Answer:
The hydrolysis rate is significantly low because the energy of the transition state for hydrolysis is significantly high
Explanation:
In the given problem, It was stated that the peptide bond is not stable thermodynamically. Peptide bonds are typically formed between molecules with carboxyl groups and molecules with amino groups. Therefore, it can be inferred that the hydrolysis rate is significantly low because the energy of the transition state for hydrolysis is significantly high.
C6H12O6 + 6O2 ---> 6H2O + 6CO2
How many electrons are transferred in the reaction represented by the balanced equation above?
Answer:
24e⁻ are transferred by the reaction of respiration.
Explanation:
C₆H₁₂O₆ + 6O₂ → 6 H₂O + 6CO₂
This is the reaction for the respiration process.
In this redox, oxygen acts with 0 in the oxidation state on the reactant side, and -2 in the product side - REDUCTION
Carbon acts with 0 in the glucose (cause it is neutral), on the reactant side and it has +4, on the product side - OXIDATION
6C → 6C⁴⁺ + 24e⁻
In reactant side we have a neutral carbon, so as in the product side we have a carbon with +4, it had to lose 4e⁻ to get oxidized, but we have 6 carbons, so finally carbon has lost 24 e⁻
6O⁻² + 6O₂ + 24e⁻ → 6O₂²⁻ + 6O⁻²
In reactant side, we have 6 oxygen from the glucose (oxidation state of -2) and the diatomic molecule, with no charge (ground state), so in the product side, we have the oxygen from the dioxide with -2 and the oxygen from the water, also with -2 at the oxidation state. Finally the global charge for the product side is -36, and in reactant side is -12, so it has to win 24 e⁻ (those that were released by the C) to be reduced.
Alcohol is a ______ drug that affects your coordination, judgment, perception, and emotional state.
Alcohol is a depressant drug that affects your coordination, judgment, perception, and emotional state.
A depressant drug is a type of psychoactive substance that slows down the activity of the central nervous system (CNS). It typically reduces brain function, resulting in a decrease in arousal, relaxation of muscles, and a sense of calmness.
Depressants can have various effects on the body and mind, including sedation, drowsiness, and reduced anxiety, and in higher doses, they can even induce sleep or unconsciousness. Alcohol is a common example of a depressant drug. Other examples include prescription medications like benzodiazepines (e.g., Valium, Xanax), barbiturates, and certain sleep aids.
Learn more about depressant drugs, here:
https://brainly.com/question/30829483
#SPJ12
Alcohol is a depressant drug, having the ability to affect coordination, judgment, perception, and emotional state by slowing down the central nervous system.
Explanation:Alcohol is a depressant drug that affects numerous systems in the body, including those that control coordination, judgment, perception, and emotional state. Alcohol's effects manifest in ways such as reduced motor control, impaired decision-making abilities, distorted sensory function, and variable mood changes. Alcohol, as a depressant, slows the central nervous system and alters a person’s perception, emotions, movement, vision, and hearing.
Learn more about Depressant Drugs here:https://brainly.com/question/34694019
#SPJ3
Which factor distinguishes a metallic bond from an ionic bond or a covalent bond?
a. the mobility of protons
b. the equal sharing of electrons
c. the unequal sharing of electrons
d. the mobility of electrons
Answer:
d. the mobility of electrons
Explanation:
Covalent bond is the bond which is formed with the sharing of the electrons between the two atoms which are taking place in the bond. It is generally formed between the atoms with similar electronegativity values.
Metallic bond is the bond which is formed by electrostatic attraction force between the positively charged metal ions and the conduction electrons.
Thus, in metallic bond, there is a formation of conduction band and the valence band where the electrons have mobility and have transitions in between them but in covalent bonding, the electrons are shared in the bond and are not mobile.
Answer:
D. the mobility of electrons
Which equation represents a conservation of charge? A) 2Fe3+ + Al 2Fe2+ + Al3+ B) 2Fe3+ + 2Al 3Fe2+ + 2Al3+ C) 3Fe3+ + 2Al 2Fe2+ + 2Al3+ D) 3Fe3+ + Al 3Fe2+ + Al3+
Answer: D
Explanation:
3Fe^3+ + Al ---> 3Fe^2+ + Al^3+
Total charge of reactants = 3 x +3 = +9
Total charge of products = (3 x +2) + (+3) = +9
Answer:
D
Explanation:
The AI generated answer is incorrect this update is very bad... The total charge of the reactants for option D is +9 because Al is by itself, meaning it has a charge of 0. (The AI said the total charge of the reactants was +10 which is wrong)
A valence electron from an arsenic atom might have an electron with the following set of quantum numbers in the ground state.
a. n= 4; L= 1; m1= 0; ms= +½
b. n= 4; L= 1; m1= 2; ms= â½
c. n= 3; L= 1; m1= 0; ms= +½
d. n= 5; L= 1; m1= â1; ms= â½
e. n= 4; L= 2; m1= +1; ms= +½
Answer:A
Explanation:
Arsenic is a p-block non-metal in group 15. It is found in the 4th period with electron configuration [Ar] 3d10 4s2 4p3
The outermost electrons are 4s2 4p3. The quantum number that fits an electron in the 4p orbital is option A
Since n=4,l=1, m= -1,0,1 ms=±1/2
During the flood recovery process, you should empty all containers that contain contaminated water and clean them with dilute chlorine bleach.A) TrueB) False
Answer:
True
Explanation:
True
As we know that quality of floodwater is highly poor therefore it is the utmost duty of everyone suffered from flood to clear all the container before use because it is needed to kill all bacteria that grow inside the container due to contact with floodwater. It may be have very high chances that the flood water may have contact with drainage water or sewage, therefore it is compulsion now to clan all container with dilute chlorine bleach
Chemical bonds are physical attractions between atoms resulting from the interaction of their electrons.
True or False?
Answer: The given statement is true.
Explanation:
Chemical bonds are defined as the bonds formed due to interaction of electrons of two same or different atoms. Basically, these electrons are physically attracted towards each other because of which either sharing or transfer of electrons tend to take place.
For example, Cl has 7 valence electrons and sodium has 1 valence electron. In order to gain stability when both sodium and chlorine will come closer then Cl will attract one electron from sodium leading to the formation of a new compound NaCl.
Thus, we can conclude that the statement chemical bonds are physical attractions between atoms resulting from the interaction of their electrons, is true.
Which of the following would be considered the most hazardous condition onboard a vessel
Answer: the most hazardous condition onboard a vessel is not having enough life jackets.
Explanation: a life jacket is a piece of equipment designed to assist a wearer to keep afloat in water in the event of an emergency and are considered life-saving equipment.
How many Cl- ions are there in 400.5 grams of AlCl3?
A. 9.000 ions
B. 1.500 X 10^-23 ions
C. 1.810 X 10^24 ions
D. 5.420 X 10^24 ions
Answer:
The answer to your question is letter A
Explanation:
Process
1.- Calculate the molecular mass of AlCl₃
Al = 1 x 27 = 27
Cl = 3 x 35.5 = 106.5
AlCl₃ = 27 + 106.5 = 133.5
2.- Find the number of ions of Cl using proportions
133.5 grams of AlCl₃ ------------- 3 ions of Chlorine
400.5 grams of AlCl₃ ------------ x
x = (400.5 x 3) / 133.5
x = 9
Answer:
d
Explanation:
the answer is d because when you solve it's d
What fraction of the carbon dioxide exhaled by animals is generated by the reactions of the citric acid cycle
The citric acid cycle, part of cellular respiration, introduces two carbon atoms per cycle that eventually become carbon dioxide. Considering a glucose molecule with six carbon atoms, it takes three turns of the cycle for all atoms to become carbon dioxide. However, not all exhaled carbon dioxide by animals is from the citric acid cycle, as a large fraction is formed from bicarbonate in the blood.
Explanation:The citric acid cycle (also known as the Krebs cycle) is a key component of cellular respiration, the process by which cells generate energy. At each turn of the cycle, two carbon atoms enter as part of an acetyl group. These two carbon atoms will eventually be released as carbon dioxide. However, this does not occur immediately on that cycle's turn, but on later turns. Therefore, for each glucose molecule, which consists of six carbon atoms, it takes three turns of the citric acid cycle to fully incorporate all carbon atoms into carbon dioxide.
Now, considering all the carbon dioxide exhaled by an animal, a large fraction (about 70 percent) is formed as bicarbonate in the blood, transported to the lungs, and then converted back to carbon dioxide to be exhaled. This implies that the reactions of the citric acid cycle generate a significant amount of the exhaled carbon dioxide, although not all of it.
Learn more about Citric Acid Cycle and Carbon Dioxide Production here:https://brainly.com/question/29819385
#SPJ12
The citric acid cycle is a crucial part of cellular respiration that generates a significant portion of the carbon dioxide exhaled by animals, with two carbon dioxide molecules released per acetyl-CoA oxidized.
Explanation:The fraction of carbon dioxide exhaled by animals that is produced by the citric acid cycle is significant, as this cycle is a key component of cellular respiration. During the citric acid cycle, which takes place in the mitochondria, acetyl-CoA is oxidized, producing electron carriers that later contribute to ATP synthesis during oxidative phosphorylation. Importantly, two molecules of carbon dioxide are released for each acetyl-CoA molecule that enters the cycle. Since glucose is broken down into two molecules of acetyl-CoA, this means four molecules of carbon dioxide are produced from one molecule of glucose during the citric acid cycle.
Moreover, animals rely heavily on both carbohydrates and lipids for energy, which are oxidized to produce carbon dioxide and water. Therefore, the citric acid cycle plays a fundamental role in the carbon dioxide that animals exhale. It is difficult to specify the exact fraction without considering carbon dioxide production from other metabolic pathways, but it is understood to be a substantial portion considering the overall metabolic process.
Learn more about Citric Acid Cycle here:https://brainly.com/question/31829777
#SPJ2
Luis is helping his parents paint a border around the walls of a room. He uses a stencil to repeat the same design on each wall to form one long grapevine with a bunch of grapes every foot along its length. What type of chemical reaction does this best model?
a. replacement.
b. decomposition.
c. polymerization.
d. synthesis.
Answer: c polymerization
Explanation:
Reactions are said to involve the reactants and the products. The type of reaction that involves the repetition of the same pattern over and again is said to be polymerization. Thus, option c is correct.
What is a polymerization reaction?The polymerization reaction is the type of reaction that occurs in the monomer molecules so that three-dimensional polymer chains of the macromolecules can be produced.
This type of reaction is common in carbohydrates where the single unit of sugar (monomer) undergoes changes to form the long chains of polymers by the addition or condensation process.
Luis is using the polymerization reaction as he is using the same stencil to draw over the pattern in a repetitive manner on the wall to make it look like a border or whole sequence.
Therefore, option c. the model best represents the polymerization reaction.
Learn more about polymerization here:
https://brainly.com/question/3611491
#SPJ6
Read the false statement. There are 18 periods in the periodic table. Which answer choice rewords the false statement so it is true?
a.There are 18 elements in each period of the periodic table.
b.There are 18 groups in the periodic table.
c.There are 8 periods in the periodic table.
d.There are 8 elements in each group of the periodic table.
There are 7 periods and 18 groups in a periodic table thus the statement that rewords the false statement so it is true is b.
Periodic table is a tabular arrangement of elements in the form of a table. In the periodic table, elements are arranged according to the modern periodic law which states that the properties of elements are a periodic function of their atomic numbers.
It is called as periodic because properties repeat after regular intervals of atomic numbers . It is a tabular arrangement consisting of seven horizontal rows called periods and eighteen vertical columns called groups.
Learn more about periodic table,here:
https://brainly.com/question/28747247
#SPJ3
Which is a cationic detergent having four organic groups attached to a nitrogen atom and used to sanitize utensils? Select one:
a. Propionic acid
b. Quaternary ammonium compound
c. Ethylene oxide
d. Methylene blue
Answer:B
Explanation:
A quaternary ammonium compound contains a nitrogen atom to which four atoms or groups are attached leaving a positive charge on the nitrogen. This compound is now cationic in nature and can be used as a cationic detergent.
The pyruvic acid from glycolysis can be converted to acetic acid, which can enter the citric acid cycle. Because this process is a cycle, the atoms entering the cycle must balance the atoms that leave. Consider carbon balance in the citric acid cycle. How many CO 2 molecules leave the cycle for each acetic acid molecule that enters? For this question, assume that carbon only enters as acetic acid and exits as CO 2 . Note that acetic acid has two carbon atoms. You can determine the number of carbon atoms in carbon dioxide from its formula, CO 2 .
Answer: 2CO2, 8CO2
Explanation:
During glycolysis one molecule of glucose is oxidized to two molecules of pyruvic acid (3 carbon molecule). Pyruvic acid is converted to acetyl CoA(2 carbon molecule) by the pyruvate dehydrogenase complex.
For each acetic acid that enters the citric acid cycle 2 molecules of CO2 is given off.
For one glucose molecule produces 2 acetyl CoA
2 acetyl groups + 6 NAD+ + 2 FAD + 2 ADP + 2 Pi yields 4 CO2 + 6 NADH + 6 H+ + 2 FADH2 + 2 ATP.
Hence 4 molecules of acetic acid is completely oxidized to 8 molecules of CO2.
Final answer:
Each acetic acid molecule that enters the citric acid cycle results in the release of two CO2 molecules, reflecting the removal of both carbon atoms originally present in the acetic acid.
Explanation:
The student's question pertains to how many molecules of carbon dioxide (CO2) are produced in the citric acid cycle for each acetic acid molecule that enters the cycle. Acetic acid, which becomes part of acetyl-CoA, has two carbon atoms.
During the citric acid cycle, each acetyl group (from the acetyl CoA) will eventually release all of its carbon atoms as CO2. Since each acetic acid molecule contributes two carbon atoms to the cycle, and each turn of the cycle produces two CO2 molecules, it follows that for each acetic acid molecule that enters, two CO2 molecules are released.
These CO2 molecules may not be the same ones that entered most recently, but over successive turns of the cycle, all carbon atoms are accounted for and released as CO2.
Which items contain plasma?
a. gelatin
b. lightning
c. a fluorescent light bulb
d. lava
Answer: Lightning and a fluorescent light bulb items contain plasma.
Explanation:
Plasma is defined as a state of matter which contains hot ionized gas having positively charged ions and negatively charged electrons.
For example, lightening and a fluorescent light bulb has plasma as the state of matter.
On the other hand, gelatin is a solid at room temperature as its molecules are closely packed to each other forming a fixed shape with fixed volume.
Lava is a molten rock which is actually present in liquid state.
Therefore, we can conclude that out of the given options both lightning and a fluorescent light bulb items contain plasma.
Answer: lightning
Explanation:
what is the molecular formula of a compound with an empiricla formula of ch and a molecular mass of 78
Answer:
C6H6
Explanation:
We can obtain the molecular formula from the empirical formula.
What we need do here is:
(CH)n = 78
The n shows the multiples of both element present in the actual compound. It can be seen that carbon and hydrogen have the same element ratio here. We then use the atomic masses of both elements to get the value of n. The atomic mass of carbon is 12 a.m.u while the atomic mass of hydrogen is 1 a.m.u
(1 + 12)n = 78
13n = 78
n = 78/13 = 6
The molecular formula is
(CH)n = (CH)6 = C6H6
[H3O+] [OH−] pH Acidic or Basic 3.5×10−3 _____ _____ _____ _____ 3.8×10−7 _____ _____ 1.8×10−9 _____ _____ _____ _____ _____ 7.15 _____[H3O+] [OH−] pH Acidic or Basic 3.5×10−3 _____ _____ _____ _____ 3.8×10−7 _____ _____ 1.8×10−9 _____ _____ _____ _____ _____ 7.15 _____
Answer:
See explanation below
Explanation:
I'm assuming this is a table you need to complete, so, you are not putting this in order, but I already found it in another place. let's do a little summary of the expressions we need to use in order to complete the chart.
To calculate pH we need the following expression:
pH = -log[H3O+] (1)
From this expression we can solve for [H3O+] in case we need it:
[H3O+] = 10^(-pH) (2)
When we have [OH-] we calculate the pOH and from there, the pH:
pOH = -log[OH-] (3)
and [OH-]:
[OH-] = 10^(-pOH) (4)
Finally to get the pH from pOH:
14 = pH + pOH
pH = 14 - pOH (5)
With these 5 expressions we can complete the chart. In picture 1, you have the actual chart.
To know if it's acidic or basic, that depends on the value of pH.
If pH <7 it's acidic
If pH >7 it's basic
If pH = 7 it's neutral
First case:
[H3O+] = 3.5x10^-3
pH = -log(3.5x10^-3) = 2.46 (acidic)
pOH = 14 - 2.46 = 11.54
[OH-] = 10^(-11.54) = 2.88x10^-12 M
Second case:
pOH = -log(3.8x10^-7) = 6.42
pH = 14 - 6.42 = 7.58 (it's basic)
[H3O+] = 10^(-7.58) = 2.63x10^-8 M
Third case:
pH = -log(1.8x10^-9) = 8.74 (it's basic)
pOH = 14 - 8.74 = 5.26
[OH-] = 10^(-5.26) = 5.5x10^-6 M
Fourth case:
[H3O+] = 10^(-7.15) =7.08x10^-8 M (Basic)
pOH = 14 - 7.15 = 6.85
[OH-] = 10^(-6.85) = 1.41x10^-7 M
Hope this can help you
To determine the missing pH values and whether the solutions are acidic or basic, apply the pH calculation formula and compare the resulting pH to 7. Solutions with a pH less than 7 are acidic, and those with a pH greater than 7 are basic.
Explanation:The student has provided various concentrations of hydronium ([H3O+]) and hydroxide ([OH-]) ions and is looking to complete the table with the missing values for pH and whether the solution is acidic or basic. To find the pH, use the formula: pH = -log[H3O+]. If the resulting pH is less than 7, the solution is acidic, and if it's greater than 7, the solution is basic. A solution is neutral if its pH is exactly 7.
Using this information, for a solution with [H3O+] = 3.5×10⁻³ M, calculate the pH and determine the acidity. Similarly, for [H3O+] = 3.8×10⁻⁷ M and [H3O+] = 1.8×10⁻⁹ M, calculate their pHs. The solution is considered acidic if [H3O+] > 1×10⁻⁷ M. For pH = 7.15, the solution is slightly basic because the pH is greater than 7.
A plasma-screen TV contains thousands of tiny cells filled with a mixture of Xe, Ne, and He gases that emits light of specific wavelengths when a voltage is applied. A particular plasma cell, 0.900 mm×0.300mm×10.0mm, contains 4.00%Xe in a 1:1 Ne : He mixture at a total pressure of 500. torr. Assumptions: In order to calculate total moles of gas and total atoms, we assumed a reasonable room temperature. Since '4.00% Xe' was not defined, we conveniently assumed mole percent. The 1:1 relationship of Ne to He is assumed to be by volume and not by mass.Part A) Calculate the number of Xe atoms in the cell. Part B) Calculate the number of Ne atoms in the cell. Part C) Calculate the number of He atoms in the cell.
Answer:
(a) 1.77*10^15 Xe atoms
(b) 2.10*10^16 Ne atoms
(c) 2.10*10^16 He atoms
Explanation:
Total V = 0.900 mm * 0.300mm * 10.0mm
Total V = 2.7mm cubed
Converting cubed to litres:
2.7mm cubed = 2.7 * 10^-6 Liters
Converting pressure from torr to atm,
(500 torr) * (1 atm ÷ 760 torr) = 0.6578947368 atm
Room temperature is assumed to be 21 degrees celcius, or 294.15 Kelvin
Applying Ideal Gas Equation:
PV = nRT
Therefore, n = PV ÷ RT,
n = [(2.7*10^-6 Liters)(.6578947368 atm)] ÷ [(0.08206)(294.15)]
n = 7.359017079 * 10^-8
Therefore, the total moles present in plasma is 7.359017079 * 10^-8.
(a) To find Xe atoms,
Multiply the total moles present by 4 percent. Therefore,
(7.359017079 * 10^-8)(.04) = 2.943606832*10^-9,
this value gives you Xe moles.
Then multiply by Avogadro's constant:
[(2.943606832*10^-9)(6.022*10^23)] = 1.77*10^15 Xe atoms
(b) and (c) are the same.
Using the total moles number we found in the beginning and minus the number of moles for Xe.
We have:
7.359017079 * 10^-8 - 2.943606832*10^-9 = 7.064656396*10^-8
And Since Ne and He are in a 1:1 ratio, divide this number by two.
We have:
7.064656396*10^-8 ÷ 2 = 3.532328198*10-8 moles
By multiplying this number by Avogadro's number we get atoms:
[(3.532328198*10-8 moles)(6.022*10^23)] = 2.10*10^16
Therefore, the answer for both (b) and (c) is 2.10*10^16.
Using the Ideal Gas Law and Avogadro's Law, along with the given pressure and compositional information, we can calculate the total number of Xenon, Neon, and Helium atoms in the given plasma cell.
Explanation:This question is asking for the calculation of the number of Xenon (Xe), Neon (Ne), and Helium (He) atoms within a plasma cell. Starting from the total pressure of the gas mixture, the Ideal Gas Law, which is PV = nRT (where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature), can be used to calculate the total moles of the gas mixture.
Here we assume standard ambient temperature, which is usually 298K. From that, we can calculate the total number of atoms in the cell using Avogadro’s Law, 1 mole = 6.022*10^23 atoms. Using the given percentage of Xe, and the 1:1 Ne:He ratio, we can determine the number of each atom respectively.
It's worth noting that factors like temperature and density indeed play a significant role in the behavior of gases and the calculation of moles and atoms. However, in this simplified scenario, these factors are either given or assumed to be standard.
Learn more about Ideal Gas Law & Avogadro's Law here:https://brainly.com/question/10511054
#SPJ3
For the reaction 2 SO 2 ( g ) + O 2 ( g ) − ⇀ ↽ − 2 SO 3 ( g ) the equilibrium constant is K c = 15 M − 1 at 850 K . Three sets of concentrations are given for the three gases in the reaction. For each set, predict the direction in which the net reaction will proceed toward equilibrium. Left No net reaction Right (SO2)=0.16M (SO2)=0.20M (SO2)=0.50M (O2)=0.20M (O2)=0.60M (O2)=0.60M (SO3)=0.50M (SO3)=0.60M (SO3)=0.15M
Answer:
2SO₂(g) + O₂(g) ↔ 2SO₃(g) Kc = 15M⁻¹
The sets are:
(A) (SO₂)=0.16M; (O₂)=0.20M; (SO₃)=0.50M
(B) (SO₂)=0.20M; (O₂)=0.60M; (SO₃)=0.60M
(C) (SO₂)=0.50M; (O₂)=0.60M; (SO₃)=0.15M
The reaction quotient is
Q = [tex]\frac{[SO_{3}]^2}{[SO_{2}]^{2}*[O_{2}] }[/tex]
If Q < Kc, then the reaction will proceed towards the right (products)If Q > Kc, then the reaction will proceed towards the left (reactants)If Q = Kc, then we're at equilibrium.Now we calculate Q for each of the sets:
(A) Q = 0.50² / (0.16²*0.20) = 48.8
Q > Kc. So the reaction will proceed towards the left.
(B) Q = 0.60² / (0.20²*0.60) = 15
Q = Kc. So the reaction is at equilibrium.
(C) Q = 0.15² / (0.50²*0.60) = 0.15
Q < Kc. So the reaction will proceed towards the right.
Which two carbohydrates have the most similar function?
A.starch and glycogen
B. starch and cellulose
C.glycogen and glucose
D.cellulose and glucose
Answer:
C.
Explanation:
C. Glucose is stored in the liver as glycogen.
Both A. Starch and glycogen have the most similar functions among the given carbohydrates.
Explanation:The two carbohydrates that have the most similar function are starch and glycogen. Both starch and glycogen are storage forms of glucose in plants and animals, respectively. They serve as a source of energy and are broken down into glucose when needed. Starch is found in plants, while glycogen is found in animals, but they both share the function of storing energy.
Thus, starch and glycogen serve similar functions as energy-storage molecules in living organisms. Both are polysaccharides composed of glucose units linked together. Plants store energy as starch, primarily in roots and seeds, while animals store energy as glycogen in the liver and muscles. These carbohydrates can be broken down to release glucose for energy when needed.
Learn more about Carbohydrates here:https://brainly.com/question/33874241
#SPJ3
how to predict sponteneity of reactions based on change in enthalpy entroy temperature
Explanation:
Formula for the prediction of sponteneity of a reaction is as follows:
[tex]\Delta G=\Delta H - T\Delta S[/tex]
Where,
ΔG = Change in free energy
ΔH = Change in enthalpy
ΔS = Change in entropy
T = Temperature
If,
ΔG = -ve, then the reaction will be spontaneous
ΔG = 0, then the reaction will be in equilibrium
ΔG = +ve, then the reaction will be non-spontaneous
Two sources of copper are cuprite, which has the IUPAC name copper(I) oxide, and malachite, which has the formula Cu2CO3(OH)2. Copper is used in home wiring and electric motors because it has good electrical conductivity. Other uses of copper not related to its electrical conductivity include coins, plumbing, roofing, and cooking pans.Aluminum is also used for cooking pans. At room temperature, the electrical conductivity of a copper wire is 1.6 times greater than an aluminum wire with the same length and cross-sectional area. At room temperature, the heat conductivity of copper is 1.8 times greater than the heat conductivity of aluminum. At STP, the density of copper is 3.3 times greater than the density of aluminum. Identify one physical property of aluminum that could make it a better choice than copper for a cooking pan.
Answer:
See explanation below
Explanation:
This is a four part question, however, I will answer only the question you are asking which is, the property of aluminum that could make a better choice over than copper for a cooking pan.
As it was stated in the question, Copper has a higher density than the aluminum, therefore, copper would weight more than aluminum, making more difficult to manage. Aluminum then, has less mass than copper, and this is more effective and comfortable to use rather than a copper pan, that weight more and it could be very noisy to manage, than an aluminum pan with the same size.
If density of copper is 3.3 times greater, means that the mass of copper is also 3.3 times greater, therefore, if an aluminum pan weights about 400 g, a copper pan will weight more than 1.2 kg, and that's more difficult to manage and for the use.
The constant motion of gas molecules causes diffusion and effusion. Diffusion is the gradual mixing of two substances resulting from the movement of their particles. Effusion is the gradual escape of gas molecules through microscopic holes in their container.
Which of the following statements are true?
Check all that apply.
The temperature of a gas sample is independent of the average kinetic energy.
All the gas molecules in a sample cannot have the same kinetic energy.
The average kinetic energy of gas molecules increases with increasing temperature.
There are gas molecules that move faster than the average.
The average speed of gas molecules decreases with decreasing temperature.
The average kinetic energy of gas molecules increases with increasing temperature. There are gas molecules that move faster than the average.
Explanation:Out of the given statements, the following are true:
The average kinetic energy of gas molecules increases with increasing temperature. As the temperature of a gas sample increases, the average kinetic energy of the gas molecules also increases. This is because temperature is directly proportional to the kinetic energy of the particles.There are gas molecules that move faster than the average. In a gas sample, there will always be some molecules that have higher speeds than the average speed. The speed of gas molecules follows a distribution, and there will be a range of speeds.Learn more about gas molecules here:https://brainly.com/question/31694304
#SPJ11
Which of the following molecules has an angular (bent) geometry that is commonly represented as a resonance hybrid of two or more electron-dot structures?
(A) CO2
(B) O3
(C) CH4
(D) BeF2
(E) OF2
Answer:B
Explanation:
Below is attached an image of ozone and the resonance structures. Ozone is an angular (Bent) molecule as seen in the image below. It is best described by resonance structures as shown.
From the options, the molecule that has an angular geometry and is commonly represented as a resonance hybrid is : ( B ) O₃
The Ozone gas is a reactive gas that is formed by the bonding of three oxygen atoms. it occurs in the atmosphere as man-made or natural gas. its geometry is angular as it is a resonance that represents the two or more electron dot structures ( combination of three oxygen atoms ).
Hence we can conclude that the molecule from the options above that has an angular geometry is the Ozone gas ( O₃ ).
Learn more : https://brainly.com/question/23186907
Solve the problems. Express your answers to the correct number of significant figures.
(2.08 x 10^3) x (3.11 x 10^2) = ____ x 10^5
Answer:
The value of the given expression in correct number of significant figures:
[tex](2.08\times 10^3)\times (3.11\times 10^2)[/tex]
= [/tex]6.47\times 10^5[/tex]
Explanation:
The rule apply for the multiplication and division is :
The least number of significant figures in any number of the problem determines the number of significant figures in the answer.
The rule apply for the addition and subtraction is :
The least precise number present after the decimal point determines the number of significant figures in the answer.
We have :
[tex](2.08\times 10^3)\times (3.11\times 10^2)[/tex]
[tex]=2.08\times 3.11\times 10^{3+2}[/tex]
[tex]=6.4688\times 10^5\approx 6.47\times 10^5[/tex]
The molarity of a sodium hydroxide (NaOH) solution is 0.2 M. The molar mass of NaOH is 40 g/mol. If the solution contains 20 g of sodium hydroxide dissolved in water, what is the volume of the solution? brainly
Answer:
[tex]\large \boxed{\text{2.5 L}}[/tex]
Explanation:
1. Calculate the moles of NaOH.
[tex]\text{Moles} = \text{20 g} \times \dfrac{\text{1 mol}}{\text{40 g}} = \text{0.50 mol}[/tex]
2. Calculate the volume of NaOH
[tex]\begin{array}{rcl}\\\text{Molar concentration} &= &\dfrac{\text{moles}}{\text{litres}}\\\\ n &= &\dfrac{c}{V}\\\\\dfrac{\text{0.2 mol}}{\text{1 L}} &=& \dfrac{\text{0.50 mol}}{V}\\\\ \dfrac{0.2V}{\text{1 L}} & = & 0.50\\\\0.2V &= & \text{0.50 L}\\V & = & \dfrac{\text{0.50 L}}{0.2}\\\\& = & \textbf{2.5 L}\\\end{array}\\\text{The volume of the solution is $\large \boxed{\textbf{2.5 L}}$}[/tex]
Answer:
The 0.2M NaOH solution has a volume of 2.5 L
Explanation:
Step 1: Data given
Molarity of a NaOH solution = 0.2 M
Molar mass of NaOH = 40 g/mol
Mass of NaOH = 20.00 grams
Step 2: Calculate moles of NaOH
Moles = mass / molar mass
Moles NaOH = 20.00 grams / 40 g/mol
Moles NaOH = 0.50 moles
Step 3: Calculate volume
Molarity = moles / volume
Volume of solution = moles of NaOH / Molarity
Volume of solution = 0.50 moles / 0.2 M
Volume of solution = 2.5 L
The 0.2M NaOH solution has a volume of 2.5 L
At a temperature of 274k, the gas in a cylinder has a volume of 4.0 liters. If the volume of the gas decrease to 2.0 liters, what mus the temperature be for the gas pressure to remain constant?
Answer:
The temperature will be 137 K for the gas pressure to remain constant
Explanation:
If the gas pressure keeps on constant, volume of the gas will be modified according to temperature.
V1 / T1 = V2 / T2
4L / 274K = 2L / T2
(4L / 274K) . T2 = 2L
T2 = 2L . (274K / 4L)
T2 = 137K
Which substances are moved from the glomerulus into the tubule due to hydrostatic pressure?
Answer: water and other small molecules
Explanation: the walls of the glomerulus is semipermeable permitting only the passage of water and other small molecules like, mineral salts, amino acids, glucose, urea. Large molecules like plasma protein, Platelets does not pass through the membrane.
Hydrostatic pressure in the glomerulus causes water, ions, glucose, amino acids, urea, and other small molecules to move into the nephron tubule by filtering blood plasma through large pores in capillary walls in the kidney.
Explanation:The substances moved from the glomerulus into the tubule due to hydrostatic pressure include water, ions, glucose, amino acids, urea, and other small molecules. The glomerular filtration is a process that occurs when glomerular hydrostatic pressure exceeds the luminal hydrostatic pressure of Bowman's capsule, overcoming the opposing osmotic pressure of the glomerular capillary to allow these substances to pass into the nephron tubule. Hydrostatic pressure is the driving force that filters the blood plasma through large-pored capillaries of the glomerulus, facilitated by the high blood pressure and flow through these capillaries.
What is the molarity (M) of a solution that contains .25 moles of a compound in 1.8 L of solution?
Answer:
The answer to your question is 0.14 M
Explanation:
Data
Molarity = ?
number of moles = 0.25
volume = 1.8 L
Formula
[tex]Molarity = \frac{number of moles}{volume}[/tex]
Substitution
[tex]Molarity = \frac{0.25}{1.8}[/tex]
Simplification and result
Molarity = 0.14 M
Which of the following criteria are used to determine if a substance is a neurotransmitter? I. The chemical must be synthesized in the neuron. II. When the neuron is active, the chemical is released and produces a response. III. Injection of the chemical mimics the effects of neuronal stimulation. IV. Mechanisms exist for the removal of the chemical.
Answer:
Explanation:
All of them. Dopamine is a neurotransmitter.
1. Dopamine is synthesized in the neuron by hydroxylating L-tyrosine via Tyrosine Kinase pathway.
2. Dopamine activates neuronal brain function.
3. Injection of L-DOPA mimics the dopamine and effects the same as neuronal stimulation.
4. Dopamine is converted to Adrenaline/Noradrenaline by Kinases and further removed from Kidneys by glucronidation.