The average number of customers served by The Copy Shop during a typical morning (9am to noon) is 12. One morning, The Copy Shop has to close for 15 minutes.
What is the probability that no customers will arrive during this 15 minute period?
X = number of customers
a. X ~ binomial
b. X ~ negative binomial
c. X ~ hypergeometric
d. X ~ Poisson

Answers

Answer 1

Answer: d, p = 0.4493

Step-by-step explanation: this question is solved using a possion probability distribution because the event is occurring at a fixed rate.

For this question of ours the fixed rate is the fact that 12 customers visiting the shop within 15 minutes.

For this question our fixed rate (u) = 12/15 = 0.8

The probability distribution for possion is given as

P(x=r) = (e^-u * u^r) / r!

At this point x = 0 ( no customers coming to the shop)

P(x=0) =( e^-0.8 * 0.8^0)/ 0!

P(x=0) = (e^-0.8 * 1)/1

P(x=0) = e^-0.8

P(x=0) = 0.4493


Related Questions

Based on a Pitney Bowes survey, assume that 42% of consumers are comfortable having drones deliver their purchases. Suppose we want to find the probability that when five consumers are randomly selected, exactly two of them are comfortable with the drones. What is wrong with using the multiplication rule to find the probability of getting two consumers comfortable with drones followed by three consumers not comfortable, as in this calculation: 10.42210.42210.58210.58210.582 = 0.0344?

Answers

Answer:

For this case is wrong use the multiplication for P(X=2):

0.42*0.42*0.58*0.58*0.58 = 0.0344

Because we don't take in count the possible nCx ways in order to have the two consumers comfortable, and we are assuming that the first two people are comfortable and the rest is not, and that's not the only possibility. The correct probability for X=2 people comfortable is given by:

[tex]P(X=2)=(5C2)(0.42)^2 (1-0.42)^{5-2}=0.344[/tex]

And as we can see the real answer is 10 times the assumed answer, for this reason is wrong the claim.

Step-by-step explanation:

Previous concepts

The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".

Solution to the problem

Let X the random variable of interest, on this case we now that:

[tex]X \sim Binom(n=5, p=0.42)[/tex]

The probability mass function for the Binomial distribution is given as:

[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]

Where (nCx) means combinatory and it's given by this formula:

[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]

For this case is wrong use the multiplication for P(X=2):

0.42*0.42*0.58*0.58*0.58 = 0.0344

Because we don't take in count the possible nCx ways in order to have the two consumers comfortable, and we are assuming that the first two people are comfortable and the rest is not, and that's not the only possibility. The correct probability for X=2 people comfortable is given by:

[tex]P(X=2)=(5C2)(0.42)^2 (1-0.42)^{5-2}=0.344[/tex]

And as we can see the real answer is 10 times the assumed answer, for this reason is wrong the claim.

a 50m long chain hangs vertically from a cunlinder attached to a winch. Assume there is no friction in the system and that the chain has a density of 10kg/m. how much work is required to wind the chain into the cylinder if a 50kg block is attached to the end of the chain?

Answers

Answer:

147000 J

Step-by-step explanation:

We are given that

Length of chain=L=50 m

Density of chain=[tex]\rho=10kg/m^3[/tex]

We have to find the work done required to wind the chain into the cylinder if a 50 kg block is attached to the end of the chain.

Work done=[tex]\int_{a}^{b}F(y)dy[/tex]

We have F(y)=[tex]\rho g(50-y)dy[/tex]

a=0 and  b=50

[tex]g=9.8m/s^2[/tex]

Using the formula

Work done=[tex]w_1=10\times 9.8\int_{0}^{50}(50-y)dy[/tex]

Where Length of chain is (50-y) has to be lifted.

Work done=[tex]w_1=10\times 9.8[50y-\frac{y^2}{2}]^{50}_{0}[/tex]

By using the formula [tex]\int x^ndx=\frac{x^{n+1}}{n+1}+C[/tex]

Work done=[tex]w_1=10\times 9.8\times (50(50)-\frac{(50)^2}{2})=98\times (2500-1250)=122500 J[/tex]

When the chain is weightless then the work done required to lift the block attached to the 50 m long chain

Again using the formula

Where f(y)=mg

[tex]w_2=\int_{0}^{50}mgdy[/tex]

We have m=50 kg

[tex]w_2=\int_{0}^{50}50\times 9.8 dy=490[y]^{50}_{0}=490\times 50=24500 J[/tex]

The work done required  to wind the chain into the cylinder if a 50 kg block is attached to the end of the chain=[tex]w_1+w_2=122500+24500=147000 J[/tex]

Matt is a software engineer writing a script involving 6 tasks. Each must be done one after the other. Let ti be the time for the ith task. These times have a certain structure:


•Any 3 adjacent tasks will take half as long as the next two tasks.


•The second task takes 1 second.


•The fourth task takes 10 seconds.


a) Write an augmented matrix for the system of equations describing the length of each task.


b) Reduce this augmented matrix to reduced echelon form.


c) Suppose he knows additionally that the sixth task takes 20 seconds and the first three tasks will run in 50 seconds. Write the extra rows that you would add to your answer in b) to take account of this new information.


d) Solve the system of equations in c).

Answers

Answer:

Let [tex]t_i[/tex] be the time for the [tex]i[/tex]th task.

We know these times have a certain structure:

Any 3 adjacent tasks will take half as long as the next two tasks.

In the form of an equations we have

[tex]t_1+t_2+t_3=\frac{1}{2}t_4+\frac{1}{2}t_5 \\\\t_2+t_3+t_4=\frac{1}{2}t_5+\frac{1}{2}t_6[/tex]

The second task takes 1 second [tex]t_2=1[/tex]The fourth task takes 10 seconds [tex]t_4=10[/tex]

So, we have the following system of equations:

[tex]t_1+t_2+t_3-\frac{1}{2}t_4-\frac{1}{2}t_5=0 \\\\t_2+t_3+t_4-\frac{1}{2}t_5-\frac{1}{2}t_6=0\\\\t_2=1\\\\t_4=10[/tex]

a) An augmented matrix for a system of equations is a matrix of numbers in which each row represents the constants from one equation (both the coefficients and the constant on the other side of the equal sign) and each column represents all the coefficients for a single variable.

Here is the augmented matrix for this system.

[tex]\left[ \begin{array}{cccccc|c} 1 & 1 & 1 & - \frac{1}{2} & - \frac{1}{2} & 0 & 0 \\\\ 0 & 1 & 1 & 1 & - \frac{1}{2} & - \frac{1}{2} & 0 \\\\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\\\ 0 & 0 & 0 & 1 & 0 & 0 & 10 \end{array} \right][/tex]

b) To reduce this augmented matrix to reduced echelon form, you must use these row operations.

Subtract row 2 from row 1 [tex]\left(R_1=R_1-R_2\right)[/tex].Subtract row 2 from row 3 [tex]\left(R_3=R_3-R_2\right)[/tex].Add row 3 to row 2 [tex]\left(R_2=R_2+R_3\right)[/tex].Multiply row 3 by −1 [tex]\left({R}_{{3}}=-{1}\cdot{R}_{{3}}\right)[/tex].Add row 4 multiplied by [tex]\frac{3}{2}[/tex] to row 1 [tex]\left(R_1=R_1+\left(\frac{3}{2}\right)R_4\right)[/tex].Subtract row 4 from row 3 [tex]\left(R_3=R_3-R_4\right)[/tex].

Here is the reduced echelon form for the augmented matrix.

[tex]\left[ \begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & \frac{1}{2} & 15 \\\\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\\\ 0 & 0 & 1 & 0 & - \frac{1}{2} & - \frac{1}{2} & -11 \\\\ 0 & 0 & 0 & 1 & 0 & 0 & 10 \end{array} \right][/tex]

c) The additional rows are

[tex]\begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & 1 & 20 \\\\ 1 & 1 & 1 & 0 & 0 & 0 & 50 \end{array} \right[/tex]

and the augmented matrix is

[tex]\left[ \begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & \frac{1}{2} & 15 \\\\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\\\ 0 & 0 & 1 & 0 & - \frac{1}{2} & - \frac{1}{2} & -11 \\\\ 0 & 0 & 0 & 1 & 0 & 0 & 10 \\\\ 0 & 0 & 0 & 0 & 0 & 1 & 20 \\\\ 1 & 1 & 1 & 0 & 0 & 0 & 50 \end{array} \right][/tex]

d) To solve the system you must use these row operations.

Subtract row 1 from row 6 [tex]\left(R_6=R_6-R_1\right)[/tex].Subtract row 2 from row 6 [tex]\left(R_6=R_6-R_2\right)[/tex].Subtract row 3 from row 6 [tex]\left(R_6=R_6-R_3\right)[/tex].Swap rows 5 and 6.Add row 5 to row 3 [tex]\left(R_3=R_3+R_5\right)[/tex].Multiply row 5 by 2 [tex]\left(R_5=\left(2\right)R_5\right)[/tex].Subtract row 6 multiplied by 1/2 from row 1 [tex]\left(R_1=R_1-\left(\frac{1}{2}\right)R_6\right)[/tex].Add row 6 multiplied by 1/2 to row 3 [tex]\left(R_3=R_3+\left(\frac{1}{2}\right)R_6\right)[/tex].

[tex]\left[ \begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 5 \\\\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\\\ 0 & 0 & 1 & 0 & 0 & 0 & 44 \\\\ 0 & 0 & 0 & 1 & 0 & 0 & 10 \\\\ 0 & 0 & 0 & 0 & 1 & 0 & 90 \\\\ 0 & 0 & 0 & 0 & 0 & 1 & 20 \end{array} \right][/tex]

The solutions are: [tex](t_1,...,t_6)=(5,1,44,10,90,20)[/tex].

Consider the baggage check-in process of a small airline. Check-in data indicate that from 9 a.m. to 10 a.m., 220 passengers checked in. Moreover, based on counting the number of passengers waiting in line, airport management found that the average number of passengers waiting for check-in was 27.?How long did the average passenger have to wait in line?

Answers

Answer:

The passengers have an average of 8.15 minutes to wait in line

Step-by-step explanation:

Using Little's law

Average Inventory = Average Flow Time * Average Flow Rate

Average Inventory = 220 passengers

Average Flow Rate = 27

Average Flow time =?

So,

220 = Average Flow Time * 27

Average Flow Time = 220/27

Average Flow Time = 8.14814814814

Average Flow Time = 8.15 --------- Approximated

So the average wait time for a passenger is 8.15 minutes

Final answer:

The average passenger had to wait in line for approximately 0.123 minutes.

Explanation:

To find the average waiting time, we need to divide the total waiting time by the number of passengers. The total waiting time can be calculated by multiplying the average number of passengers waiting (27) by the time period (1 hour). The average waiting time is then found by dividing this total waiting time by the number of passengers checked in (220).

Average waiting time = (Average number of passengers waiting × Time period) / Number of passengers checked in

First, find the total waiting time: Total waiting time = 27 × 1 = 27 minutesNext, find the average waiting time: Average waiting time = 27 / 220 = 0.123 minutes (approximately)

Therefore, the average passenger had to wait in line for approximately 0.123 minutes.

Learn more about Baggage check-in process here:

https://brainly.com/question/32534524

#SPJ3

A study is designed to test the effect of light level on exam performance of students. The researcher believes that light levels might have different effects on males and females, so wants to make sure both arc equally represented in each treatment. The treatments are fluorescent overhead lighting, yellow overhead lighting, no overhead lighting (only desk lamps).

(a) What is the response variable?
(b) What is the explanatory variable? What arc its levels?
(c) What is the blocking variable? What arc its levels?

Answers

Final answer:

In the given study the response variable is the exam performance, the explanatory variable is the light level, and the blocking variable is the gender of the students.

Explanation:

In this study, the response variable is the exam performance of the students. This is what is being measured as an outcome. The explanatory variable is the light level. The different light levels (fluorescent overhead lighting, yellow overhead lighting, or no overhead light and only desk lamps) constitute the treatments are its levels. The blocking variable in this case is the gender of the students. By making sure that both males and females are equally represented in each treatment, the researcher is controlling for the effect of gender. The levels of this blocking variable are male and female.

Learn more about Experimental Design here:

https://brainly.com/question/33882594

#SPJ3

The study measures the effect of light level (explanatory variable) on student exam performance (response variable), with gender as a blocking variable. Lurking variables and study design elements like random assignment and blinding are crucial for maintaining the validity of the results.

a) In the study described, the response variable is the exam performance of the students. This variable will be measured to assess the impact of different lighting conditions on students' ability to perform on an exam.

b) The explanatory variable, or independent variable, is the type of lighting. The levels of this variable are fluorescent overhead lighting, yellow overhead lighting, and no overhead lighting (only desk lamps).

c) The blocking variable is gender. The researcher wants to make sure that both males and females are equally represented in each treatment to test the hypothesis that light levels might affect genders differently. The levels of this variable are simply male and female.

When selecting participants, it is important to consider random assignment to ensure that each treatment group is similar in all respects other than the treatment itself. The idea of dividing participants to drive without distraction and to text and drive could be problematic due to ethical considerations and the introduction of confounding variables.

Lurking variables that could interfere with the study on light levels might include the time of day the exam is taken, students' prior knowledge and preparation levels, or even the difficulty of the exam itself.

Blinding could be used by ensuring that the person measuring exam performance does not know which lighting condition the student was exposed to, thus preventing any bias in the evaluation of the exam performance.

Suppose that diameters of a new species of apple have a bell-shaped distribution with a mean of 7.25 cm and a standard deviation of 0.42 cm. Using the empirical rule, what percentage of the apples have diameters that are between 6.41cm and 8.09 cm?

Answers

Answer:

95%

Step-by-step explanation:

Upper limit = 8.09 cm

Lower limit = 6.41 cm

Distribution mean = 7.25 cm

Standard deviation = 0.42 cm

The number of standard deviations from the mean of the upper and lower limits are, respectively:

[tex]N_U=\frac{U-M}{SD} =\frac{8.09-7.25}{0.42}=2 \\N_L=\frac{M-L}{SD} =\frac{7.25-6.41}{0.42}=2[/tex]

Both limits are two standard deviations away from the mean.

According to the empirical rule, in normal distributions, 95% of the data falls within two standard deviations of the mean. Therefore, 95% of the apples have diameters that are between 6.41cm and 8.09 cm.

If a distribution has "fat tails," it exhibits A. positive skewness B. negative skewness C. a kurtosis of zero. D. excess kurtosis. E. positive skewness and kurtosis.

Answers

Answer: D. Excess Kurtosis

Step-by-step explanation:

A fat tailed distribution is a kind of probability distribution that exhibits excess kurtosis because it means the resulting numbers from the probability distribution are on a large scale power increment or very small/ slow decreeing order. This makes the graph on the distribution literally fat tailed and makes skewness in such distribution data extremely difficult to ascertain.

Final answer:

Fat tails in a distribution signify excess kurtosis, which signifies more extreme values or outliers than in a normal distribution. Neither positive skewness, negative skewness, nor a kurtosis of zero signify a distribution's 'fat tails'.

Explanation:

If a distribution has 'fat tails', it represents 'excess kurtosis'. This term is used to describe a distribution of data that features tails that are fatter and longer than in a normal distribution. This often means the distribution exhibits more extreme values or outliers. When a distribution has excess kurtosis, it has strong outliers.

Positive skewness, negative skewness, and a kurtosis of zero have no correlation with 'fat tails'. While skewness refers to the asymmetry of a distribution, and a kurtosis of zero refers to a normal distribution, neither of these refer to the concept of 'fat tails'.

So, Fat tails in a distribution signify excess kurtosis, not positive skewness, negative skewness, or a kurtosis of zero.

Learn more about Fat Tails in Distribution here:

https://brainly.com/question/18644702

#SPJ12

Calculate descriptive statistics for the variable (Coin) where each of the thirty-five students in the sample flipped a coin 10 times. Round your answers to three decimal places and write the mean and the standard deviation.

Answers

Answer:

Mean = 5; Standard Deviation: 1.5811

Step-by-step explanation:

Given Data:

number of times coin flipped = n = 10;

probability of each side of coin = p = 0.5;

Here mean is the product of number of times coin flipped and probability of each

m = n*p =10*0.5 = 5

Standard deviation is obtained by taking square root of product of n,p,q

St. Dev= [tex]\sqrt{npq}[/tex] = [tex]\sqrt{10*0.5*0.5}[/tex] = 1.5811

We have:

           Mean = 5         ;          Standard Deviation = 1.5811

the average cost of living in san francisco?

Answers

Step-by-step explanation:

The median rent for a one-bedroom apartment stands at $3,460 a month.

Also The estimated cost of annual necessities for a single person is $43,581 — or $3,632 a month, making it the most expensive city for single people to settle down in.

And For a family of four, expect to pay about $91,785 a year for necessities — that's $7,649 per month.

For a family of four, expect to pay about $91,785 a year for necessities — that's $7,649 per month.

Final answer:

Although exact data isn't provided, information on related costs such as average salary and gasoline prices suggest that the average cost of living in San Francisco is high.

Explanation:

The average cost of living in San Francisco is significantly higher than the national average. According to Numbeo, San Francisco's overall cost of living index is 176.89, which is 76.89% higher than the U.S. average of 100. This means that you can expect to pay about 77% more for goods and services in San Francisco than you would in the average American city.

However, we can infer that the cost of living is high, considering the mean starting salary for San Jose State University graduates, nearby to San Francisco, is at least $100,000 per year. This suggests that a significant income is required to support oneself in the Bay Area.

Other factors indirectly hint at the costs associated with San Francisco living. For instance, the average cost of unleaded gasoline in the Bay Area was once $4.59, which is notably high. These pieces of information, though incomplete, indicate a high cost of living.

Learn more about cost of living here:

https://brainly.com/question/31676598

#SPJ12

1) Let f(x)=ax2+bx+c for some value of a, b and c. f intersects the x-axis when x=−2 or x=3, and f( 1 3 )=−25. Find the values of a, b and c and sketch the graph of f(x).
2) A right prism has a base that is an equilateral triangle. The height of the prism is equal to the height of the base. If the volume of the prism is 81, what are the lengths of the sides of the base?
thank u sm

Answers

Answer:

1) a = -⅙, b = ⅙, c = 1

2) 6 units

Step-by-step explanation:

1) f(x) = ax² + bx + c

Given the roots, we can write this as:

f(x) = a (x + 2) (x − 3)

We know that f(13) = -25, so we can plug this in to find a:

-25 = a (13 + 2) (13 − 3)

-25 = 150a

a = -⅙

Therefore, the factored form is:

f(x) = -⅙ (x + 2) (x − 3)

Distributing:

f(x) = -⅙ (x² − x − 6)

f(x) = -⅙ x² + ⅙ x + 1

Graph: desmos.com/calculator/6m6tjoodvb

2) Volume of a right prism is area of the base times the height.

V = Ah

The base is an equilateral triangle.  Area of a triangle is one half the base times height.

V = ½ ab h

The height of the triangle is the same as the height of the prism.

V = ½ bh²

In an equilateral triangle, the height is equal to half the base times the square root of 3.

V = ½ b (½√3 b)²

V = ⅜ b³

Given that V = 81, solve for b.

81 = ⅜ b³

216 = b³

b = 6

Recursive definitions for subsets of binary strings.Give a recursive definition for the specified subset of the binary strings. A string r should be in the recursively defined set if and only if r has the property described. The set S is the set of all binary strings that are palindromes. A string is a palindrome if it is equal to its reverse. For example, 0110 and 11011 are both palindromes.

Answers

Answer:

Step-by-step explanation:

A binary string with 2n+1 number of zeros, then you can get a binary string with 2n(+1)+1 = 2n+3 number of zeros either by adding 2 zeros or 2 1's at any of the available 2n+2 positions. Way of making each of these two choices are (2n+2)22. So, basically if b2n+12n+1 is the number of binary string with 2n+1 zeros then your

b2n+32n+3 = 2 (2n+2)22 b2n+12n+1

your second case is basically the fact that if you have string of length n ending with zero than you can the string of length n+1 ending with zero by:

1. Either placing a 1 in available n places (because you can't place it at the end)

2. or by placing a zero in available n+1 places.

0 ϵ P

x ϵ P → 1x ϵ P , x1 ϵ P

x' ϵ P,x'' ϵ P → xx'x''ϵ P

A recursive definition for the set of binary string palindromes starts with the base cases '0' and '1'. Other palindromes can be obtained by nesting a palindrome between '0' and '0' or '1' and '1'.

A recursive definition for the set S, consisting of all binary strings that are palindromes, would be defined by two rules:

For the base cases, both '0' and '1' are in S. This covers the palindromes of length 1.

The inductive step would be: If 'P' is a string in S, then both '0P0' and '1P1' are in S. This allows us to generate palindromes of increasing lengths all the way to infinity.

By this definition, a string is a palindrome if it is the same when read from left to right and right to left. It starts with the simplest cases (single digit palindromes) and then defines how to build larger examples based on smaller ones.

Learn more about Recursive Definition here:

https://brainly.com/question/17158028

#SPJ12

Find the probability that the age of a randomly chosen American (a) is less than 20. (b) is between 20 and 49. (c) is greater than 49. (d) is greater than 29

Answers

Answer: i think its B

Step-by-step explanation:

How does hypothesis testing differ from constructing confidence intervals, in general? Read carefully.

Answers

Answer:

Step-by-step explanation:

Hypothesis testing invariably used to test a claim about a population parameter is widely used to check whether they hypothetical claim made is right.

For example, mean scores of a particular college is more than 75% is tested with hypothesis as setting null as equal to 75% and alternate >75%

Processes are done stepwise from the sample collected and conclusion made

Confidence interval on the other hand is the range of values within which the parameter is expected to lie at a certain confidence level

Estimated population parameter is provided for error known as margin of error depending upon the confidence level, and an interval is prepared which guarantees to the extent of confidence that parameters will fall within.

Hypothesis testing can be concluded with the use of confidence intervals also.

Calculate the sample standard deviation and sample variance for the following frequency distribution of heart rates for a sample of American adults. If necessary. round to one more decimal place than the largest number of decimal places given in the data. Heart Rates in Beats per Minute Class Frequency 61-6613 67-72 10 73-78 3 79-8411 85-90 3

Answers

Answer:

[tex] \bar X = \frac{\sum_{i=1}^5 x_i f_i}{n} = \frac{2906}{40}= 72.65[/tex]

[tex] s^2 = \frac{213856 -\frac{2906}{40}}{40-1}=70.131[/tex]

[tex] s = \sqrt{70.131}= 8.374[/tex]

Step-by-step explanation:

For this case we can calculate the expected value with the following table"

Class    Midpoint(xi)   Freq. (fi)       xi fi          xi^2 * fi

61-66     63.5                13             825.5      52419.5  

67-72     69.5               10              695        48302.5

73-78     75.5                3              226.5      17100.75

79-84     81.5                11              896.5      73064.75

85-90    87.5                3              262.5       22968.75

________________________________________________

Total                            40            2906          213856

For this case the midpoint is calculated as the average between the minimum and maximum point for each class.  

The expected value can be calculated with the following formula:

[tex] \bar X = \frac{\sum_{i=1}^5 x_i f_i}{n} = \frac{2906}{40}= 72.65[/tex]

For this case n =40 represent the total number of obervations given,  

And for the sample variance we can use the following formula:

[tex] s^2 = \frac{\sum x^2_i f_i -\frac{\sum x_i f_i}{n}}{n-1}[/tex]

And if we replace we got:

[tex] s^2 = \frac{213856 -\frac{2906}{40}}{40-1}=70.131[/tex]

And for the deviation we take the square root:

[tex] s = \sqrt{70.131}= 8.374[/tex]

Final answer:

To calculate the sample standard deviation and sample variance, first calculate the sample mean, then calculate the sample variance, and finally find the square root of the sample variance to get the sample standard deviation.

Explanation:

To calculate the sample standard deviation and sample variance for the given frequency distribution of heart rates, we need to follow these steps:

Create a chart to organize the data, frequencies, relative frequencies, and cumulative relative frequencies. Calculate the sample mean (average) by multiplying each heart rate value by its frequency, summing those products, and dividing by the total number of observations. Calculate the sample variance by finding the squared difference between each heart rate value and the mean, multiplying each squared difference by its frequency, summing those products, and dividing by the total number of observations minus 1. Calculate the sample standard deviation by taking the square root of the sample variance.

Using the provided data, the sample standard deviation and sample variance can be calculated as follows:

Sample mean = (65 * 13 + 69.5 * 10 + 75.5 * 3 + 81.5 * 11 + 87.5 * 3) / (13 + 10 + 3 + 11 + 3) ≈ 72.74

Sample variance = [(65 - 72.74)² * 13 + (69.5 - 72.74)² * 10 + (75.5 - 72.74)² * 3 + (81.5 - 72.74)² * 11 + (87.5 - 72.74)² * 3] / (13 + 10 + 3 + 11 + 3 - 1) ≈ 54.21

Sample standard deviation = √(54.21) ≈ 7.36

I need help please!!!!

Answers

Answer:

x = 14.48

Step-by-step explanation:

first we have to see that we have the measurements from all sides

and we know that the angle between side 21 and 20 is 90 degrees

well to start we have to know the relationships between angles, legs and the hypotenuse.

a: adjacent

o: opposite

h: hypotenuse

sin α = o/h

cos α= a/h

tan α = o/a

let's take the left angle as α

sin α = 21/29

α = sin^-1 (21/29)

α = sin^-1 (0.7241)  

α = 46.397

Now we do the same with the smaller triangle

tan α = o/a

sin 46.397  = x/20

0.724 = x/20

0.724 * 20 = x

14.48 = x

x = 14.48

if we want to check it we can do the same procedure with the other angle

How many pounds of oranges do the data in the plot line represent?

Answers

Answer:

OPTION C: [tex]$ \textbf{37} \frac{\textbf{28}}{\textbf{8}} $[/tex] pounds.

Step-by-step explanation:

From the figure we can see that there are three dots against [tex]$ 3 \frac{7}{8} $[/tex].

That means it becomes [tex]$ 3 \times 3\frac{7}{8} $[/tex].

Note that if there is a mixed fraction of the form [tex]$ a \frac{b}{c} $[/tex]   =   [tex]$ a + \frac{b}{c} $[/tex].

Therefore, [tex]$ 3 \times 3\frac{7}{8} = 3 \times \bigg(3 + \frac{7}{8} \bigg ) $[/tex]                ... (1)

Similarly, against 4 there are 2 dots.

So, it should be [tex]$ 4 \times 2 $[/tex] pounds.                   ...(2)

3 dots against [tex]$ 4 \frac{1}{8} $[/tex].

So, it becomes [tex]$ 3 \times \bigg(4 + \frac{1}{8} \bigg) $[/tex]                       ...(3)

Similarly, 2 dots against [tex]$ 4 + \frac{2}{8} $[/tex].

This will become [tex]$ 2 \times \bigg( 2 + \frac{2}{8} \bigg) $[/tex]                  ...(4)

Now, to calculate the total pound, we simply add (1), (2), (3) & (4).

⇒    [tex]$ 3 \times \bigg(3 + \frac{7}{8} \bigg ) $[/tex]     [tex]$ + $[/tex]      [tex]$ 4 \times 2 $[/tex]       +     [tex]$ 3 \times \bigg(4 + \frac{1}{8} \bigg) $[/tex]       [tex]$ + $[/tex]        [tex]$ 2 \times \bigg( 2 + \frac{2}{8} \bigg) $[/tex]

⇒    [tex]$ 9 + \frac{21}{8} + 8 + 12 + \frac{3}{8} + 8 + \frac{4}{8} $[/tex]

⇒    [tex]$ \bigg ( 9 + 8 + 12 + 8 \bigg) + \bigg( \frac{21 + 3 + 4}{8} \bigg ) $[/tex]

⇒ [tex]$ \textbf{37} \textbf {+} \frac{\textbf{28}}{\textbf{8}} $[/tex]  [tex]$ \textbf{=} \hspace{1mm} \textbf{37} \frac{\textbf{28}}{\textbf{8}} $[/tex] which is the required answer.

What does the term "expand" mean in mathematics?

I am NOT searching for "expanded form" or "distribute".

Answers

I think expanding means to remove the parentheses/brackets from a problem.

For example: Say we have the expression: 3 (4 + 5). I think expanding means to multiply 3, by every number in the parentheses. So that means:

(3 * 4) + (3 * 5) = 27.

Another way to think about it is to (if you're on paper) draw a line from 3, to all the numbers inside the parentheses. The line that connects from 3 to 4, is signaling for you to multiply 3 * 4 = 12. And the line from 3 to 5 = 3 * 5 = 15. And add them.

Final answer:

In mathematics, 'expand' refers to writing an expression in an extended form using distribution. This can result in a polynomial or an infinite series, as seen in binomial expansion or exponential arithmetic.

Explanation:

In mathematics, to expand means to increase the length of an expression by distributing multiplication over addition or subtraction. For example, expanding (a + b)(c + d) results in ac + ad + bc + bd. This does not change the value of the expression, but rather writes it in an alternative form that might be more useful for further operations, such as simplification or evaluation. Binomial expansion, specifically, refers to expressing a binomial raised to a power as a series of terms, using the binomial theorem, which can sometimes result in an infinite series or a polynomial of finite length. This expansion is applicable in situations like expanding (x + y)^n or when dealing with power series expansions of standard mathematical functions including exponential arithmetic where numbers are expressed as a product of a digit term and an exponential term such as in the notation 4.57 x 10^3.

The following probability distributions of jobsatisfaction scores for a sample of informationsystems (IS) senior executives and IS middle managersrange from a low of 1 (very dissatisfied) to a high of5 (very satisfied).Probability Job Satisfaction Score IS SeniorExecutives 1 .05 2 .093 .03 4 .425 .41IS Middle Managers.04.10.12.46.28a. What is the expected value of the job satisfactionscore for senior executives?b. What is the expected value of the job satisfactionscore for middle managers?c. Compute the variance of job satisfaction scores forexecutives and middle managers.d. Compute the standard deviation of job satisfactionscores for both probability distributions.e. Compare the overall job satisfaction of seniorexecutives and middle managers.

Answers

Answer:

a) 4.076

b) 3.9

c) variance for executives=1.128

variance for middle mangers=0.73

d)standard deviation for executives=1.062

standard deviation for middle mangers=0.854

e) Overall job satisfaction for senior executives is higher than middle manager.

Step-by-step explanation:

IS senior executives

Job Satisfaction       1    2          3       4     5

Probability          0.05 0.093 0.03 0.425 0.41

IS middle manager

Job Satisfaction  1       2    3        4    5

Probability         0.01 0.1 0.12 0.46 0.28

Let X denotes IS senior executive and Y denotes IS middle manager.

a)

E(X)=∑x*p(x)=1*0.05+2*0.093+3*0.03+4*0.425+5*0.41

E(X)=0.05+0.186+0.09+1.7+2.05

E(X)=4.076

b)

E(Y)=∑y*p(y)=1*0.1+2*0.1+3*0.12+4*0.46+5*0.28

E(Y)=0.1+0.2+0.36+1.84+1.4

E(Y)=3.9

c)

V(x)=∑x²*p(x)-(∑x*p(x))²

∑x²*p(x)=1*0.05+4*0.093+9*0.03+16*0.425+25*0.41

∑x²*p(x)=0.05+0.372+0.27+6.8+10.25

∑x²*p(x)=17.742

V(x)=17.742-(4.076)²

V(x)=1.128

V(y)=∑y²*p(y)-(∑y*p(y))²

∑y²*p(y)=1*0.1+4*0.1+9*0.12+16*0.46+25*0.28

∑y²*p(y)=0.1+0.4+1.08+7.36+7

∑y²*p(y)=15.94

V(y)=15.94-(3.9)²

V(y)=0.73

d)

S.D(x)=√V(x)

S.D(x)=√1.128

S.D(x)=1.062

S.D(y)=√V(y)

S.D(y)=0.854

e)

Overall job satisfaction for senior executives is more than middle manager as expected value of senior executives is greater than expected value of middle manger with relatively higher variability than middle manager.

In a box there are two coins: a standard coin with head and tail and a 2-headed coin. You randomly pick one of the coins, toss it and see a head. What is the probability that the other side of this coin is a head?

Answers

Answer:

Probability that the other side of this coin is a head = 0.5

Step-by-step explanation:

Given that there are two coins: a standard coin with head and tail and a 2 - headed coin.

When tossing a randomly chosen coin once the sample space obtained will be :

Head of a standard coin.Tail of a standard coin.Front Head side of 2-headed coin.Back Head side of 2-headed coin.

Now since we have to find the probability that the other side of this coin which is tossed is also a head which means probability of selecting a 2-headed coin.

From the above cases there are two outcomes which are in favour from total of four outcomes;

Hence, Probability that the other side of this coin is a head = [tex]\frac{1}{2}[/tex] = 0.5 .

special deck of cards has 20 cards. Nine are green, seven are blue, and four are red. When a card is picked, the color of it is recorded. An experiment consists of first picking a card and then tossing a coin. A. How many elements are there in the sample space? B. Let A be the event that a red card is picked first, followed by landing a tail on the coin toss. P(A) = Present your answer as a decimal number to 1 decimal place. C. Let B be the event that a green or blue is picked, followed by landing a tail on the coin toss. Are the events A and B mutually exclusive? D. Let C be the event that a green or red is picked, followed by landing a tail on the coin toss. Are the events A and C mutually exclusive?

Answers

Answer:

Step-by-step explanation:

Given that special deck of cards has 20 cards. Nine are green, seven are blue, and four are red. When a card is picked, the color of it is recorded. An experiment consists of first picking a card and then tossing a coin

A) Sample space will have Green, Head,  or Green, Tail .... Red, head, red, tail

No of elements in sample space = no of colours x no of outcomes in coin toss

= 4x2 = 8

B) A= getting (RT)

P(A) = Prob of getting red card and tail on coin

= P (R) *P(T)

=[tex]\frac{4}{20} *\frac{1}{2} \\=\frac{1}{10}[/tex]

C) B be the event that a green or blue is picked, followed by landing a tail on the coin toss

B = getting green card and tail

Getting green card tail is mutally exclusive with red card and tail as there is no common element between green and blue.

D) C= red or green card is picked followed by tail.

Here A and C have a common element as getting red and tail.  So not mutually exclusive

Final answer:

The sample space of the card and coin toss experiment consists of 40 elements. The probability of picking a red card followed by a tail coin toss is 0.1. Events A and B, as well as events A and C, are not mutually exclusive.

Explanation:

Probability in a Card and Coin Toss Experiment

When dealing with a special deck of cards and a subsequent coin toss, multiple steps are involved in determining outcomes and probabilities. As for the given student's question:

A). The sample space contains multiple elements based on the card colors and the side of the coin: each of the 20 cards can result in either heads or tails, creating a total of 40 possible outcomes.

B). For event A, where a red card is picked followed by a tails on the coin toss, the probability (P(A)) is calculated by dividing the number of successful outcomes by the number of total possibilities, resulting in P(A) = 4 (red cards) * 1 (tails outcome) / 40 (total outcomes) = 0.1.

C). Event A and event B are not mutually exclusive because event B involves picking either a green or blue card and also getting tails, which does not overlap with the specifics of event A.

D). Similarly, events A and C are not mutually exclusive. Although both involve picking a red card and landing a tail, event C also includes picking a green card, which does not interfere with the occurrence of event A.

Abby is buying a widescreen TV that she will hang on the wall between two windows. The windows are 36 inches apart, and wide screen TVs are approximately twice as wide as they are tall. Of the following, which is the longest that the diagonal of a widescreen TV can measure and still fit between the windows

Answers

Answer:

D < 40.2 inches

Step-by-step explanation:

The maximum width of the TV must be 36 inches. Since TVs are approximately twice as wide as they are tall, the maximum height is 18 inches.

The diagonal of a TV can be determined as a function of its width (w) and height (h) as follows:

[tex]d^2=h^2+w^2\\d=\sqrt{18^2+36^2}\\d= 40.2\ in[/tex]

Therefore, the diagonal must be at most 40.2 inches.

Since the answer choices were not provided with the question, you should choose the biggest value that is under 40.2 inches.

The maximum diagonal size of the widescreen TV that can fit between two windows 36 inches apart is slightly more than 40 inches, given that the TV has an aspect ratio where the width is about twice the height.

Let's denote the TV's width as w and the height as h. Given that widescreen TVs are about twice as wide as they are tall, we can express the width as w = 2h.

The diagonal d of the TV can be found using Pythagoras' theorem where d² = w² + h².

Substituting 2h for w, we get d² = (2h)² + h² which simplifies to d² = 4h² + h² and further to d² = 5h².

Thus, d = h√5.

If the space between windows is 36 inches, this would be the maximum width of the TV. Therefore, 36 = 2h which means that h = 18 inches. Using this height in the diagonal equation, we get d = 18√5 which is approximately 40.2 inches. This means the longest diagonal of the widescreen TV that can fit between the windows is slightly more than 40 inches.

The intelligence quotients (IQs) of 16 students from one area of a city showed a mean of 107 and a standard deviation of 10, while the IQs of 14 students from another area of the city showed a mean of 112 and a standard deviation of 8. Is there a significant difference between the IQs of the two groups at significance level of 0.01. What is the alternative hypothesis?

Answers

Answer:

No, there is no significant difference between the IQs of the two groups.Alternative Hypothesis is that the two groups have different IQs os students.

Step-by-step explanation:

We are provided that IQs of 16 students from one area of a city had a mean of 107 and a standard deviation of 10 while the IQs of 14 students from another area of the city had a mean of 112 and a standard deviation of 8.

And we have to check that is there a significant difference between the IQs of the two groups.

Firstly let,    Null Hypothesis, [tex]H_0[/tex] : The two groups have same IQs { [tex]\mu_1 = \mu_2[/tex] }

          Alternate Hypothesis, [tex]H_1[/tex] : The two groups have different IQs{ [tex]\mu_1 \neq \mu_2[/tex]}

Since we don't know about population standard deviations;

The test statistics we will use here will be ;

            [tex]\frac{(X_1bar - X_2bar)- (\mu_1 - \mu_2) }{s_p\sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] follows t distribution with [tex](n_1 + n_2 -2)[/tex] degree

                                                    of freedom { [tex]t_n__1 +n_2 - 2[/tex] }

 Here, [tex]X_1bar[/tex] = 107      [tex]X_2bar[/tex] = 112         [tex]s_1[/tex] = 10          [tex]s_2[/tex] = 8

           [tex]n_1[/tex] = 16                [tex]n_2[/tex] = 14

           [tex]s_p[/tex] = [tex]\sqrt{\frac{(n_1 - 1)*s_1^{2} + (n_2 -1)*s_2^{2} }{(n_1 + n_2 -2)} }[/tex] = 9.1261

  Test statistics = [tex]\frac{(107-112) - 0}{9.1261*\sqrt{\frac{1}{16} +\frac{1}{14} } }[/tex]  follows [tex]t_2_8[/tex]

                           = -1.50

Now at 1% level of significance t table is giving the critical value of -2.467 and our test statistics is higher than this means it does not fall in the rejection region so we will accept our null hypothesis and conclude that there is no significant difference between the IQs of the two groups.

Final answer:

This question can be addressed by conducting a two-sample t-test to determine if there is a significant difference between the mean intelligence quotients of students from two areas of a city. The steps include calculating pooled standard deviation, followed by standard error, calculating the t-score, and comparing it to a critical value. You can either reject or fail to reject the null hypothesis based on these results.

Explanation:

The question is asking if there is a significant difference in the mean intelligence quotients (IQs) of students between two areas of a city. Conducting a two-sample t-test can address this. First, let's define the null and alternative hypotheses.

Null Hypothesis (H₀): There is no significant difference between the two sets of IQ scores (mean1 = mean2).Alternative Hypothesis (Hᵃ): There is a significant difference between the two sets of IQ scores (mean1 ≠ mean2).

To perform this test, follow these steps:

Calculate the pooled standard deviation for the two samples.Use it to determine the standard error of the difference between the two means.Use these to calculate the t-score.Compare the t-score with the critical value for the t-distribution with a significance level of 0.01. If the t-score exceeds the critical value, you reject the null hypothesis, i.e., there's a significant difference in IQs between the areas of the city. While if it is less, the null hypothesis is not rejected, thus, no significant difference.

Remember, depending on the specific results, we may or may not find enough evidence to support the alternative hypothesis.

Learn more about Two-sample t-test here:

https://brainly.com/question/34691874

#SPJ3

According to the National Household Survey on Drug Use and Health, when asked in 2012, 41% of those aged 18 to 24 years used cigarettes in the past year, 9% used smokeless tobacco, 36.3% used illicit drugs, and 10.4% used pain relievers or sedatives. Explain why it is not correct to display these data in a pie chart.

a. The types of illicit drugs are not given.
b. There could be roundoff error.
c. The three groups do not add up to 100%.
d. There have to be more than three categorical variables.
e. There could be overlap between the groups.

Answers

Final answer:

The correct answer is c. The three groups do not add up to 100%. A pie chart is used to display the parts of a whole, where each category represents a proportion of the total. In this case, the categories of cigarette use, smokeless tobacco use, illicit drug use, and pain reliever/sedative use do not add up to 100% when combined. As a result, a pie chart would not accurately represent the data.

Explanation:

The correct answer is c. The three groups do not add up to 100%.

A pie chart is used to display the parts of a whole, where each category represents a proportion of the total. In this case, the categories of cigarette use, smokeless tobacco use, illicit drug use, and pain reliever/sedative use do not add up to 100% when combined. As a result, a pie chart would not accurately represent the data.

Write down the general zeroth order linear ordinary differential equation. Write down the general solution.

Answers

The zeroth derivative of a function [tex]y(x)[/tex] is simply the function itself, so the zeroth order linear ODE takes the general form

[tex]y(x)=f(x)[/tex]

whose solution is [tex]f(x)[/tex].

. During a year, the probability a structure will be damaged by an earthquake (A) is 0.02, that it will be damaged by a hurricane (B) is 0.03, and that it will be damaged by both is 0.007. What is the probability that it will not be damaged by a hurricane or an earthquake during that year?

Answers

Answer:

0.9506

Step-by-step explanation:

Pr(A) = 0.02

Pr(B) = 0.03

Pr(both) = 0.007

So,

Pr(Not A) = 1 - Pr(A)

               = 1 - 0.02

               = 0.98

Pr(Not B) = 1 - Pr(B)

               = 1 - 0.03

                = 0.97

Pr(Not by both) = 1 - Pr(both)

                          = 1 - 0.007

                          = 0.993

Thus,

Pr(Not B) or Pr(Not A) = 0.97 × 0.98

                                    = 0.9056

∴ the probability that the house would not be damaged by a hurricane or an earthquake during the year is 0.9506.

For each gym class a school has 10 soccer balls and 6 volleyballs all of the classes share 15 basketballs. The expression 10c+6c+15 represents the total number of balls the school has for c classes what is a simpler form of the expression

Answers

Answer:

[tex]16c+15[/tex]

Step-by-step explanation:

we have the expression

[tex]10c+6c+15[/tex]

step 1

We can simplify the expression by combining like terms. That is, the terms with the same variable

[tex](10c+6c)+15[/tex]

[tex]16c+15[/tex]

Answer: 16c+15

Step-by-step explanation:

Step 1

Write down the given expression (10c+6c)+15

Step 2

10+6 = 16c

So, 16c+15

Hope this helps! (✿◡‿◡)

A force of 10 lb is required to hold a spring stretched 2 in. beyond its natural length. How much work W is done in stretching it from its natural length to 5 in. beyond its natural length?

Answers

Answer:

Work done will be equal to 5.2059 lb-ft

Step-by-step explanation:

We have given force F = 10 lb

Spring is stretched to 2 in

So x = 2 in

As 1 inch = 0.0833 feet

So 2 inch = 2×0.0833 = 0.1666 feet

From hook's law we know that F = Kx , here K is spring constant and x is spring elongation

So [tex]10=K\times 0.1666[/tex]

K = 60.024 lb/feet

Now new elongation x = 5 in

So 5 in = 5×0.0833 = 0.4165 feet

Work done is given by [tex]W=\frac{1}{2}Kx^2[/tex]

So [tex]W=\frac{1}{2}\times 60.02\times 0.4165^2=5.205lb-ft[/tex]

So work done will be equal to 5.2059 lb-ft

Consider the following function.

f(x) = (4 − x)e−x

(a) Find the intervals of increase or decrease. (Enter your answers using interval notation.)

increasing
decreasing

(b) Find the intervals of concavity. (Enter your answers using interval notation. If an answer does not exist, enter DNE.)

concave up
concave down

(c) Find the point of inflection. (If an answer does not exist, enter DNE.)

(x, y) =

Answers

Answer:

a) decreases at interval (-∞,5) and  increases at (5,∞)

b)  is convave down at interval (-∞,6) an up at interval (6,∞)

c) f(x) has an inflexion point at x=6

Step-by-step explanation:

a) for the function

f(x) = (4 − x)*e^(−x)

then the derivative of f(x) indicates if the function decreases or increases. Thus

f'(x) =df(x)/dx = -e^(−x) -(4 − x)*e^(−x)= (x-5)*e^(−x)

since e^(−x) is always positive , then

f'(x) < 0 for x<5 → f(x) decreases when x<5 ( interval (-∞,5) )

f'(x) > 0 for x>5 → f(x) increases when x>5 ( interval (5,∞) )

f'(x) = 0 for x=5 → f(x) has a local minimum ( since first decreases and then increases)

b) the concavity is found with the second derivative of f(x) , then

f''(x) =d²f(x)/(dx)² = e^(−x) - (x-5)*e^(−x) = (6-x)*e^(−x)

then

f''(x) < 0 for x>6 → f(x) is convave up for x>6 ( interval (6,∞) )

f'(x) > 0 for x<6 → f(x) is concave down  when x<6 ( interval (-∞,6) )

f'(x) = 0 for x=6 → f(x) has an inflection point at x=6

Final answer:

The function f(x) = (4 - x)e^-x is decreasing on the interval (-∞, 1), increasing on (1, ∞), concave up on (2, ∞), concave down on (-∞, 2), and has its point of inflection at [tex](2, 2e^-^2).[/tex]

Explanation:

To find the intervals of increase or decrease, we first need to find the derivative f'(x) of the function f(x) = (4 - x)e-x. Using the product rule and chain rule, we find [tex]f'(x) = e-x - (x - 4)e-x.[/tex]

Setting f'(x) to zero and solving for x, we find the critical points x = 1 and x = 4. Using test points, we determine that the function is decreasing on (-∞, 1) and increasing on (1, ∞).

Next, we find the second derivative [tex]f''(x) = -2e-x + 2(x - 4)e-x[/tex] to determine concavity. Setting f''(x) equal to zero and solving for x, we find x = 2. Using test points, we find that the function is concave up on (2, ∞) and concave down on (-∞, 2). Since the function changes concavity at x = 2, this is the point of inflection.

Substituting x = 2 into the original function f(x), we find y = 2e-2, so the point of inflection is (2, 2e-2).

Learn more about Calculus here:

https://brainly.com/question/32512808

#SPJ11

Waiting in line. A quality - control manager at an amusement park feels that the amount of time that people spend waiting in line for the American Eagle roller coaster is too long. To determinate if a new loading/unloading procedure if efective in reducing wait time in line, he measured the amount of time (in minutes) people are waiting in line for 7 days. After implementing the new procedure, he again measures the amount of time in minutes and people are waiting in line 7 days and obtains the following data.

Wait time before new procedure
Day
Mon Tues Wed Thurs Fri Sat Sat Sun Sun
11.6 25.9 20.0 38.2 57.3 32.1 81.8 57.1 62.8

Wait time after new procedure
10.7 28.3 19.2 35.9 59.2 31.8 75.3 54.9 62.0

test the claim that the new loading/unloading procedure is effective in reducing wait time (H0: µd=0 and H1: µd<0)at α=.05 level of significance. Note: A normal probability plot and boxplot of the data indicate that the differences are approximately normally distributed with no outliers (use the classical approach and the p-value approach).

Answers

Answer:

No

explanation:

given:

n=9

[tex]\alpha[/tex]=0.05

see the attachment

Determine the sample mean of the differences. The mean is the sum of all values divided by the number of values.

d=0.9-2.4+0.8+...+6.5+2.2+0.8/9

 =1.0556

The variance is the sum of squared deviations from the mean divided by n-1. The standard deviation is the square root of the variance. Determine the sample standard deviation of the differences:  

s_d=√(0.9-1.0556)^2+...+(0.8-1.0556)^2/9-1

     =2.6

CLASSICAL APPROACH :

Given claim: new procedure reduces [tex]u_{d}[/tex] > 0  

The claim is either the null hypothesis or the alternative hypothesis The null hypothesis and the alternative hypothesis state the opposite of each other The null hypothesis needs to contain an equality  

[tex]H_{0}:u_{d}=0\\ H_{1}:u_{d}>0[/tex]

Determine the value of the test statistic

t=d-[tex]u_{d}[/tex]/s_d/√n

=1.220

Determine the critical value from the Student T distribution table in the appendix in the row with d_f = n- 1 = 9-1 = 8 and in the column with [tex]\alpha[/tex] = 0.05  t =1.860  

The rejection region then contains all values larger than 1.860  

If the value of the test statistic is within the failed region, then the null hypothesis is failed

1.220 < 1.860 failed H_0

There is not sufficient evidence to support the claim that the new loading/unloading procedure is effective in reducing the wait time.  

P VALUE APPROACH:

Given claim: new procedure reduces [tex]u_{d}[/tex]  > 0  

The claim is either the null hypothesis or the alternative hypothesis. The null hypothesis and the alternative hypothesis state the opposite of each other. The null hypothesis needs to contain an equality.  

[tex]H_{0}:u_{d}=0\\ H_{1}:u_{d}>0[/tex]

Determine the value of the test statistic:  

 t=d-[tex]u_{d}[/tex]/s_d/√n

The P-value is the probability of obtaining the value of the test statistic, or a value more extreme, assuming that the null hypothesis is true. The P-value is the number (or interval) in the column title of the Students T distribution in the appendix containing the t-value in the row d_f = n-1 = 9-1 = 8

0.10 < P < 0.15

If the P-value is less than the significance level, reject the null hypothesis.  

P > 0.05   failed H_0

There is not sufficient evidence to support the claim that the new loading unloading procedure is effective in reducing the wait time.  

dentify the type of data​ (qualitative/quantitative) and the level of measurement for the native language of survey respondents. Explain your choice. Native language Number of respondents English 759 Spanish 775 French 22 Are the data qualitative or​ quantitative? A. ​Quantitative, because descriptive terms are used to measure or classify the data. B. ​Qualitative, because descriptive terms are used to measure or classify the data. C. ​Qualitative, because numerical​ values, found by either measuring or​ counting, are used to describe the data. D. ​Quantitative, because numerical​ values, found by either measuring or​ counting, are used to describe the data.

Answers

Answer:

The correct option is D i.e. Quantitative because numerical values found by either measuring or counting are used to describe the data.

Step-by-step explanation:

As the number of respondents is a numerical value and is identified by counting thus it is a quantitative variable. Also all the other options are incorrect.

A is incorrect because the reason described is not the property of  quantitative data.

B is incorrect because the data is not described in descriptive terms.

C is incorrect because the reason described in not a property of qualitative data.

Other Questions
. Assume you have a dot grid with 36 dots per sq.in. How many acres are represented by each dot using the following map scales: (a) 330 ft. per in., (b) 25 chains per in., (c) 1 mile per in. Use substitution to determine the solution of the system of equations. y = 2x 7 2y x = 1 A.(1,0)B.(212,28) C.(6,52) D.(3,1) (5, 6) a solution to this system of equations? 12x 8y = 12 7x 6y = 1 Whats the answer to sin 36/85 As a college student, Lewis organized sit-ins at lunch counters in Tennessee. In a sit-in, activists protest by occupying a space. Sit-ins are examples of nonviolent direct action. In 1960, black protesters in North Carolina held sit-ins at segregated lunch counters reserved for white people only. The sit-ins quickly grew to become a coordinated campaign for civil rights led by college students. The sit-ins that Lewis organized were part of this larger effort taking place in 30 locations across seven states.Which of these is true of the sit-in movement?AThey began when John Lewis organized small protests in Tennessee.BThey were led by college students in several US states.CThey were organized by Dr. Martin Luther King Jr.DThey never spread beyond North Carolina. In January 2007, TJX disclosed that hackers had breached its credit card systems. The company reported that the attackers might have accessed credit card data going back to 2002. It reported that 45.7 million credit and debit card numbers might have been disclosed. At the time, the breach was believed to be the largest ever. Banks and customers sued TJX in connection with the breach. State governments also sued the company for failing to protect the credit card information of state residents. Given the nature of this breach, which federal agency opened an investigation?a. the Federal Trade Commissionb. the Federal Reserve Systemc. the Federal Deposit Insurance Corporationd. the Consumer Financial Protection Bureau Converging circuits with excitation and inhibition are associated most closely with which step of the perceptual process? Kairi spent $40.18 on CDs. Each CD cost the same amount. The sale tax was$2.33. Kairi also used a coupon for $1.00 off his purchase. How much did each CD cost? The Operations definition emphasizes decision, function and process elements of the organization. Briefly discuss the need to address these fundamental elements. What is 4f - 24 + 4f = -8 PLEASE HELP! ASSIGNMENT DUE TODAYAnswer the following prompts in complete sentences, using the rubric below to guide your thoughts. Be sure to include supporting details to back up your responses. Also, be sure to use proper grammar, spelling, and punctuation as well as include any resources you use.Need a graphic organizer? Click Here (Links to an external site.)Describe the characteristics of a stable society (30 points).Explain the relationship between energy and economic development (30 points).Explain some of the benefits of biotechnology (30 points).Citing sources (10 points) 3/8s of the students in Ms Mulls class ride the bus. If there are 24 students in the class how many students ride the bus? Your companion on a train ride through Illinois notices that telephone poles near the tracks appear to be passing by very quickly, while telephone poles in the distance are passing by much more slowly. This is an example of A friend asks you to help him steal a car so he can drive his roommate to a doctor's appointment. You refuse, reasoning that laws and rules are a part of society for a reason and you do not want to disrupt the status quo. According to Kohlberg's theory, you are using _______ reasoning A(n) ____ string contacts the data source and establishes a connection with the database using the Data Source Configuration Wizard. a. keyline b. connection c. linkage d. index A company collected data for the number of text messages sent and received using a text-message application since October 2011. The table shows the number of text messages sent and received in billions over time. The data can be modeled by a quadratic function. Which function best models the data?A. n(t) = -0.002t^2 + 0.55t + 5.02B. n(t) = 0.072t^2 - 0.15t + 2.73C. n(t) = -0.002t^2 + 5.02D. n(t) = 0.072t^2 + 2.73 Donato is 6 feet 2 inches tall. His sister is 68 inches tall. Donato is how many inches taller. which observation proves that a cell is eukaryote Tyler purchased and placed in service a rental house in May 2011 for $135,000, of which $35,000 was attributed to the land. Tyler sold the rental house in August 2018. How much will he deduct for depreciation in 2018 The number of House members for each state is determined by that states _____.A) governorB) tax revenuesC) unemployment rateD) population