter at this distance, known as the solar constant, which is approximately 1360 W/m².


Related Questions

What is the boiling point of an aqueous solution that freezes at -2.05 degrees C? Kfp = 1.86 K/m and Kbp = 0.512 K/m. Enter your answer using 2 decimal places!!!!

Answers

To solve this problem we will apply the concepts of Boiling Point elevation and Freezing Point Depression. The mathematical expression that allows us to find the temperature range in which these phenomena occur is given by

Boiling Point Elevation

[tex]\Delta T_b = K_b m[/tex]

Here,

[tex]K_b[/tex] = Constant ( Different for each solvent)

m = Molality

Freezing Point Depression

[tex]\Delta T_f = K_f m[/tex]

Here,

[tex]K_f =[/tex] Constant ( Different for each solvent)

m = Molality

According to the statement we have that

[tex]\Delta T_f = T_0 -T_f = 0-(-2.05)[/tex]

[tex]\Delta T_f = 2.05\°C[/tex]

From the two previous relation we can find the ratio between them, therefore

[tex]\frac{\Delta T_b}{\Delta T_f} = \frac{K_b}{K_f}[/tex]

[tex]\frac{\Delta T_b}{\Delta T_f} = \frac{0.512}{1.86}[/tex]

[tex]\frac{\Delta T_b}{\Delta T_f} = 0.275[/tex]

We already know the change in the freezing point, then

[tex]\Delta T_b = 0.275 (\Delta T_f)[/tex]

[tex]\Delta T_b = 0.275 (2.05)[/tex]

[tex]\Delta T_b = 0.5643\°C[/tex]

The temperature difference in the boiling point is 100°C (Aqueous solution), therefore

[tex]T_b -100 = 0.5643[/tex]

[tex]T_b = 100.56\°C[/tex]

Therefore the boiling point of an aqueous solution is [tex]100.56\°C[/tex]

Final answer:

The boiling point of the aqueous solution is 99.44 °C.

Explanation:

The boiling point of an aqueous solution can be determined using the formula:

Tbp = Tbpsolvent + (Kbp * m)

where:

Tbp is the boiling point of the solution

Tbpsolvent is the boiling point of the pure solvent

Kbp is the ebullioscopic constant for the solvent

m is the molality of the solution

In this case, we are given that the freezing point of the solution is -2.05 degrees C. We can use the formula for freezing point depression to find the molality:

AT = Kf * m

Rearranging the formula, we can solve for m:

m = AT / Kf

Substituting the given values:

m = (-2.05 °C) / (1.86 °C kg.mol-¹)

Rounding to 2 decimal places:

m = -1.10 mol/kg

Now, we can use the formula for boiling point elevation to find the boiling point:

Tbp = Tbpsolvent + (Kbp * m)

Substituting the given values:

Tbp = 100.00 °C + (0.512 °C/m * -1.10 mol/kg)

Calculating:

Tbp = 100.00 °C - 0.56 °C = 99.44 °C

Therefore, the boiling point of the aqueous solution is 99.44 °C.

A square steel bar has a length of 9.8 ftft and a 2.6 inin by 2.6 inin cross section and is subjected to axial tension. The final length is 9.80554 ftnt . The final side length is 2.59952 in in . What is Poisson's ratio for the material? Express your answer to three significant figures.

Answers

To solve this problem we will apply the concept related to the Poisson ratio for which the longitudinal strains are related, versus the transversal strains.  First we need to calculate the longitudinal strain as follows

[tex]\epsilon_x = \frac{l_f-l_i}{l_i}[/tex]

[tex]\epsilon_x = \frac{(9.80554)-(9.8)}{9.8}[/tex]

[tex]\epsilon_x = 0.0005653[/tex]

Second we will calculate the lateral strain as follows

[tex]\epsilon_y = \frac{a_f-a_i}{a_i}[/tex]

[tex]\epsilon_y = \frac{2.59952-2.6}{2.6}[/tex]

[tex]\epsilon_y = -0.0001846153[/tex]

The Poisson's ratio is the relation between the two previous strain, then,

[tex]\upsilon = -\frac{\epsilon_y}{\epsilon_x}[/tex]

[tex]\upsilon = -\frac{(-0.0001846153)}{0.0005653}[/tex]

[tex]\upsilon = 0.3265[/tex]

Therefore the Poisson's ratio for the material is 0.3265

A cannon ball is shot straight upward with a velocity of 72.50 m/s. How high is the cannon ball above the ground 3.30 seconds after it is fired? (Neglect air resistance.)

Answers

Answer:

Explanation:

Given

Cannon is fired with a velocity of [tex]u=72.50\ m/s[/tex]

Using Equation of motion

[tex]y=ut+\frac{1}{2}at^2[/tex]

where

[tex]y=displacement[/tex]

[tex]u=initial\ velocity[/tex]

[tex]a=acceleration[/tex]

[tex]t=time[/tex]

after time [tex]t=3.3 s[/tex]

[tex]y=72.50\times 3.3-\frac{1}{2}\times 9.8\times (3.3)^2[/tex]

[tex]y=239.25-53.36[/tex]

[tex]y=185.89\ m[/tex]

So after 3.3 s cannon ball is at a height of 185.89 m

Suppose the average mass of each of 20,000 asteroids in the solar system is 1017 kg. Compare the total mass of these asteroids to the mass of Earth. Assuming a spherical shape and a density of 3000 kg/m3, estimate the diameter of an asteroid having this average mass.

Answers

Answer:

The mass of the asteroids is 0.000334896182184 times the mass of the Earth.

39929.4542466 m

Explanation:

Total mass of the asteroids

[tex]m_a20000\times 10^{17}=2\times 10^{21}\ kg[/tex]

[tex]m_e[/tex] = Mass of Earth = [tex]5.972\times 10^{24}\ kg[/tex]

The ratio is

[tex]\dfrac{m_a}{m_e}=\dfrac{2\times 10^{21}}{5.972\times 10^{24}}\\\Rightarrow \dfrac{m_a}{m_e}=0.000334896182184[/tex]

The mass of the asteroids is 0.000334896182184 times the mass of the Earth.

Volume is given by

[tex]V=\dfrac{m}{\rho}\\\Rightarrow \dfrac{4\pi}{3\times 8} d^3=\dfrac{m}{\rho}\\\Rightarrow d^3=\dfrac{3\times 8}{4\pi}\dfrac{m}{\rho}\\\Rightarrow d=(\dfrac{3\times 8}{4\pi}\dfrac{m}{\rho})^{\dfrac{1}{3}}\\\Rightarrow d=(\dfrac{3\times 8}{4\pi}\dfrac{10^{17}}{3000})^{\dfrac{1}{3}}\\\Rightarrow d=39929.4542466\ m[/tex]

The diameter is 39929.4542466 m

A hydraulic turbine is used to generate power by using the water in a dam. The elevation difference between the free surfaces upstream and downstream of the dam is 131 m. The water is supplied to the turbine at a rate of 201 kg/s. If the shaft power output from the turbine is 234 kW, the efficiency of the turbine is_________.

Answers

Answer:

0.906

Explanation:

Let g = 9.81 m/s2. We can calculate the rate of change in potential energy when m = 201kg of water is falling down a distance of h = 131m per second

[tex]\dot{E_p} = \dot{m}gh = 201*9.81*131 = 258307 J/s (W) = 258.307 kW[/tex]

So the efficiency of the water turbine is the ratio of output power over input power:

[tex]\frac{234}{258.307} = 0.906[/tex]

This question involves the concepts of efficiency and potential energy.

The efficiency of the turbine is "90.6%".

The efficiency of the turbine can be given by the following formula:

[tex]Efficiency = \frac{Turbine\ shaft\ power}{Potential\ Energy\ power\ of\ Water}\\\\[/tex]

where,

Turbine shaft power = 234 KW

Potential energy power of water = mgh/t = (201 kg/s)(9.81 m/s²)(131 m)

Potential energy power of water = 258307.11 W = 258.31 KW

Therefore,

[tex]Efficiency=\frac{234\ KW}{258.31\ KW}[/tex]

Efficiency = 0.906 = 90.6%

Learn more about efficiency here:

https://brainly.com/question/5035443?referrer=searchResults

If the temperature at the surface of Earth (at sea level) is 100°F, what is the temperature at 2000 feet if the average lapse rate is 3.5°F/1000 feet?

Answers

Final answer:

To find the temperature at 2000 feet above sea level, we need to use the average lapse rate of 3.5°F per 1000 feet. By calculating the temperature decrease with increasing altitude, we can determine that the temperature at 2000 feet would be 93°F.

Explanation:

To find the temperature at 2000 feet, we need to use the average lapse rate. The average lapse rate tells us how much the temperature decreases with increasing altitude. In this case, the average lapse rate is 3.5°F per 1000 feet. So for every 1000 feet increase in altitude, the temperature decreases by 3.5°F.



Since we want to find the temperature at 2000 feet, which is 2000 feet above sea level, we need to divide 2000 by 1000 to find how many intervals of 1000 feet we have. There are 2 intervals. So, we multiply the lapse rate of 3.5°F by 2 to get a temperature decrease of 7°F.



Therefore, the temperature at 2000 feet would be 100°F - 7°F = 93°F.

Learn more about temperature here:

https://brainly.com/question/32246379

#SPJ3

If the temperature at the surface of Earth (at sea level) is 100°F, at 2000 feet if the average lapse rate is 3.5°F/1000 the temperature is 93°F.

If the temperature at the surface of Earth at sea level is 100°F, we can calculate the temperature at 2000 feet using the average lapse rate, which is given as 3.5°F per 1000 feet.

The temperature change is 3.5°F/1000 feet × 2000 feet = 7°F.

Therefore, the temperature at 2000 feet above sea level would be the surface temperature minus the temperature change due to the lapse rate:

100°F - 7°F

= 93°F.

A parallel-plate capacitor filled with air carries a charge Q. The battery is disconnected, and a slab of material with dielectric constant k = 2 is inserted between the plates. Which of the following statements is correct? The voltage across the capacitor decreases by a factor of 2. The charge on the plates is doubled. The voltage across the capacitor is doubled. The charge on the plates decreases by a factor of 2. The electric field is doubled.

Answers

Answer:

The voltage across the capacitor decreases by a factor of 2

Explanation:

When we put a dielectric material on a capacitor, we generate a polarization on it that changes the capacitance of the capacitor. The dielectric constant is the ratio between the initial capacitance (Co) without the dielectric and the new capacitance (C) with the dielectric:

[tex]k=\frac{C}{C_0} [/tex]

So, if k is equal to 2:

[tex] 2= \frac{C}{C_0}[/tex]

[tex]C=2*C_0 [/tex]

So, the capacitance is doubled with the dielectric

Because the battery is disconnected, the charge on the plates of capacitor must be constant because conservation of charge.

The effective electric field of a capacitor is the electric filed when we put a dielectric on it, and it is:

[tex]E_{eff}=\frac{E}{k}=\frac{E}{2} [/tex]

With E the initial electric field, so the electric field is halved

Finally, because we know electric field and voltage (V) on a parallel capacitor with distance between plates (d) are related by:

[tex] E=\frac{V}{d}[/tex]

Because electric field and voltage are directly proportional and d remains constant if Electric field is halved, then voltage is halved too. The voltage across the capacitor decreases by a factor of 2.

A spherical conductor has a radius of 14.0 cm and a charge of 42.0 µC. Calculate the electric field and the electric potential at the following distances from the center. (a) r = 8.0 cm magnitude direction electric field MN/C electric potential MV (b) r = 30.0 cm magnitude direction electric field MN/C electric potential MV (c) r = 14.0 cm magnitude direction electric field MN/C electric potential MV

Answers

Answer:

0 MN/C, 2.697 MV

4.1953 MN/C, 1.2586 MV

19.2642857143 MN/C, 2.697 MV

Explanation:

k = Coulomb constant = [tex]8.99\times 10^{9}\ Nm^2/C^2[/tex]

Electric field at r = 8 cm

E = 0 (inside)

Electric potential is given by

[tex]V=\dfrac{kq}{R}\\\Rightarrow V=\dfrac{8.99\times 10^{9}\times 42\times 10^{-6}}{0.14}\\\Rightarrow V=2697000\ V=2.697\ MV[/tex]

Electric potential is 2.697 MV

r = 30 cm

[tex]E=\dfrac{kq}{r^2}\\\Rightarrow E=\dfrac{8.99\times 10^{9}\times 42\times 10^{-6}}{0.3^2}\\\Rightarrow E=4195333.33\ MN/C=4.1953\ MN/C[/tex]

Electric field is 4.1953 MN/C

[tex]V=\dfrac{kq}{r}\\\Rightarrow V=\dfrac{8.99\times 10^{9}\times 42\times 10^{-6}}{0.3}\\\Rightarrow V=1258600\ V=1.2586\ MV[/tex]

Electric potential is 1.2586 MV

r = R = 14 cm

[tex]E=\dfrac{kq}{r^2}\\\Rightarrow E=\dfrac{8.99\times 10^{9}\times 42\times 10^{-6}}{0.14^2}\\\Rightarrow E=19264285.7143\ N/C=19.2642857143\ MN/C[/tex]

The electric field is 19.2642857143 MN/C

[tex]V=\dfrac{kq}{r}\\\Rightarrow V=\dfrac{8.99\times 10^{9}\times 42\times 10^{-6}}{0.14}\\\Rightarrow V=2697000\ V=2.697\ MV[/tex]

The potential is 2.697 MV

Final answer:

To calculate the electric field and electric potential at different distances from the center of a spherical conductor, use the equations for electric field and electric potential due to a point charge. At a distance of 8.0 cm, the electric field is 7.87 * 10^3 N/C and the electric potential is 5.25 kV. At a distance of 30.0 cm, the electric field is 1.26 * 10^3 N/C, but the electric potential cannot be calculated without a reference point. At 14.0 cm, the electric field and electric potential are zero.

Explanation:

To calculate the electric field and electric potential at different distances from the center of a spherical conductor with a radius of 14.0 cm and a charge of 42.0 µC, we can use the equations for electric field and electric potential due to a point charge.

(a) At a distance of 8.0 cm from the center, the magnitude of the electric field can be calculated using the equation:

E = k * (Q/r²)

Substituting the given values, we get:

E = (9 * 10^9 Nm²/C²) * (42 * 10^-6 C) / (0.08 m)² = 7.87 * 10^3 N/C

To calculate the electric potential at this distance, we can use the equation:

V = k * (Q/r)

Substituting the given values, we get:

V = (9 * 10^9 Nm²/C²) * (42 * 10^-6 C) / (0.08 m) = 5.25 kV

(b) At a distance of 30.0 cm from the center, the magnitude of the electric field can be calculated in the same way:

E = (9 * 10^9 Nm²/C²) * (42 * 10^-6 C) / (0.3 m)² = 1.26 * 10^3 N/C

But the electric potential at this distance cannot be calculated using the given information, as we need the reference point for potential measurement.

(c) At a distance of 14.0 cm (the radius of the conductor) from the center, the electric field and electric potential are zero, as the conductor is in electrostatic equilibrium.

Learn more about Electric Field and Electric Potential here:

https://brainly.com/question/34973156

#SPJ6

An Atwood machine is constructed using a disk of mass 2 kg and radius 24.8 cm. What is the acceleration of the system? The acceleration of gravity is 9.8 m/s 2 . Answer in units of m/s 2 .

Answers

Answer:

a = (m₂-m₁) / (m₂ + m₁ + ½ m)

a = (m₂-m₁) / (m₂ + m₁ + 1)

Explanation:

An Atwood machine consists of two masses of different m1 and m2 value that pass through a pulley, in this case with mass. Let's use Newton's second law for this problem.

Assume that m₂> m₁, so the direction of descent of m₂ is positive, this implies that the direction of ascent of m₁ is positive

Equation of the side of m₁

              T₁ - W₁ = m₁ a

Equation of the side of m₂

              W₂ - T₁ = m₂ a

Mass pulley equation m; by convention the counterclockwise rotation is positive

              τ = I α

              T₁ R - T₂ R = I (-α)

The moment of inertia of a disk is

              I = ½ m R²

Angular and linear acceleration are related

             a = α R

             α = a / R

The rotation is clockwise, so it is negative

We replace

             (T₁ –T₂) R = ½ m R² (-a / R)

             T₁ -T₂ = - ½ m a

Let's write our three equations together

              T₁ - m₁ g = m₁ a

              m₂ g - T₂ = m₂ a

              T₁ –T₂ = -½ m a

Let's multiply the last equation by (-1) and add

               m₂ g - m₁ g = m₂ a + m₁ a + ½ m a

                a = (m₂-m₁) / (m₂ + m₁ + ½ m)

calculate

               a = (m₂ - m₁)/ (m₁ +m₂ + 1)

Based on the calculations, the acceleration of this system is equal to 0.58 [tex]m/s^2[/tex].

Given the following data:

Mass of disk = 2 kg.Radius of disk = 24.8 cm.Acceleration of gravity = 9.8 [tex]m/s^2[/tex]

How to calculate the acceleration of the system.

First of all, we would determine the moment of inertia of this disk by using this formula:

[tex]I=\frac{1}{2} mr^2\\\\I=\frac{1}{2} \times 2 \times (0.248)^2\\\\I=0.0615\;Kgm^2[/tex]

Next, we would use a free body diagram to determine the tensional forces acting on the disk by applying Newton's Second Law of Motion as follows:

For the first force:

[tex]F_1g-F_{T1}=m_1a\\\\m_1g-F_{T1}=m_1a\\\\1.61(9.8)-F_{T1}=1.61a\\\\15.8-F_{T1}=1.61a\\\\F_{T1}=15.8-1.61a[/tex]

For the second force:

[tex]F_{T2}-F_2g=m_2a\\\\F_{T2}-m_2g=m_2a\\\\F_{T2}-1.38(9.8)=1.38a\\\\F_{T2}-13.5=1.38a\\\\F_{T2}=13.5+1.38a[/tex]

For the torque, we have:

[tex]\sum T =I\alpha \\\\F_{T1}r-F_{T2}r=I\alpha\\\\(F_{T1}-F_{T2})r=I\alpha\\\\(15.8-1.61a-[13.5+1.38a])0.248=0.0615 \times \frac{a}{0.248} \\\\(15.8-1.61a-13.5-1.38a)0.248=0.0615 \times \frac{a}{0.248} \\\\(2.3-2.99a)0.248=0.0615 \times \frac{a}{0.248}\\\\0.5704-0.7415a=\frac{0.0615a}{0.248}\\\\0.1415-0.1839a=0.0615a\\\\0.1839a+0.0615a=0.1415\\\\0.2454a=0.1415\\\\a=\frac{0.1415}{0.2454}[/tex]

Acceleration, a = 0.58 [tex]m/s^2[/tex]

Read more on acceleration here: brainly.com/question/24728358

A 15-turn circular wire loop with a radius of 3.0 cm is initially in a uniform magnetic field with a strength of 0.5 T. The field decreases to zero over a time of 0.10 sec. What is the induced emf?

Answers

Answer:

0.212V

Explanation:

The induced emf in circular loop is [tex]\epsilon=-d\frac{\phi_B}{dt}=-NA\frac{dB}{dt}[/tex]

N = Number of loops = 15

A = Cross sectional Area = [tex]\pi[/tex][tex]0.03^{2}[/tex] = 0.0009[tex]\pi[/tex]

dB = change in magnetic Field = 0-0.5 = -0.5

dt = time taken = 0.1sec

[tex]\epsilon=-15*0.0009\pi *\frac{-0.5}{0.1}[/tex] = 0.212V

A ball is thrown straight up from the ground with speed v0. At the same instant, a second ball is dropped from rest from a height H, directly above the point where the first ball was thrown upward. There is no air resistance. (a) Find the time at which the two balls collide. (b) Find the value of H in terms of v0 and g such that at the instant when the balls collide, the first ball is at the highest point of its motion.

Answers

Answer:

(a) [tex]t=\frac{H}{v_0}[/tex]

(b) [tex]H=\frac{v_0^2}{g}[/tex]

Explanation:

Let the two balls collide at a height x from the ground. Therefore, ball 2 travels a distance of (H-x) before colliding with ball 1.

Using the following Newton's law of motion,

[tex]S=ut+\frac{1}{2}at^2[/tex]

where,

[tex]S[/tex] = displacement

[tex]u[/tex] = initial velocity

[tex]a[/tex] = acceleration

[tex]t[/tex] = time

we can write the equations of motion of the two balls(ball 1 and ball 2 respectively):

[tex]x=v_0t-\frac{1}{2}gt^2[/tex]     ......(1)   ([tex]a=-g[/tex], ball is moving against gravity)

[tex]H-x=\frac{1}{2} gt^2[/tex]      .......(2)    (initial velocity is zero; [tex]a=+g[/tex])

Substituting [tex]x[/tex] from equation (1) in (2),

[tex]H-v_0t+\frac{1}{2}gt^2=\frac{1}{2}gt^2[/tex]

or, [tex]t=\frac{H}{v_0}[/tex]      ......(a)

(b) Now, it is said that the collision will occur when ball 1 is at it's highest point. That is, it's final velocity must be zero.

This time we shall have to use another equation of motion given by,

[tex]v^2=u^2+2aS[/tex]

where, [tex]v[/tex] = final velocity

therefore, we get for ball 1,

[tex]0=v_0^2-2gx[/tex]       ([tex]u=v_0,v=0,a=-g[/tex])

or, [tex]x=\frac{v_0^2}{2g}[/tex]

Putting the value of [tex]x[/tex] in equation (2) and rearranging, we get,

[tex]\frac{g}{2v_0^2}H^2-H+\frac{v_0^2}{2g}=0[/tex]

which is a quadratic equation, whose solution is given by,

[tex]H=\frac{+1\pm\sqrt{(-1)^2-(4\times\frac{g}{2v_0^2} \times\frac{v_0^2}{2g}) } }{2\times\frac{g}{2v_0^2} }[/tex]

[tex]=\frac{v_0^2}{g}[/tex]

(a) The time at which the balls collide is H/[tex]v_{0}[/tex]

(b) The height H is equal to [tex]\frac{v_{0} ^{2} }{g}[/tex]

Let the balls collide at a height x above the ground.

Then the distance traveled by the ball thrown above is x.

And the distance traveled by the ball dropped from height H is (H-x).

(i) Both the balls will take the same time to travel respective distances in order to collide.

[tex]H-x=\frac{1}{2}gt^{2}[/tex]

[tex]x = v_{0}t - \frac{1}{2}gt^{2}[/tex]

We get:

[tex]x=v_{0}t-(H-x)[/tex]

[tex]t=\frac{H}{v_{0}}[/tex] , is the time after which the balls collide.

(ii) Let the ball thrown up attains its maximum height x at the time of thecollision

[tex]v^{2} = u^{2}-2gx[/tex] here v is the final velocity which is 0 when the ball attains maximum height

[tex]0=v_{0} ^{2}-2gx[/tex]

[tex]x=\frac{v_{0} ^{2} }{2g}[/tex] is the maximum height attained.

Now, the ball thrown downward travels distance (H-x) just before collision:

[tex]H-x=\frac{1}{2}gt^{2}[/tex]

[tex]H-\frac{v_{0} ^{2} }{2g}=\frac{1}{2}g\frac{H^{2} }{v_{0} ^{2} }[/tex]

Solving the quadratic equation we get:

[tex]H=\frac{v_{0} ^{2} }{g}[/tex]

Learn more about equations of motion:

https://brainly.com/question/20594939

An airplane in a holding pattern flies at constant altitude along a circular path of radius 3.50 km. If the airplane rounds half the circle in 1.50 3 102 s, determine the magnitude of its (a) displacement and (b) average velocity during that time. (c) What is the airplane’s average speed during the same time interval?

Answers

Explanation:

A.

Displacement,S; Θ = S/r

= 180/360 * 2π * 3500

= 10995.6 m

Θ = 10995.6/3500

= 3.142

B.

Angular speed,w = Θ/t

= 3.142/1.503102

= 2.09 rad/s

Velocity = w * r

= 2.09 × 3500

= 7315 m/s.

C.

The same as B.

The airplane's Motion in a Circle displacement is 7.0km, its average velocity is 0.0467 km/s, and its average speed is 0.0737 km/s.

The airplane is flying half a circle, which is essentially semi-circular motion. Under this condition, we can calculate the values asked in the question as follows:

(a) Displacement: Displacement is a vector quantity and represents the shortest distance between the initial and the final points of an object's path. But since the airplane is rounding half the circle, the displacement is essentially the diameter of the circular path. The diameter will be two times the radius, therefore 2*3.50km = 7.00 km.

(b) Average velocity: Average velocity is the total displacement divided by the total time. So, the average velocity would be 7.00km / (1.50*10^2) s = 0.0467 km/s.

(c) Average speed: Average speed is defined as the total distance traveled by the object divided by the total time taken. Here, the airplane travels half the circumference of the circle in the given time. The formula for the circumference of a circle is 2*pi*r, so half the circle's circumference will be pi*3.50 km. Then, Average speed = (pi*3.50 km) / (1.50*10^2) s = 0.0737 km/s.

For more such questions on Motion in a Circle, click on:

https://brainly.com/question/36406168

#SPJ3

If a certain silver wire has a resistance of 8.60 Ω at 29.0°C, what resistance will it have at 42.0°C?

Answers

Answer:

9.027 Ω

Explanation:

Using,

R = R₀(1+αΔt)

R = R₀(1+α[t₂-t₁]).......................... Equation 1

Where R = the value of the resistance at the final temperature, R₀ = the value of the resistance at the initial temperature, α = Temperature coefficient of resistance, t₂ = Final temperature, t₁ = Initial temperature.

Given: R₀ = 8.6 Ω, t₂ = 42 °C, t₁ = 29 °C

Constant : 0.003819/°C

Substitute into equation 1

R = 8.6(1+0.003819[42-29])

R = 9.027 Ω.

Hence the resistance = 9.027 Ω

Answer:

9.02Ω

Explanation:

The resistivity of a conductor increases as temperature increases. In this case, silver, which is a great conductor, will increase its resistivity linearly over a range of increasing temperatures . The relationship between resistance(R) and temperature(T) is given as;

R = R₀ (1 + α(T - T₀))     --------------(i)

where;

R and R₀ are the final and initial resistances of the material (silver in this case)

α = temperature coefficient of resistivity of the material (silver) = 0.0038/°C

T and T₀ are the final and initial temperatures.

From the question;

R₀ = 8.60Ω

T₀ = 29.0°C

T = 42.0°C

Substitute these values into equation (i);

R = 8.60 (1 + 0.0038(42.0 - 29.0))

R = 8.60(1 + 0.0038(13))

R = 8.60(1 + 0.0494)

R = 8.60(1.0494)

R = 9.02Ω

Therefore, the resistance at 42.0°C is 9.02Ω

If the volume of one drop is 0.031 mL according to Stu Dent’s measurement, approximately what volume would 22 drops be? Answer with two significant digits and units of mL.

Answers

Answer:

Volume of 22 drop will be 0.68 ml

Explanation:

We have given volume of one drop = 0.031 ml

We know that 1 liter = 1000 ml

So [tex]1ml=10^{-3}L[/tex]

So 0.031 ml will be equal to [tex]0.031\times 10^{-3}L[/tex]

We have to find the volume of 22 drop

For finding volume of 22 drop we have to multiply volume of one drop by 22

So volume of 22 drop will be [tex]=22\times 0.031\times 10^{-3}=0.682\times 10^{-3}L=0.68mL[/tex]

So volume of 22 drop will be 0.68 ml

A 2.0 m × 4.0 m horizontal plastic sheet has a charge of −10 μC , uniformly distributed. A tiny 4.0 μg plastic sphere is suspended motionless just above the center of the sheet. What is the charge on the sphere?

Answers

Answer:

Explanation:

Given

Dimension of Plastic sheet is [tex]2\times 4\ m^2[/tex]

Charge on sheet [tex]Q=-10\ \mu C[/tex]

Charge density [tex]\sigma =\frac{q}{A}[/tex]

[tex]\sigma =\frac{-10\times 10^{-6}}{8}=1.25\times 10^{-6}\ C/m^2[/tex]

Sphere has mass of  [tex]m=4\ \mug[/tex]

If sphere is suspended motionless then its weight is balanced by repulsion force

Repulsive force [tex]F_r=qE[/tex]

where E=Electric field due to sheet

[tex]E=\frac{q}{2\epsilon _0}[/tex]

[tex]E=\frac{-10\times 10^{-6}}{2\times 8.85\times 10^{-12}}[/tex]

[tex]E=5.647\times 10^{5}\ N/C[/tex]

[tex]F_r=q\times 5.647\times 10^{5}[/tex]

[tex]F_r=mg[/tex]

[tex]q=\frac{mg}{E}[/tex]

[tex]q=\frac{4\times 10^{-6}\times 9.8}{5.647\times 10^{5}}[/tex]

[tex]q=6.9417\times 10^{-11}\ C[/tex]

the separation between the plates is now increased to 4.50 mmmm . How much energy is stored in the capacitor now?

Answers

Complete question:

A parallel-plate capacitor has plates with an area of 405 cm² and an air-filled gap between the plates that is 2.25 mm thick. The capacitor is charged by a battery to 575 V and then is disconnected from the battery.   (a) How much energy is stored in the capacitor? (b) The separation between the plates is now increased to 4.50 mm.   How much energy is stored in the capacitor now?

Answer:

The energy stored in the capacitor when the plates is increased to 4.50 mm is 1.32 X 10⁻⁵ J

Explanation:

Given:

Area of the plates = 405 cm² = 405 X (10⁻²)² m²= 405 X 10⁻⁴m² = 0.0405m²

Energy stored in a capacitor = CV²/2

Where;

V is the voltage across the plates = 575 V

C is the capacitor =?

C = Kε(A/d)

K is constant = 1.0

ε is permittivity of free space = 8.885 X 10⁻¹²

d is the diameter of the two plates = 2.25 mm = 0.00225m

C = 1.0 x 8.885 X 10⁻¹² x (0.0405/0.00225)

C = 1.5993 X 10⁻¹⁰ F

(a) Energy stored in a capacitor = 0.5 X 1.5993 X 10⁻⁹ X 575²

= 2.64 X 10⁻⁵ J

(b) The separation between the plates is now increased to 4.50 mm.

C = Kε(A/d)

New diameter, d = 4.5 mm = 0.0045 m

C = 1.0 x 8.885 X 10⁻¹² x (0.0405/0.0045)

C = 7.9965 X 10 ⁻¹¹ F

Energy stored in a capacitor = 0.5 X 7.9965 X 10 ⁻¹¹ X  575²

= 1.32 X 10⁻⁵ J

Therefore, the energy stored in the capacitor when the plates is increased to 4.50 mm is 1.32 X 10⁻⁵ J

A battery having an emf of 9.63 V delivers 118 mA when connected to a 60.0 Ω load. Determine the internal resistance of the battery.

Answers

Answer:

21.6 ohm

Explanation:

We are given that

EMF=E=9.63 V

Current=I=118 mA=[tex]118\times 10^{-3} A[/tex]

[tex]1 mA=10^{-3} A[/tex]

Resistance=[tex]R=60\Omega[/tex]

We have to find the internal resistance of the battery.

We know that

[tex]V=E-Ir[/tex]

We know that V=IR

[tex]IR=E-Ir[/tex]

[tex]IR+Ir=E[/tex]

[tex]I(R+r)=E[/tex]

[tex]R+r=\frac{E}{I}[/tex]

Substitute the values

[tex]60+r=\frac{9.63}{118\times 10^{-3}}[/tex]

[tex]60+r=81.6[/tex]

[tex]r=81.6-60[/tex]

[tex]r=21.6\Omega[/tex]

Hence, the internal resistance of the battery=21.6 ohm

Answer:

21.6 ohm

Explanation:

EMF of the battery, E = 9.63 V

Current, i = 118 mA = 0.118 A

Resistance, R = 60 ohm

Let the internal resistance of the cell is r.

[tex]i = \frac{E}{R + r}[/tex]

R + r = 9.63 / 0.118

60 + r = 81.6

r = 21.6 ohm

The temperature of a sample of silver increased by 24.0 °C when 269 J of heat was applied. What is the mass of the sample?

Answers

Answer:

Mass of the silver will be equal to 46.70 gram

Explanation:

We have given heat required to raise the temperature of silver by 24°C is 269 J , so [tex]\Delta T=24^{\circ}C[/tex]

Specific heat of silver = 0.240 J/gram°C

We have to find the mass of silver

We know that heat required is given by

[tex]Q=mc\Delta T[/tex], here m is mass, c is specific heat of silver and [tex]\Delta T[/tex] is rise in temperature

So [tex]269=m\times 0.240\times 24[/tex]

m = 46.70 gram

So mass of the silver will be equal to 46.70 gram

An entertainer juggles balls while doing other activities. In one act, she throws a ball vertically upward, and while it is in the air, she runs to and from a table 5.50 m away at an average speed of 3.00 m/s, returning just in time to catch the falling ball. (a) With what minimum initial speed must she throw the ball upward to accomplish this feat? (b) How high above its initial position is the ball just as she reaches the table?

Answers

Final answer:

To accomplish this feat, the entertainer must throw the ball upward with a minimum initial speed and reach a certain height above its initial position.

Explanation:

(a) While the ball is in the air, it rises and then falls to a final position 10.0 m higher than its starting altitude. We can find the time for this by using Equation 4.22:
y = yo + voyt - (1/2)gt².

If we take the initial position yo to be zero, then the final position is y = 10 m. The initial vertical velocity is the vertical component of the initial velocity:

Learn more about Minimum initial speed here:

https://brainly.com/question/14117987

#SPJ12

Final answer:

The minimum initial speed the entertainer must throw the ball upward is 17.96 m/s, and the height of the ball just as she reaches the table is approximately 15.56 m.

Explanation:

Calculating the Minimum Initial Speed and Height of the Juggling Ball

To answer the student's question regarding the juggling entertainer's act, we need to apply concepts from kinematics, a subfield of classical mechanics in physics. First, let's find out the total time the entertainer has to throw the ball and return to the starting position. We can find the time taken to reach the table and come back with the given average speed and distance: Time = (2 × Distance) / Speed. The entertainer runs to and from a table which is 5.50 m away at an average speed of 3.00 m/s. Hence, the total time for the round trip is (2 × 5.50 m) / 3.00 m/s = 3.67 s.

Now, we use the equation of motion to calculate the initial vertical speed needed for the ball to be in the air for this duration: s = ut + 0.5 × a × t², where s is the displacement (which is 0 because the ball returns to the same position), u is the initial vertical speed, and a is the acceleration due to gravity (-9.81 m/s²). After rearranging the formulas, the initial speed u turns out to be 17.96 m/s.

To find the height of the ball as she reaches the table at 5.50 m away, we consider half the total time, which is 1.835 s. Putting this in the kinematic equation s = ut + 0.5 × a × t², we find the height to be approximately 15.56 m at that instant.

Two vectors, and , lie in the xy plane. Their magnitudes are 4.25 and 7.45 units, respectively, and their directions are 312° and 86.0°, respectively, as measured counterclockwise from the positive x axis. What are the values of the following products?
A) (r)(s)= -18.3
B) (r)X(s)=?

Answers

Answer:

A) r•s = -21.99 units

B) rXs = 22.77 units (In the direction of k)

Completed question

Two vectors, r and s, lie in the xy plane. Their magnitudes are 4.25 and 7.45 units, respectively, and their directions are 312° and 86.0°, respectively, as measured counterclockwise from the positive x axis. What are the values of the following products?

A) r•s =

B) (r)X(s)=

Explanation:

A) dot product of r and s can be expressed mathematically as;

r•s = |r||s|cos(A) .......1

Where A is the angle between the two vectors.

|r| and |s| are the magnitude of vector r and s.

r•s = 4.25×7.45 ×cos(86-312) = -21.99 units

B) cross product of r and s can be expressed mathematically as;

rXs = |r||s|sin(A) .......2

Where A is the smallest angle between the two vectors

|r| and |s| are the magnitude of vector r and s.

A = 312-86 = 226

A = 360-226 = 134 smallest

rXs = 4.25 × 7.45 × sin134.

rXs = 22.77 units

In the direction of k

Answer:

(a) -22.00 units

(b) 22.77 units

Explanation:

Given vectors are r and s

Where;

r = |r| = 4.25   and ∠r = 312°    measured anticlockwise

s = |s| = 7.45   and ∠s = 86°    measured anticlockwise

First, let's calculate the angle between vectors r and s by representing them in the figure below;

                                y |        /s

                                   |      /

                                   |    /

                                   |  /  

                                   |/ )86°                                x

                                   |\) 48°

                                   |  \

                                   |    \

                                   |      \

                                   |        \ r

To get the acute angle between r and the +x axis, subtract the reflex angle of r (312°) from 360° as follows;

360 - 312 = 48°

As shown in the diagram, the angle between vectors r and s is 48° + 86° = 134°

Now,

(a) The (r)(s) represents the dot or scalar product of the two vectors and it is given as;

(r) (s) = r x s cos θ            ---------------------------(i)

Where;

r = magnitude of vector r = 4.25

s = magnitude of vector s = 7.45

θ is the angle between the two vectors r and s = 134°

Substitute these values into equation (i) as follows;

(r) (s) = 4.25 x 7.45 cos 134°

(r) (s) = 4.25 x 7.45 x -0.6947

(r) (s) = 31.66 x -0.6947

(r) (s) = -22.00 units

(b) The (r) X (s) represents the vector product of the two vectors and it is given as;

(r) (s) = r x s sin θ            ---------------------------(ii)

Where;

r = magnitude of vector r = 4.25

s = magnitude of vector s = 7.45

θ is the angle between the two vectors r and s = 134°

Substitute these values into equation (ii) as follows;

(r) (s) = 4.25 x 7.45 sin 134°

(r) (s) = 4.25 x 7.45 x 0.7193

(r) (s) = 31.66 x 0.7193

(r) (s) = 22.77 units

A car comes to a bridge during a storm and finds the bridge washed out. The driver must get to the other side, so he decides to try leaping it with his car. The side the car is on is 20.0 m above the river, whereas the opposite side is a mere 2.1 m above the river. The river itself is a raging torrent 61.0 m wide.

A) How fast should the car be traveling just as it leaves the cliff in order to just clear the river and land safely on the opposite side?

B) What is the speed of the car just before it lands safely on the other side?

Answers

Answer:

A) The car should be traveling at 31.9 m/s.

B) The speed of the car just before it lands on the other side is 37.0 m/s.

Explanation:

Hi there!

A) Please see the attached figure for a better description of the problem. When the car reaches the other side of the river, its position vector will be r1 in the figure. The components of this vector are r1x and r1y.

If we place the origin of the frame of reference at the edge of the cliff, the components of the vector r1 will be:

r1x = 61.0 m

r1y = -20.0 m + 2.1 m = -17.9 m

The equations for the x and y-components of the position vector of the car are the following:

x = x0 + v0 · t

y = y0 + 1/2 · g · t²  

Where:

x = horizontal position at a time t.

x0 = initial horizontal position.

v0 = initial velocity.

t = time.

y = vertical position at a time t.

y0 = initial vertical position.

g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive).

Using the equation of the y-component of r1, we can find the time it takes the car to reach the other side of the river. We have to find the time at which the vector r1y is -17.9 m:

y = y0 + 1/2 · g · t²   (y0 = 0 because the origin of the frame of reference is located at the edge of the cliff).

y = 1/2 · g · t²

-17.9 m = -1/2 · 9.8 m/s² · t²

-17.9 m / -4.9 m/s² = t²

t = 1.91 s

Now, using the equation of the x-component, we can find the initial velocity. We know that at t = 1.91 s, the horizontal component of the vector r1 is 61.0 m:

x = x0 + v0 · t (x0 = 0 because the origin of the frame of reference is located at the edge of the cliff).

x = v0 · t

61.0 m = v0 · 1.91 s

v0 = 61.0 m / 1.91 s = 31.9 m/s

The car should be traveling at 31.9 m/s.

B) The equation of the velocity vector of the car is the following:

v = (v0, g · t)

The horizontal component of the velocity vector is v0, 31.9 m/s.

Let's calculate the value of the vertical component:

vy = g · t

vy = -9.8 m/s² · 1.91 s

vy = -18.7 m/s

Then, the velocity vector of the car just before it lands on the other side is the following:

v = (31.9, -18.7) m/s

The magnitude of this vector is calculated as follows:

|v| = √[(31.9 m/s)² + (-18.7 m/s)²]  

|v| = 37.0 m/s

The speed of the car just before it lands on the other side is 37.0 m/s.

Final answer:

To safely clear the river, the car must travel at 23.4 m/s at the cliff's edge, and it will land with a speed of 22.6 m/s on the other side.

Explanation:

A) To clear the river and land safely on the other side, the car should be traveling at a speed of 23.4 m/s as it leaves the cliff. This is calculated using the principles of projectile motion and conservation of energy.

B) The speed of the car just before it lands safely on the opposite side would be 22.6 m/s. This speed is also determined by energy considerations, such as the conversion of potential energy to kinetic energy.

A gas has a pressure of 48atm in a 15.5L container. It was found that at 25∘C the gas occupied a volume of 25L and had a pressure of 22atm. What was the initial temperature in degrees Celsius?

Answers

Answer:

130.165636364°C

Explanation:

P = Pressure

V = Volume

n = Number of moles

R = Gas constant = 0.082 L atm/mol K

From ideal gas law we have

[tex]PV=nRT\\\Rightarrow n=\dfrac{PV}{RT}\\\Rightarrow n=\dfrac{22\times 25}{0.082\times (25+273.15)}\\\Rightarrow n=22.496451696\ moles[/tex]

[tex]PV=nRT\\\Rightarrow T=\dfrac{PV}{nR}\\\Rightarrow T=\dfrac{48\times 15.5}{22.496451696\times 0.082}\\\Rightarrow T=403.315636364\ K[/tex]

The initial temperature is [tex]403.315636364-273.15=130.165636364\ ^{\circ}C[/tex]

Answer: 130 degrees Celsius

Explanation:

P1V1 / T1 = P2V2 / T2

Let the subscript 1 represent the initial 15.5L of gas and the subscript 2 represent the gas at the final volume of 25L. Rewrite the temperature in Kelvin by adding 273.

P1=48atm, V1=15.5L, P2=22atm, V2=25L, T2=298K, and T1 is unknown.

Substitute the known values into the combined gas law equation.

P1V1 / T1=P2V2 / T2 → (48atm)(15.5L) / T1 = (22atm)(25L) / 298K

Solve the equation for T1, simplify, and round to the nearest degree.

T1 = P1V1T2 / P2V2

T1 = (48atm)(15.5L)(298K)(22atm)(25L)

T1 = 403K

To get the temperature in Celsius, subtract 273.

T1 = 130∘C

Which of the following does not involve work? 1. A child is pushed on a swing. 2. A golf ball is struck. 3. A weight lifter does military presses (lifting weights over his head.) 4. A professor picks up a piece of chalk from the floor. 5. A runner stretches by pushing against a wall.

Answers

From the work theorem, this is defined as the amount of force applied on an object displaced on a longitudinal unit. Mathematically this is

[tex]W = \vec{F} \times \vec{d}[/tex]

Here,

F = Force vector

d = Displacement vector

Of all the options presented, only in the last one there is no change in distance, so the work done there is zero.

The correct option is 5.

Final answer:

Work in Physics is when a force causes displacement. Of the choices, the example of a runner stretching by pushing against a wall does not involve work, as there is no displacement.

Explanation:

In the context of Physics, 'work' is defined as a force causing displacement on an object. Essentially, work is done when a force acts upon an object to cause or prevent motion. Among the options provided, 5. A runner stretches by pushing against a wall does not involve 'work'. This is because, despite the runner exerting a force against the wall, there is no displacement of the wall in response to this force.

Work (W) is calculated by multiplying the force (F) that is applied to an object and the distance (d) that the object is moved, i.e., W = F * d. In this case, since the displacement (d) is zero, the work done is also zero.

Learn more about Work in Physics here:

https://brainly.com/question/34765290

#SPJ11

A man wandering in the desert walks 2.7 miles in the direction S 35°W. He then turns 90° and walks 3.5 miles in the direction N 55° W. At that time, how far is he from his starting point, and what is his bearing from his starting point?

Answers

To solve this problem we will make a diagram in the Cartesian plane that will allow us to find and understand more accurately the displacement and the angle of rotation.

According to Pythagoras, the distance traveled would be equivalent to

[tex]d = \sqrt{(2.7)^2+(3.5)^2}[/tex]

[tex]d = 4.4 miles[/tex]

The individual had a displacement of 4.4 thousand from the starting point.

Now the angle [tex]\theta[/tex] plus the previously given angle will allow us to find the direction of travel.

[tex]tan\theta = \frac{\text{Opposite side}}{\text{Adjacent side}}[/tex]

[tex]tan\theta = \frac{3.5}{2.7}[/tex]

[tex]\theta = tan^{-1} (\frac{3.5}{2.7})[/tex]

[tex]\theta = 52.35\°[/tex]

[tex]\angle =[/tex] [tex]\theta + 35 = 52.35+35 = 87.35\°[/tex]

Therefore the net direction of the man is S 87.35° W

A 3.0 L cylinder is heated from an initial temperature of 273 K at a pressure of 105 kPa to a final temperature of 367 K. Assuming the amount of gas and the volume remain the same, what is the pressure (in kilopascals) of the cylinder after being heated?

Answers

Answer:

  P₂= 141.15 kPa  

Explanation:

Given that

Volume ,V= 3 L

V= 0.003 m³

Initial temperature ,T₁ = 273 K

Initial pressure ,P₁ = 105 kPa

Final temperature ,T₂ = 367 K

Given that volume of the cylinder is constant .

Lets take final pressure = P₂

We know that for constant volume process

[tex]\dfrac{P_2}{P_1}=\dfrac{T_2}{T_1}\\P_2=P_1\times \dfrac{T_2}{T_1}\\P_2=105\times \dfrac{367}{273}\ kPa\\\\P_2=141.15\ kPa[/tex]

Therefore the final pressure = 141.15 kPa

P₂= 141.15 kPa

A 5 kg mass is attached to the ceiling of an elevator by a rope whose mass is negligible. What is the tension in the rope when the elevator accelerates upward at 4 m/s2?

Answers

Answer:

Explanation:

Given

mass of object [tex]m=5\ kg[/tex]

Object is attached to the ceiling of an elevator by a rope

Suppose T is the Tension in the rope so

acceleration of the elevator [tex]a=4\ m/s^2[/tex]  (upward)

From Free Body diagram we can write as

[tex]T-mg=ma[/tex]

[tex]T=m(g+a)[/tex]

[tex]T=5(9.8+4)[/tex]

[tex]T=69\ N[/tex]

A brick is dropped (zero initial speed) from the roof of a building. The brick strikes the ground in 1.90 s. You may ignore air resistance, so the brick is in free fall. (a) How tall, in meters, is the building? (b) What is the magnitude of the brick’s velocity just before it reaches the ground? (c) Sketch ay-t, vy-t, and y-t graphs for the motion of the brick.

Answers

Answer: Height of building = 17.69m, velocity of brick = 18.6m/s

Explanation: From the question, the body has a zero initial speed, thus initial velocity (u) all through the motion is zero.

By ignoring air resistance makes it a free fall motion thus making it to accelerate constantly with a value of [tex]a = 9.8m/s^{2}[/tex].

Time taken to fall = 1.90s

a)

thus the height of the building is calculated using the formulae below

[tex]H = ut + \frac{1}{2} gt^{2}[/tex]

but u = 0 , hence

[tex]H = \frac{1}{2} gt^{2}[/tex]

[tex]H = \frac{1}{2} *9.8* 1.9^{2} \\\\H = 17.69m[/tex]

b)

to get the value of velocity (v) as the brick hits the ground, we use the formulae below

[tex]v^{2} = u^{2} + 2aH[/tex]

but u= 0, hence

[tex]v^{2} = 2gH\\[/tex]

[tex]v^{2} = 2 * 9.8 * 17.69\\v = \sqrt{2 *9.8* 17.69} \\v = 18.62m/s[/tex]

 

find the attachment in this answer for the accleration- time graph, velocity- time graph and distance time graph

a. The height of building, in meters, is equal to 17.69 meters.

b. The magnitude of the brick’s velocity just before it reaches the ground is equal to 18.72 m/s.

Given the following data:

Time = 1.90 secondsInitial velocity = 0 m/s

We know that acceleration due to gravity (a) for an object in free fall is equal to 9.8 meter per seconds square.

a. To determine the height of building, in meters, we would use the second equation of motion:

Mathematically, the second equation of motion is given by the formula;

[tex]S = ut + \frac{1}{2} at^2[/tex]

Where:

S is the distance covered.u is the initial velocity.a is the acceleration.t is the time measured in seconds.

Substituting the given parameters into the formula, we have;

[tex]S = 0(1.90) + \frac{1}{2} \times 9.8 \times 1.90^2\\\\S = 0 + 4.9 \times 3.61[/tex]

Distance, S = 17.69 meters.

b. To determine the magnitude of the brick’s velocity just before it reaches the ground, we would use the third equation of motion;

[tex]V^2 = U^2 + 2aS[/tex]

Where:

V is the final speed.U is the initial speed.a is the acceleration.S is the distance covered.

Substituting the given parameters into the formula, we have;

[tex]V^2 = 0^2 + 2 \times 9.8 \times 17.69\\\\V^2 = 350.26\\\\V = \sqrt{350.26}[/tex]

V = 18.72 m/s

Read more: https://brainly.com/question/8898885

In the infinitesimal neighborhood surrounding a point in an inviscid flow, the small change in pressure, dP, that corresponds to a small change in velocity, dV, is given by the differential relation: dP=−rhoVdV. (a) Using this relation, derive a differential relation for the fractional change in density, drho/rho, as a function of the fractional change in velocity, dV/V, with the compressibility τ as a coefficient. (b) The velocity at a point in an isentropic flow of air is 10 m/s, and the density and pressure are 1.23 kg/m3 and 1.01 x 105 N/m2, respectively. The fractional change in velocity at the point is 0.01. Calculate the fractional change in density. (c) Repeat part (b), except for a local velocity at the point of 1000 m/s. Compare this result with that from part (b), and comment on the differences.

Answers

Answer:

(a). differential relation becomes dρ/ρ = -τρV2 dV/V

(b). fraction change in density; dρ/ρ = -8.7 ˣ 10⁻⁶

(c).  dρ/ρ = -8.7 ˣ 10⁻²

Explanation:

Let us begin,

(a).  given from the question we have that dp = -ρVdV

where dρ = ρ τ dp, i.e.

dp = dρ/ρτ ...............(1)

replacing value of dp we have,

-ρVdV = dρ/ρτ

so that dρ = -τp2 VdV

finally, dρ/ρ = -τp V2 dV/V

(b). from the question here, we were given Velocity to be = 10 m/s

density (ρ) =  1.23 kg/m3

pressure (p) =  1.01 x 10⁵ N/m2

from formula,

dρ/ρ = τs ρ V2 dV/V .............(2)

but τs = 1/γp = 1/(1.4× 1.01×10⁵) = 7.07 ˣ 10⁻⁶ m²/N

substituting value of τs  into equation (2) we have

dρ/ρ = τs ρ V2 dV/V =  (7.07 ˣ 10⁻⁶) ˣ (1.23) ˣ (10ˣ2) (0.01) = -8.7 ˣ 10⁻⁶

dρ/ρ = -8.7 ˣ 10⁻⁶

(c). from we question we know that dρ/ρ has a large ratio of (1000/10)²

so dρ/ρ = -8.7 ˣ 10⁻⁶ × (1000/10)² = -8.7 ˣ 10⁻²

dρ/ρ = -8.7 ˣ 10⁻².

comparing this result with part (b). we can see that when we increase the velocity of a factor 100, there is an increased factorial change in the density by a factor 104.

In what regions of the electromagnetic spectrum is the atmosphere transparent enough to allow observations from the ground?

Answers

Answer:

Visible Light and Radio waves

Explanation:

The earth's atmosphere is transparent to a few windows in the electromagnetic spectrum. it is completely transparent to allow observation from the ground in visible light rang 380 to 740 nano meters. Also in the range of radio wave as communication are done from space to ground in the form of radio waves.

it is Partially transparent to Microwave and infrared range.

The atmosphere is transparent to certain regions of the electromagnetic spectrum, such as visible light, radio waves, and parts of the infrared and microwave spectra.

The Earth's atmosphere is transparent to certain regions of the electromagnetic spectrum, allowing observations to be made from the ground. These regions include the visible light spectrum, the radio waves spectrum, and parts of the infrared and microwave spectra.

In these regions, electromagnetic waves can pass through the Earth's atmosphere relatively easily, allowing ground-based observations to be conducted.

Learn more about Atmospheric transparency here:

https://brainly.com/question/32222934

#SPJ3

A 200-m-wide river has a uniform flow speed of 0.99 m/s through a jungle and toward the east. An explorer wishes to leave a small clearing on the south bank and cross the river in a powerboat that moves at a constant speed of 4.4 m/s with respect to the water. There is a clearing on the north bank 35 m upstream from a point directly opposite the clearing on the south bank.

a. At what angle, measured relative to the direction of flow of the river, must the boat be pointed in order to travel in a straight line and land in the clearing on the north bank?
b. How long will the boat take to cross the river and land in the clearing?

Answers

Answer:

a. 1.174 rad[/tex] or 67.3 degree

b. t = 49.28 s

Explanation:

Let [tex]v_v[/tex] be the vertical component of the boat velocity with respect the the river, pointing North. Let [tex]v_h[/tex] be the horizontal component of the boat velocity with respect to the river, pointing West, aka upstream. Since the total velocity of the boat is 4.4m/s

[tex]v_v^2 + v_h^2 = 4.4^2 = 19.36[/tex]

The time it takes for the boat to cross 200m-wide river at [tex]v_v[/tex] rate is

[tex]t = 200 / v_v[/tex] or [tex]v_v = 200 / t[/tex]

This is also the time it takes for the boat to travel 35m upstream, horizontally, at the rate of [tex] v_h - 0.99[/tex] m/s

[tex]t = \frac{35}{v_h - 0.99}[/tex]

[tex]v_h - 0.99 = 35/t[/tex]

[tex]v_h = 35/t + 0.99[/tex]

We can substitute [tex]v_v,v_h[/tex] into the total velocity equation to solve for t

[tex]\frac{200^2}{t^2} + (\frac{35}{t} + 0.99)^2 = 19.36[/tex]

[tex]\frac{40000}{t^2} + \frac{35^2}{t^2} + 2*0.99*\frac{35}{t} + 0.99^2 = 19.36[/tex]

From here we can multiply both sides by [tex]t^2[/tex]

[tex]40000 + 1225 + 69.3t + 0.9801t^2 = 19.36t^2[/tex]

[tex]18.38 t^2 - 69.3t - 41225 = 0[/tex]

[tex]t= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}[/tex]

[tex]t= \frac{69.3\pm \sqrt{(-69.3)^2 - 4*(18.3799)*(-41225)}}{2*(18.38)}[/tex]

[tex]t= \frac{69.3\pm1742.31}{36.7598}[/tex]

t = 49.28 or t = -45.51

Since t can only be positive we will pick t = 49.28

[tex]v_h = 35 / t + 0.99 = 35 / 49.38 + 0.99 = 1.7 m/s[/tex]

The angle, relative to the flow of river direction is

[tex]cos(\alpha) = \frac{v_h}{v} = \frac{1.7}{4.4} = 0.3864[/tex]

[tex]\alpha = cos^{-1}(0.3864) = 1.174 rad[/tex] or 67.3 degree

Other Questions
solve -2x-y=1y=3x-1 Pollution from a single, identifiable source is called source pollution. In randomly selected family with two children, excluding multiple births , what is the probability of having two boys Create an application named TestClassifiedAd that instantiates and displays at least two ClassifiedAd objects. A ClassifiedAd has fields for a Category (For example, Used Cars and Help Wanted), a number of Words, and a price. Include properties that contain get and set accessors for the category and number of words, but only a get accessor for the price. The price is calculated at nine cents per word. On January 1, 2018, the Brunswick Hat Company adopted the dollar-value LIFO retail method. The following data are available for 2018:Cost RetailBeginning inventory $73,150 $133,000Net purchases 113,400 257,000Net markups 8,000Net markdowns 13,000Net sales 224,000Retail price index, 12/31/18 1.12Calculate the estimated ending inventory and cost of goods sold for 2018.1.Ending inventory at retail-2.Ending inventory at cost-3.Cost of goods sold- What can the fraction 9/40 be converted into? Write an inequality that represents the statement "x is greater than -3 and less than or equal to 4."A. -3B. -3C. -35X34D. -35x Dilly is 7 years younger than Dally. In 4 years time she will be half Dallys age. What is the sum of their ages now? Urgent!!!!51179Please help Several factors influence the rate of diffusion and among these factors are temperature, ____________ , electrical currents, and molecular size. For example, as temperature ____________ , the rate of diffusion increases. On January 16, Tree Co. paid $60,000 in property taxes on its factory for the current calendar year. On April 2, Tree paid $240,000 for unanticipated major repairs to its factory equipment. The repairs will benefit operations for the remainder of the calendar year. What amount of these expenses should Tree include in its third-quarter interim financial statements for the 3 months ended September 30? A. $95,000 B. $75,000 C. $0 D. $15,000 What type of process includes order processing, customer service processing, sales processing, customer billing processing, and order shipping processing? What form of government is the US federal government? Understanding Point of View: Why were the Framers of theConstitution careful to limit the powers of the FederalGovernment? 32k+24 i need the equivalent expression Which of the following is a form of interpersonal communication Compare the 1920s Republican viewon taxes and tariffs to theProgressive views of Teddy, Taft,and Wilson. What is the key tounderstanding these differences? Although Tracith is one of the best supermarkets in the coastal town of Dawntonia, it fails to retain customers. To solve this problem, Edna, the newly appointed marketing manager at Tracith, decides to implement a customer loyalty program. This program would include a membership card and a mobile app that can only be accessed using the membership card number. The mobile app will be enabled to show real-time availability of products at the supermarket. In the context of managerial roles, which of the following decisional roles is illustrated by Edna in this scenario? a. The liaison role b. The entrepreneur role c. The disseminator role d. The spokesperson role PLEASE HELP ASAP PLEASE PLEASE PLEASEGraph the solution to the scenario by dragging and dropping a circle/arrow onto the number line.The roots of Billy's plant grew to 3 inches beneath Earths surface. Graph all the possible depths the roots can continue to grow. Without plotting the point (0,-10), tell in which quadrant or onwhich axis it lies. a. x-axis c. Quadrant I b. y-axis d. Quadrant II