Answer:
(a) The probability of the event (X > 84) is 0.007.
(b) The probability of the event (X < 64) is 0.483.
Step-by-step explanation:
The random variable X follows a Poisson distribution with parameter λ = 64.
The probability mass function of a Poisson distribution is:
[tex]P(X=x)=\frac{e^{-\lambda}\lambda^{x}}{x!};\ x=0, 1, 2, ...[/tex]
(a)
Compute the probability of the event (X > 84) as follows:
P (X > 84) = 1 - P (X ≤ 84)
[tex]=1-\sum _{x=0}^{x=84}\frac{e^{-64}(64)^{x}}{x!}\\=1-[e^{-64}\sum _{x=0}^{x=84}\frac{(64)^{x}}{x!}]\\=1-[e^{-64}[\frac{(64)^{0}}{0!}+\frac{(64)^{1}}{1!}+\frac{(64)^{2}}{2!}+...+\frac{(64)^{84}}{84!}]]\\=1-0.99308\\=0.00692\\\approx0.007[/tex]
Thus, the probability of the event (X > 84) is 0.007.
(b)
Compute the probability of the event (X < 64) as follows:
P (X < 64) = P (X = 0) + P (X = 1) + P (X = 2) + ... + P (X = 63)
[tex]=\sum _{x=0}^{x=63}\frac{e^{-64}(64)^{x}}{x!}\\=e^{-64}\sum _{x=0}^{x=63}\frac{(64)^{x}}{x!}\\=e^{-64}[\frac{(64)^{0}}{0!}+\frac{(64)^{1}}{1!}+\frac{(64)^{2}}{2!}+...+\frac{(64)^{63}}{63!}]\\=0.48338\\\approx0.483[/tex]
Thus, the probability of the event (X < 64) is 0.483.
To approximate probabilities for a Poisson distribution with mean 64, one can use the cumulative distribution function of the Poisson distribution. But for large means like 64, using a Normal approximation to the Poisson might be more accurate.
Explanation:The question is about the Poisson distribution which is a probability distribution used often in statistical modelling where we are counting the number of times an event happens in a fixed interval of time or space. The mean is given as 64. To compute probabilities for values more than or less than a certain value, we use the cumulative distribution function (cdf) of the Poisson distribution.
The cumulative distribution function gives us the probability that the random variable is less than or equal to a certain value. In other words, if we want to find P(X > 84), we can find it by subtracting P(X <= 83) from 1. Likewise, to find P(X < 64), we can directly use the cdf at 63.
Please note however, because of the large mean (64), it may be more accurate to use a Normal approximation to the Poisson with mean 64 and variance 64. In that case, standardize the variables and use the Standard Normal table for the probabilities.
Learn more about Poisson Distribution here:https://brainly.com/question/33722848
#SPJ3