Technician-A is correct. His statement: "In a parallel circuit, the more branches that are added, the more current flow increases." is technically true.
Technician-B is incorrect. His statement: "A series-parallel circuit is made of parallel branches only." is technically false.
The more branches a parallel circuit has the more current flow in the circuit therefore ; Technician A is correct while Technician B is wrong
In a parallel circuit the increase in branches will lead a corresponding increase in the amount of current flow through the circuit because the Total amount of current flowing through a parallel circuit is a summation of the individual currents flowing through the branches
i.e. [tex]I_{T} = I_{1} + I_{2} + I_{3}[/tex]
But A series-parallel circuit is made up of both parallel and series branches as the name implies therefore Technician B is wrong
Hence we can conclude that the more branches a parallel circuit has the more current flow in the circuit hence Technician A is correct.
Learn more : https://brainly.com/question/18022395
The energy gap for silicon at 300 k is 1.14 ev. (a) find the lowest frequency photon that will promote an electron in silicon from the valence band to the conduction band.
Answer:
[tex]2.74\cdot 10^{14} Hz[/tex]
Explanation:
First of all, let's convert the energy gap from eV to Joules:
[tex]E=1.14 eV \cdot (1.6\cdot 10^{-19}J/eV)=1.82\cdot 10^{-19}J[/tex]
In order to promote the electron to the conduction band, the electron must absorb a photon with an energy at least equal to the energy gap, so:
[tex]E=hf=1.82\cdot 10^{-19}J[/tex]
where
h is the Planck constant
f is the frequency of the photon
Solving for f, we find the lowest frequency needed:
[tex]f=\frac{E}{h}=\frac{1.82\cdot 10^{-19} J}{6.63\cdot 10^{-34}Js}=2.74\cdot 10^{14} Hz[/tex]
The lowest frequency photon that will promote an electron in silicon from the valence band to the conduction band is approximately 1.72 x 10^14 Hz.
Explanation:To find the lowest frequency photon that will promote an electron in silicon from the valence band to the conduction band, we need to determine the energy difference between the two bands. The energy gap for silicon at 300 K is given as 1.14 eV. Since energy is directly proportional to frequency, we can use the equation E = hf, where E is the energy, h is Planck's constant (6.63 x 10^-34 J s), and f is the frequency. Rearranging the equation gives f = E/h. Plugging in the energy gap for silicon and Planck's constant, we can calculate the lowest frequency photon.
f = (1.14 eV) / (6.63 x 10^-34 J s) = 1.72 x 10^14 Hz
Therefore, the lowest frequency photon that will promote an electron in silicon from the valence band to the conduction band is approximately 1.72 x 10^14 Hz.
Learn more about energy gap in silicon here:https://brainly.com/question/12593231
#SPJ3
Which of the following best explains why the night sky is dark?A. The universe has not always looked the way it looks today.B. The universe is not infinite in space.C. The distribution of matter in the universe is not uniform on very large scales.
Answer: The universe is not infinite in space
This question is known as the Olbers' Paradox, who in the 19th century posed a question similar to the following:
If the universe where we live is infinite, static, and uniformly populated with stars (similar to the distribution of trees in an immense forest where we would find a tree in whatever direction we observe), which have eternally existed; the light of all of them would intensely illuminate any point of space.
That is to say, we should see stars in any direction, no matter how far away they are and the celestial vault should be exaggeratedly bright.
But this is not the case, the night sky is dark and the universe too.
Why?
Well, although the standard cosmological model of the universe suggests that it is infinite, the observable universe is not.
In other words, the universe is finite.
Then, in a universe of limited size, even having a great quantity of stars and galaxies, all of them would not be enough to illuminate all the space.
In addition, there is another important point: Not only the universe is finite, also its age is; this means it had a beginning.
Hence, having a finite observable universe that is continuously expanding, distant stars and galaxies move away even further.
So, when we look at a star that is 1 million light years away, we are seeing the star as it was seen 1 million years ago.
This means that the amount of light that comes to us from distant stars decreases all the time.
Therefore the light from the most distant stars has not yet had enough time to reach us.
Answer:
It is B.
Explanation:
In an isometric exercise a person places a hand on a scale and pushes vertically downward, keeping the forearm horizontal. this is possible because the triceps muscle applies an upward force m perpendicular to the arm, as the drawing indicates. the forearm weighs 20.0 n and has a center of gravity as indicated. the scale registers 118 n. determine the magnitude of m.
this is possible because the triceps muscle applies an upward force m perpendicular to the arm, as the drawing indicates. the forearm weighs 20.0 n and has a center of gravity as indicated. the scale registers 118 n. the magnitude of m it run 10 miles.
What are the types of force ?Force is a parameter which can be used during pushing or pulling of any object resulting in the object’s interaction or movement, without force the object can not function properly and it can be stopped the direction.
Force is a quantitative property between two physical bodies, means an object and its environment, there are different types of forces in nature.
If an object in its moving state then that object will be static or motion, and The external push or pull upon the object called as Force.
The contact force types effort on an object such as Spring Force, Applied Force, Air Resistance Force, Normal Force, Tension Force, Frictional Force
Non-Contact forces are Electromagnetic Force, Gravitational Force, Nuclear Force
For more details Force, visit
brainly.com/question/13691251
#SPJ2
The magnitude of the triceps muscle force M needed to maintain static equilibrium of the forearm is 138 N, which balances the weight of the forearm and the force registered on the scale.
To solve for the magnitude of the force applied by the triceps muscle, M, we must take into account the principles of static equilibrium. In static equilibrium, the sum of all forces acting on the object is zero because it is not moving. Given that the forearm weighs 20.0 N, and the scale registers a downward force of 118 N, we know that there is an upward force required to balance the system and maintain equilibrium.
Let's establish an equation for the vertical forces acting on the forearm:
Downward forces: the weight of the forearm (20.0 N) plus the reading on the scale (118 N), totaling 138 N downwards.Upward force: this is the force applied by the triceps muscle, which we are trying to find (M).Since the forearm is in equilibrium, the upward force must balance the downward forces:
M = 138 N
Therefore, the magnitude of the force M applied by the triceps muscle is 138 N.
PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!! I CANNOT RETAKE THIS AND I NEED ALL CORRECT ANSWERS ONLY!!!
Look at the following diagram of two bar magnets and determine if the magnets will or will not connect (attract). Why is that the case?
Definitely B.
Unlike poles attract and like poles repeal
What structure on the south african coast has a range of 63 km and releases flashes every 30 seconds?
Answer:
Cape Point lighthouse
Explanation:
The lighthouse is located South of Cape Town, at a point where boats turn to go around the tip of Africa.
The new lighthouse has the most powerful light of all the lighthouses in South Africa, with a power of 10 megacandelas. That's why it's being visible for up to 63 km around.
It's a very important lighthouse helping to conduct the traffic around dangerous waters where 2 oceans meet.
Which of the following properties of a mass-on-a-spring system undergoing simple harmonic motion can be changed without affecting the frequency of oscillation?
Amplitude
Spring stillness
Oscillating mass
If we are talking about simple harmonic motion, we are talking about waves and in this case the frequency [tex]f[/tex] is related to the period of oscillation [tex]T[/tex] in an inverse proportion.
Now, for a mass-on-a-spring system the period is given by:
[tex]T=2\pi\sqrt{\frac{m}{k}}[/tex]
Where [tex]m[/tex] is the oscillating mass and [tex]k[/tex] the spring constant, which depends on the spring stillness.
As we can see in this equation:
If we change [tex]m[/tex] and [tex]k[/tex] we will affect the period, hence the frequency.
Nevertheless, we do not see any relation with the Amplitude, this means the period (hence the frequency) does not depend on the amplitude.
Which is a product of photosynthesis?
A)starch
B)glucose
C)water
D)carbon dioxide
*The product of photosynthesis is B) glucose because it makes glucose from the plant.
The products of photosynthesis are Glucose, Oxygen and water. Since oxygen and water exit through stomata, the main product is Glucose.
Answer: Option B
Explanation:
The solar energy is utilized to produce sugar in the process of photosynthesis. This process occurs in plants, bacteria's and protistans. In the photosynthesis process, the sunlight energy is transformed into some usable chemical energy. It is possible due to the pigment called chlorophyll which is green in color and present in plants.
Most time photosynthesis process makes use of water and releases oxygen as output. The leaves of the plants are the collector of solar. The intakes of photosynthesis process are carbon dioxide, water and the results are glucose and oxygen.
What properties does electrical resistance in a wire depend on?
Answer:
Explanation:
You can always figure out something to say about a question like this if you have a formula to work with. Likely you do.
There are many ways it can be written
R = k * L / A
So here's the answer.
Resistance = k which depends of the properties of the material used to make the wire * the Length of the wire divided by the cross sectional area of the wire.
The electrical resistance of anything depends on its physical dimensions (length and cross-section area of a wire), and the substance of which it's composed.
A farmer places unhatched chicken eggs under a heat lamp. How does the radiation help the eggs?
It keeps the area around the eggs cool until the eggs hatch.
It makes the eggs weaker so they are easier to break open.
It makes the eggs stronger so they do not break.
It keeps the eggs warm until they hatch.
It keeps the eggs warm until they hatch is your answer
1. Which biome has a large canopy?
2. Which biome contains mostly deciduous trees?
3. Which biome is also known as a prairie?
4. Which biome has cold, dark winters, and sunny cool summers?
1) Tropical rain forest
2) Temperate deciduous forest
3) Temperate grassland
4) Temperate grassland
The image of an object in a flat mirror is always the same _____ as the object.
Size. The answer is size.
How do isotopes of an element differ?
Answer: Isotopes of an element will contain the same number of protons and electrons but will differ in the number of neutrons they contain. In other words, isotopes have the same atomic number because they are the same element but have a different atomic mass because they contain a different number of neutrons.
What is the energy in joules of a mole of photons associated with visible light of wavelength 486 nm?
Answer:
[tex]2.46\cdot 10^5 J[/tex]
Explanation:
The enegy of a single photon is given by:
[tex]E=\frac{hc}{\lambda}[/tex]
where
h is the Planck costant
c is the speed of light
[tex]\lambda[/tex] is the wavelength of the photon
In this problem,
[tex]\lambda=486 nm=4.86\cdot 10^{-7}m[/tex]
so the energy of one photon is
[tex]E_1=\frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{4.86\cdot 10^{-7}m}=4.09\cdot 10^{-19} J[/tex]
1 mole of photons contains a number of Avogadro of photons:
[tex]N_A = 6.022\cdot 10^{23}[/tex]
therefore, the total energy of 1 mole of these photons will be
[tex]E=N_A E_1 = (6.022\cdot 10^{23})(4.09\cdot 10^{-19} J)=2.46\cdot 10^5 J[/tex]
The energy of a mole of photons with a wavelength of 486 nm is 2.462 x 10^5 joules, calculated by applying Planck's equation and using Avogadro's number.
Explanation:The energy in joules of a mole of photons associated with visible light of wavelength 486 nm can be calculated using Planck's equation, E = hc/\u03bb, where h is Planck's constant (6.626 x 10-34 J·s), c is the speed of light (3.00 x 108 m/s), and \u03bb is the wavelength of the light (486 nm or 486 x 10-9 m). To find the energy per mole of photons, we also use Avogadro's number (6.022 x 1023 photons/mole).
First, calculate the energy of one photon:
E = hc/\u03bb = (6.626 x 10-34 J·s) (3.00 x 108 m/s) / (486 x 10-9 m) = 4.09 x 10-19 J/photon
Then, calculate the energy per mole of photons:
Emole = E · Avogadro's number = 4.09 x 10-19 J/photon x 6.022 x 1023 photons/mole = 2.462 x 105 J/mole
Therefore, the energy of a mole of photons at 486 nm is 2.462 x 105 joules.
Learn more about Photon Energy Calculation here:https://brainly.com/question/32774704
#SPJ12
A 200 mW horizontally polarized laser beam passes through a polarizing filter whose axis is 25∘ from vertical.
What is the power of the laser beam as it emerges from the filter?
answer needs to be in mW
Answer:
35.7 mW
Explanation:
The intensity of light after passing through a polarizer is given by
[tex]I=I_0 cos^2 \theta[/tex]
where
[tex]I_0[/tex] is the initial intensity of the light
[tex]\theta[/tex] is the angle between the direction of polarization of the initial light and the transmission axis of the polarizing filter
Keeping in mind that the power is directly proportional to the intensity:
[tex]P \propto I[/tex]
we can rewrite the previous equation as
[tex]P=P_0 cos^2 \theta[/tex]
where we have
[tex]P_0 = 200 mW[/tex]
[tex]\theta=90^{\circ}-25^{\circ}=65^{\circ}[/tex] (because the initial light is horizontally polarized, while the axis of the filter is 25 degrees from the vertical
So, the power of the laser beam emerging from the filter is
[tex]P=(200 mW) cos^2 65^{\circ}=35.7 mW[/tex]
The power of the laser beam as it emerges from the polarizer is approximately 35.7 mW, as calculated using Malus's Law.
Explanation:The power P' of a light beam after passing through a polarizer can be determined by Malus's Law:
P' = P cos^2(θ),
where P is the initial power of the light, θ is the angle between the light's initial polarization direction and the axis of the polarizer.
In this case, the light is horizontally polarized and the axis of the polarizer is 25° from vertical, so the angle θ we need is the complement of 25°, which is 65° (since 90° - 25° = 65°).
Plug in the given values: P = 200 mW and θ = 65° into the equation, we get:
P' = 200 cos^2(65°)
Solving this you get: P' = 35.7 mW
Learn more about Polarization here:https://brainly.com/question/25535837
#SPJ11
A 4000-? resistor is connected across a 220-V power source. What current will flow through the resistor?
Answer:
55 mA
Explanation:
Ohm's law states:
V = IR
where V is voltage, I is current, and R is resistance.
220 V = I (4000 Ω)
I = 0.055 A
I = 55 mA
Suppose you measure the parallax angle for a particular star to be 0.1 arcsecond. The distance to this star is
A) 10 light-years.B) 10 parsecs.C) 0.1 light-year.D) 0.1 parsec.E) impossible to determine.
Answer:
B) 10 parsecs
Explanation:
The distance of a star measured with the parallax method is given by:
[tex]d=\frac{1}{\theta}[/tex]
where
d is the distance, in Parsec
[tex]\theta[/tex] is the parallax angle, in arcseconds
For the star in the problem, the parallax angle is
[tex]\theta=0.1''[/tex]
therefore, the distance of the star is
[tex]d=\frac{1}{0.1''}=10 pc[/tex]
so, 10 parsecs.
Why is the answer B?
Answer:
Explanation:
The center of mass lies on a line that joins position 4 of one start with position 4 of the other star. The shortest distance between these two points will produce the largest velocity. You are using F = m v^2/R
Small R = large force.
Large Force = increased speed.
The masses don't have any effect on the outcome: they remain constant.
Which of the following is a true statement about virtual images? O You cannot see a virtual image. A virtual image must be larger than the object A virtual image is formed at the position from which the rays appear to have originated A virtual image must be upside down
Answer:
A virtual image is formed at the position from which the rays appear to have originated
Explanation:
When using lenses or mirrors to produce the image of an object, two types of images can be produced:
- Real image: a real image is produced when the rays of light actually converge to a point - in this case, the image can be projected on a screen. For a lens, a real image is located on the opposite side of the lens relative to the object, while for a mirror, a real image lies on the same side of the object with respect to the mirror
- Virtual image: a virtual image is formed at the position from which the rays appear to have originated. Because of that, a virtual image cannot physically be projected on a screen. For a mirror, a virtual image is located on the opposite side of the mirror relative to the object, while for a lens, a virtual image lies on the same side of the object with respect to the lens.
Which resistors in the circuit must have the same amount of charge passing through each second?
Resistors 'C' and 'D' are in series. There's only one possible route for current to flow through them.
Every electron that flows through one of them has to flow through the other one.
The current (amount of charge per second) must be the same in 'C' and 'D', no matter how many ohms of resistance either one may have. (answer-choice B)
Answer:
C & D
Explanation:
physics s2
Explain how planes achieve flight using terminology appropriate for a five year old child.
Answer: the air makes it go WHOOSH!!
Explanation:
just kidding. the air pushes the wings up because of the way they are shaped. this creates lift.
When all of these things work together(mentioned below), the big heavy piece of metal becomes a plane that can fly high up in the sky!
What is an Aeronautics?Aeronautics is the science of designing planes and other flying machines. Aeronautical engineers must understand four fundamental areas in order to design planes. Engineers must understand all of these elements in order to design a plane.
A plane uses something called "air pushing it up" to help it fly. This air pushing is called "lift." The wings of the plane are shaped like long, flat feathers that help create lift.
Another way the plane flies is by using its engine to make a strong "whoosh" of air that moves the plane forward. This strong "whoosh" of air is called "thrust."
And finally, the plane uses its tail to help it steer and balance, just like a bird uses its tail to help it fly straight.
So, when all of these things work together, the big heavy piece of metal becomes a plane that can fly high up in the sky.
Learn more about aeronautics here:
https://brainly.com/question/14371982
#SPJ6
PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!! I CANNOT RETAKE THIS AND I NEED ALL CORRECT ANSWERS ONLY!!!
The purpose of a cell (battery) is to:
C is the answer
you got right
D) store chemical energy and transfer it to electrical energy when a circuit is connected.
Hope this helps chu
Have a great day ♡♡
PLEASE HELP!!! Multiple choice!!!
If you had two identical magnets and put them together so that one of the south poles was in contact with the other's north pole, what would you have?
A. one magnet with a stronger north pole
B. one magnet with a stronger south pole
C. one magnet with a north pole and a south pole
D. no magnet since the two smaller magnets would lose their magnetism when combined to form a larger magnet
Answer:
C. one magnet with a north pole and a south pole
Explanation:
Linh builds a circuit from the diagram shown. Which bulb could Linh remove from the circuit to make all of the other bulbs stop shining?
1
2
3
4
Answer:
4
Explanation:
In order for the current to continue flowing through the circuit (and for the bulbs to continue shining), there must be a closed path containing the battery where current can flow. Let's see the effect of removing each bulb on the circuit:
- 1: when removing bulb 1 only, the current can still flow through the path battery-bulb 3- bulb 4
- 2: when removing bulb 2 only, the current can still flow through the path battery-bulb 3- bulb 4
- 3: when removing bulb 3 only, the current can still flow through the path battery-bulb 1-bulb 2- bulb 4
- 4: when removing bulb 4 only, the current can no longer flow. In fact, there is no closed path that contains the battery now, so the current will not flow and all the bulbs will stop shining.
Answer:
4
Explanation:
It is a parrallel circuit
4.6 billion years ago the earth is created from what
I'm not positive but if I'm reading the question right it would be the big bang sorry if I'm wrong
which is the correct path of light through a reflecting telescope?
A). Primary Mirror--->eyepiece--->secondary mirror--->eye
B). Primary mirror--->secondary mirror--->eyepiece--->eye
C). Secondary Mirror--->Primary Mirror--->Eye--->Eyepiece
Eyepiece--->Primary Mirror--->Secondary Mirror--->eye
The correct path of light through a reflecting telescope will be Primary mirror--->secondary mirror--->eyepiece--->eye.
What is reflecting telescope?A reflecting telescope (also called a reflector) is a telescope that uses a single or a combination of curved mirrors that reflect light and form an image
it is a design that allows for very large diameter objectives. Almost all of the major telescopes used in astronomy research are reflectors.
Reflecting telescopes come in many design variations and may employ extra optical elements to improve image quality or place the image in a mechanically advantageous position.
A curved primary mirror is the reflector telescope's basic optical element that creates an image at the focal plane. The distance from the mirror to the focal plane is called the focal length.
Film or a digital sensor may be located here to record the image, or a secondary mirror may be added to modify the optical characteristics and/or redirect the light to film, digital sensors, or an eyepiece for visual observation.
To know more about Reflecting telescope follow
https://brainly.com/question/4691924
A solid ball of radius rb has a uniform charge density ρ.
Part A
What is the magnitude of the electric field E(r) at a distance r>rb from the center of the ball?
Express your answer in terms of ρ, rb, r, and ϵ0.
Part B
What is the magnitude of the electric field E(r) at a distance r
Express your answer in terms of ρ, r, rb, and ϵ0.
Part C
Let E(r) represent the electric field due to the charged ball throughout all of space. Which of the following statements about the electric field are true?
Check all that apply.
E(0)=0.
E(rb)=0.
limr→∞E(r)=0.
The maximum electric field occurs when r=0.
The maximum electric field occurs when r=rb.
The maximum electric field occurs as r→∞.
A) [tex]E(r) = \frac{\rho r_b^3}{3 \epsilon_0 r^2}[/tex]
In this problem we have spherical symmetry, so we can apply Gauss theorem to find the magnitude of the electric field:
[tex]\int E(r) \cdot dr = \frac{q}{\epsilon_0}[/tex]
where the term on the left is the flux of the electric field through the gaussian surface, and q is the charge contained in the surface.
Here we are analyzing the field at a distance [tex]r>r_B[/tex], so outside the solid ball. If we take a gaussian sphere with radius r, we can rewrite the equation above as:
[tex]E(r) \cdot 4 \pi r^2 = \frac{q}{\epsilon_0}[/tex] (1)
where [tex]4 \pi r^2[/tex] is the surface of the sphere.
The charge contained in the sphere, q, is equal to the charge density [tex]\rho[/tex] times the volume of the solid ball, [tex]\frac{4}{3}\pi r_b^3[/tex]:
[tex]q= \rho (\frac{4}{3}\pi r_b^3)[/tex] (2)
Combining (1) and (2), we find
[tex]E(r) \cdot 4 \pi r^2 = \frac{4\rho \pi r_b^3}{3 \epsilon_0}\\E(r) = \frac{\rho r_b^3}{3 \epsilon_0 r^2}[/tex]
And we see that the electric field strength is inversely proportional to the square of the distance, r.
B) [tex]\frac{\rho r}{3 \epsilon_0}[/tex]
Now we are inside the solid ball: [tex]r<r_B[/tex]. By taking a gaussian sphere with radius r, the Gauss theorem becomes
[tex]E(r) \cdot 4 \pi r^2 = \frac{q}{\epsilon_0}[/tex] (1)
But this time, the charge q is only the charge inside the gaussian sphere of radius r, so
[tex]q= \rho (\frac{4}{3}\pi r^3)[/tex] (2)
Combining (1) and (2), we find
[tex]E(r) \cdot 4 \pi r^2 = \frac{4\rho \pi r^3}{3 \epsilon_0}\\E(r) = \frac{\rho r}{3 \epsilon_0}[/tex]
And we see that this time the electric field strength is proportional to r.
C)
E(0)=0.
limr→∞E(r)=0.
The maximum electric field occurs when r=rb.
Explanation:
From part A) and B), we observed that
- The electric field inside the solid ball ([tex]r<r_B[/tex]) is
[tex]\frac{\rho r}{3 \epsilon_0}[/tex] (1)
so it increases linearly with r
- The electric field outside the solid ball ([tex]r>r_B[/tex]) is
[tex]E(r) = \frac{\rho r_b^3}{3 \epsilon_0 r^2}[/tex] (2)
so it decreases quadratically with r
--> This implies that:
1) At r=0, the electric field is 0, because if we substitute r=0 inside eq.(1), we find E(0)=0
2) For r→∞, the electric field tends to zero as well, because according to eq.(2), the electric field strength decreases with the distance r
3) The maximum electric field occur for [tex]r=r_B[/tex], i.e. on the surface of the solid ball: in fact, for [tex]r<r_B[/tex] the electric field increases with distance, while for [tex]r>r_B[/tex] the field decreases with distance, so the maximum value of the field is for [tex]r=r_B[/tex].
The magnitude of the electric field E(r) at a distance r>rb and r from the center of a solid ball with uniform charge density can be calculated using the same formula. The electric field is zero at the center and surface of the ball, and approaches zero as r tends to infinity.
Explanation:Part A:
The magnitude of the electric field E(r) at a distance r>rb from the center of the ball can be calculated using the formula:
E(r) = (ρ * (4/3) * π * rb³) / (4 * π * ϵ0 * r²)
Part B:
The magnitude of the electric field E(r) at a distance r from the center of the ball can be calculated using the formula:
E(r) = (ρ * (4/3) * π * rb³) / (4 * π * ϵ0 * r²)
Part C:
Based on the formulas provided, the following statements about the electric field are true:
E(0)=0 is true. The electric field at the center of the ball is zero.E(rb)=0 is true. The electric field at the surface of the ball is zero.limr→∞E(r)=0 is true. The electric field approaches zero as r tends to infinity.Learn more about Magnitudes of electric field here:https://brainly.com/question/28561944
#SP3
You did 130 J of work lifting a 100 N backpack. How high did you lift the backpack?
Answer:
1.3 m
Explanation:
The work done in lifting the backpack is equal to the change in gravitational potential energy of the backpack, so:
[tex]\Delta U=W \Delta h[/tex]
where
W = 100 N is the weight of the backpack
[tex]\Delta h[/tex] is the change in heigth of the object
In this problem, we know that
[tex]\Delta U = 130 J[/tex]
so we can re-arrange the equation to find the change in height of the backpack:
[tex]\Delta h = \frac{\Delta U}{W}=\frac{130 J}{100 N}=1.3 m[/tex]
When a fish expands its air bladder, the density of the fish
decreases.increases. remains the same.none of the above
Every substance, body or material has mass and volume, however the mass of different substances occupy different volumes.
This is where density [tex]D[/tex] appears as a physical characteristic property of matter that establishes a relationship between the mass [tex]m[/tex] of a body or substance and the volume [tex]V[/tex] it occupies.
[tex]D=\frac{m}{V}[/tex]
So, according to this equation, the density is inversely ptoportional to the volume:
If the volume increases, the density decreases.
This is what a fish does to have buoyancy, since the density of a body is related to its buoyancy:
A body will float on another fluid if its density is lower.
This is what the fish does when it expands its air bladder, incrementing its volume, hence decreasing its density.
why is radiation often used to destroy cancer cells ?
A) Radiation only targets cancer cells, not healthy cells.
B) Radiation is a tracer that pick out cancer cells to destroy.
C) Because cancer cells divide more quickly than normal cells, they are very susceptible to radiation.
D) Radiation is the only defense that people have to fight cancer.
Answer:
C
Explanation:
Radiation affects both cancer cells and healthy cells, but it affects cancer cells more.
Radiation is often used in cancer treatment because the rapid cell division of cancer cells makes them vulnerable to radiation damage. These cells often cannot repair this damage as effectively as healthy cells, leading to their destruction. However, radiation is not the only method for fighting cancer.
Explanation:Radiation is often used to destroy cancer cells because, in general, cancer cells divide more rapidly than normal cells, which makes them more susceptible to the damaging effects of radiation. This is the reason behind the option (C). While radiation does affect both cancerous and healthy cells, the quick division of cancer cells often makes them more vulnerable to being damaged by the radiation. However, they often cannot repair this damage as effectively as healthy cells can. Consequently, the cancer cells are destroyed, with minimal effect on the healthy cells. It's important to note that radiation is not the only method to fight cancer as stated in option (D). Other methods include surgery, chemotherapy, and immunotherapy. Furthermore, radiation is not a tracer that picks out cancer cells to destroy as stated in option (B).
Learn more about Radiation in Cancer Treatment here:https://brainly.com/question/31061027
#SPJ12
A student is working in a lab to determine how time affects impulse. The student keeps the force the same in each trial but changes the impact time. Some data is shown. Which trial has the greatest impulse?
Answer: trial 3
Explanation:
impulse equals force x time so for each trial it would be a force which is 500 x 8 individual time trial 3 has the highest time which would equal the highest impulse.
500 x .45 = 225
Answer:
Trial 3
Explanation:
got it correct