Spinning a roulette wheel 6 times, keeping track of the occurrences of a winning number of "16".
a. Not binomial: there are more than two outcomes for each trial.
b. Procedure results in a binomial distribution.
c. Not binomial: the trials are not independent.
d. Not binomial: there are too many trials.

Answers

Answer 1

Answer:

Correct option is b. Procedure results in a binomial distribution.

Step-by-step explanation:

Consider that X is Binomial random variable. The properties that are satisfied by X are:

There are n independent trials.Each trial has only two outcomes: Success & Failure.Each trial has the same probability of success.

Suppose a roulette wheel is spun and the number of times the ball lands on '16' is observed.

If the random variable X is defined as the number of times the ball lands on '16', then the random variable X follows a Binomial distribution.

Because,

Each spin is independent of each otherSuccess: The ball lands on '16'Failure: The ball does not lands on '16'The probability of the ball landing on '16' is [tex]\frac{1}{37}[/tex] for each trial.

Thus, the correct option is b. Procedure results in a binomial distribution.


Related Questions

Which of the following is the point and slope of the equation y + 9 = -2/3(x - 3)?


(3, -9), 2/3


(3, -9), -2/3


(-3, 9), -2/3


(-3, -9), -2/3

Answers

Answer:

the answer is going to be B

Step-by-step explanation:

if you you plug in the number witch is 3 for your x and -9 for y and solve it you notice that the statement is true for instance

-9+ 9 = -2/3(3 - 3)

0=-6/3+6/3

0=-2+2

0=0

if you subtract a negative with a positive its zero.

in the multiplication negative times negative turn positive

The point and slope of the equation y + 9 = -2/3(x - 3) are (3, -9), -2/3 respectively.

The equation y + 9 =-2/3(x - 3) is given in point-slope form. The point-slope form of a line's equation is y - y1 = m(x - x1), where (x1, y1) is a point on the line, and m is the slope of the line. To find the point and the slope from the given equation, consider that x1 and y1 will have opposite signs to those in the equation because they get subtracted in the formula. Therefore, the point on the line is (3, -9), and the slope, m, which is the coefficient of x in the equation, is -2/3.

If a quadrilateral does not have two pairs of opposite sides that are parallel, then it may be a _____. A. parallelogram B. rhombus C. trapezoid D. square E. rectangle

Answers

Answer:

C Trapezoid

Step-by-step explanation:

A trapezoid mostly has only one pair of parallel sides, not two

Answer: Trapezoid

Step-by-step explanation:

The supreme choice pizza at Pizza Paradise contains 2 different meats and 2 different vegetables. The customer can select any one of 6 types of crust. If there are 4 meats and 9 vegetables to choose from, how many different supreme choice pizzas can be made

Answers

There are 1,296 different ways to make supreme choice pizza.

Step-by-step explanation:

Here, the total number of crusts available  = 6

The number of crust to be chosen = 1

So, the number of ways that can be done  = [tex]^6 C_1 = 6[/tex]  ways  ...... (1)

Similarly, the total number of meats available  = 4

The number of types meats to be chosen = 2

So, the number of ways that can be done  = [tex]^4 C_2 = 6[/tex]   ways ...... (2)

Similarly, the total number of vegetables available  = 9

The number of types vegetables to be chosen = 2

So, the number of ways that can be done  = [tex]^9 C_2 = 36[/tex] ways   ...... (3)

Now, combining (1), (2) and (3):

The number of ways one can choose 1 crust, 2 meat and 2 vegetables

= 6 ways x 6 ways x 36 ways  = 1,296 ways

Hence, there are 1,296 different ways to make supreme choice pizza.

Which of the following segments is a proper way to call the method readData four times? Group of answer choices int i = 0; while (i < 4) { readData(); i = i + 1; } double k = 0.0; while (k != 4) { readData(); k = k + 1; } int i = 0; while (i <= 4) { readData(); i = i + 1; } int i = 0; while (i < 4) { readData(); }

Answers

Answer:

int i = 0; while (i < 4) { readData(); i = i + 1; }

Step-by-step explanation:

the above method is proper way to call the method readData four times because it will start from zero and will call readData until i=3, if i=4 it will stop calling readData.

double k = 0.0; while (k != 4) { readData(); k = k + 1; }

This is not the proper way to call readData four times because it will call readData only if k!=4 otherwise condition k!=4 will not be true and readData will not be called.

int i = 0; while (i <= 4) { readData(); i = i + 1; }

This is not the proper way to call readData four times because condition i<=4 will call readData five times starting from zero to 4.

int i = 0; while (i < 4) { readData(); }

This is not the proper way to call readData four times because it will call readData only one time i.e. value of is not incremented.

The proper way to call the 'readData()' method four times is by using a 'while' loop with a counter that starts at 0 and continues until it is less than 4, incrementing by 1 in each iteration.

The correct way to call the method readData() four times using a while loop is:

int i = 0;
while (i < 4) {
 readData();
 i = i + 1;
}

This loop initializes a counter variable i to 0, then enters a while loop that continues to iterate as long as i is less than 4. Inside the loop, the method readData() is called, and after each call, the counter i is incremented by 1. The loop will execute a total of four times before the condition i < 4 becomes false, thereby stopping the loop.

A geologist has collected 10 specimens of basaltic rock and 10 specimens of granite. The geologist instructs a laboratory assistant to randomly select 15 of the speci- mens for analysis. a. What is the pmf of the number of granite specimens selected for analysis

Answers

Answer:

Thus, the pmf of the number of granite specimens selected for analysis is [tex]P(X=x)={20\choose x}0.50^{x}(1-0.50)^{20-x}[/tex].

Step-by-step explanation:

The experiment consists of collecting rocks.

The sample consisted of, 10 specimens of basaltic rock and 10 specimens of granite.

The total sample is of size, n = 20.

Let the random variable X be defined as the number of granite specimen selected.

The probability of selecting a granite specimen is:

[tex]P(Granite)=p=\frac{10}{20}=0.50[/tex]

A randomly selected rock can either be basaltic or granite, independently.

The success is defined as the selection of granite rock.

The random variable X follows a Binomial distribution with parameter n = 20 and p = 0.50.

The probability mass function of X is:

[tex]P(X=x)={20\choose x}0.50^{x}(1-0.50)^{20-x}[/tex]

Please help me!!!!!!!!!!!!

Answers

Answer:

1215

Step-by-step explanation:

Using the Binomial theorem

With coefficients obtained from Pascal's triangle for n = 6, that is

1  6  15  20  15  6  1

and the term 3x decreasing from [tex](3x)^{6}[/tex] to [tex](3x)^{0}[/tex]

and the term - y increasing from ([tex](-y)^{0}[/tex] to [tex](- y)^{6}[/tex]

Thus

[tex](3x-y)^{6}[/tex]

= 1 × [tex](3x)^{6}[/tex] [tex](-y)^{0}[/tex] + 6 × [tex](3x)^{5}[/tex] [tex](-y)^{1}[/tex] + 15 × [tex](3x)^{4}[/tex] [tex](-y)^{2}[/tex] + .........

The term required is

15 × [tex](3x)^{4}[/tex] [tex](-y)^{2}[/tex]

= 15 × 81[tex]x^{4}[/tex] y²

with coefficient 15 × 81 = 1215

that is 1215[tex]x^{4}[/tex]y²

A chef planning for a large banquet thinks that 2 out of every 5 dinner guests will order his soup appetizer he excepts 800 guests at the banquet use equivalent ratios to estimate how many cups of soup he should prepare

Answers

Answer:

The Chef planner should prepare 320 cups of soups

Step-by-step explanation:

Number of guests expected to come = 800

2 out of every 5 guest will order for soup appetizer

Hence using equivalent ratios

2:5 = X :800

X = (800 × 2) ÷ 5 = 320

Hence the Chef planner should prepare 320 cups of soups

A supermarket employee is making a mixture of cashews and almonds. Cashews cost $7 per pound, and almonds cost $5 per pound. The employee wants to make less than 6 pounds of the mixture and wants the total cost of the nuts used in the mixture to be not more than $30. Let x represent the number of pounds of cashews. Let y represent the number of pounds of almonds. Select all inequalities that represent constraints for this situation.
A. x + y ≤ 6
B. 7x + 5y < 6
C. x + y < 6
D. 7x + 5y > 30
E. 7x + 5y ≤ 30
F. x + y ≤ 30

Answers

C.  x + y < 6E.  7 x +  5 y  ≤ 30

Step-by-step explanation:

The cost of cashews per pound  = $7

The cost of almonds per pound  = $5

Let x represent the number of pounds of cashews.

Let y represent the number of pounds of almonds

Now, the combined weight of the mixture is less than 6 pounds.

So, Weight of (Almonds + Cashews) < 6 pounds

or,  x + y < 6   ...... (a)

Now, cost of x pounds of cashews  = x ( Cots of 1 pound of cashews)

=  x (7)  = 7 x

Cost of y pounds of almonds  = x ( Cots of 1 pound of almonds)

=  y (5)  = 5 y

So, the combined price of x pounds of cashews and y pounds of almonds

= 7 x +  5 y

Also, given the total cost of the mixture is not more than $30.

⇒ 7 x +  5 y  ≤ 30 ..... (2)

Hence, form (1) and (2), the inequalities that represent the given situation are:

x + y < 6

7 x +  5 y  ≤ 30

Answer: The inequalities that represent constraints for this situation are

x + y < 6

7x + 5y ≤ 30

Step-by-step explanation:

Let x represent the number of pounds of cashews.

Let y represent the number of pounds of almonds.

The employee wants to make less than 6 pounds of the mixture. This is expressed as

x + y < 6

Cashews cost $7 per pound, and almonds cost $5 per pound. The employee wants the total cost of the nuts used in the mixture to be not more than $30. This is expressed as

7x + 5y ≤ 30

A bug was sitting on the tip of a wind turbine blade that was 24 inches long when it started to rotate. The bug held on for 5 rotations before flying away. How far did the bug travel before it flew off?

Answers

Answer:

240π  

Step-by-step explanation:

Turbine blade that was 24 inches long is the radius of the circle the bug travels.

So the Circumference is = 2rπ = 2*24*π = 48π

The bug held on for 5 rotations. so the distance that the bug travels = 5*48π  = 240π  

Angle A in right triangle ABC is formed by the hypotenuse of length 13 cm and a leg of length 5 cm. Find the exact values of: a. the other leg of the right triangle b. sin A c. cos A d. tan A

Answers

Answer:

(a)12cm (b)5/13 (c)12/13 (d)5/12

Step-by-step explanation:

(a) In a right triangle, the length of the sides are govered by the Pythagoras Theorem.

[tex]Hypotenuse^2=Opposite^2+Adjacent^2[/tex]

In the diagram

Hypotenuse=13cm; Opposite(With respect to angle A)=5cm

[tex]13^2=5^2+Adjacent^2\\Adjacent^2=169-25=144\\Adjacent=\sqrt{144}=12cm[/tex]

(b)sin A =[tex]\frac{opposite}{hypotenuse} =\frac{5}{13}[/tex]

(c)cos A=[tex]\frac{adjacent}{hypotenuse} =\frac{12}{13}[/tex]

(d)tan A=[tex]\frac{opposite}{adjacent} =\frac{5}{12}[/tex]

Find the missing factor B that makes the equality true. 21y^4= (B) (7y^3)​

Answers

Answer:

21y^4= B*7y^3

B=(21y^4)/(7y^3)

B=3y

Explaining How to Compare Water Levels Ericka decided to compare her observation to the average annual trend, which shows the water rising 1.8 mm/year. Remember, she used 6.2 years as her time period. Explain how she would calculate the difference between how much water levels rose on average and how much the water level fell in the part of the river she observed.

Answers

Step-by-step explanation:

Below is an attachment containing the solution

Answer: She would multiply the rate by the years to find the average rise in water levels, or 1.8 times 6.2 = 11.16. To find the difference between the water levels, she would subtract -13.64 from 11.16.

Step-by-step explanation:

Cooking and shopping Forty-five percent of Americans like to cook and 59% of Americans like to shop, while 23% enjoy both activities. What is the probability that a randomly selected American either enjoys cooking or shopping or both

Answers

Answer:

0.81

Step-by-step explanation:

0.45 + 0.59 - 0.23

= 0.81

The probability that a randomly selected American either enjoys cooking or shopping or both is 0.81

What is the probability that a randomly selected American either enjoys cooking or shopping or both

The probability of the union of two events (A or B) is the sum of their individual probabilities minus the probability of their intersection (A and B).

i.e.

P(A or B) = P(A) + P(B) - P(A and B)

In this case, A represents the event of enjoying cooking, and B represents the event of enjoying shopping.

So, we have

P(A) = 45% = 0.45

P(B) = 59% = 0.59

P(A and B) = 23% = 0.23

By substitution, we have

P(A or B) = 0.45 + 0.59 - 0.23 = 0.81

Hence, the probability that a randomly selected American either enjoys cooking or shopping or both is 0.81 or 81%.

Read more abut probability at

https://brainly.com/question/31895366

#SPJ3

For every positive 2-digit number, x, with tens digit t and units digit u, let y be the 2-digit number formed by reversing the digits of x. Which of the followingexpressions is equivalent to x − y ?a) 9(t − u) b) 9(u − t) c) 9t − u d) 9u − t e) 0

Answers

Answer:

a) 9(t - u)

Step-by-step explanation:

x = 10t + u

y = 10u + t

x - y = 10t + u - 10u - t

= 9t - 9u

= 9(t - u)

The required answer for the question is a) 9(t − u)

What are simultaneous equation?

In mathematics , a set of simultaneous equations, also known as system of equations or an equation system, is a finite set of equations for which common solution are sought.

The given expression of x is given by,

x = 10t + u

If y be the 2-digit number formed by reversing the digits of x

then, the expression for y can be written,

y = 10u + t

Subtracting x with y we obtain,

x - y = 10t + u - 10u - t

Solving them we get

x - y = 9t - 9u

which can be written as,

x - y = 9(t - u)

Hence, the required expressions is equivalent to x − y =  9(t − u)

So the correct answer is a) 9(t − u)

More about simultaneous equation :

https://brainly.com/question/3901490

#SPJ2

WHAT IS THE ANSWER TO THIS PROBLEM IF RIGHT ILL GIVE BRAINLIEST
7+7/7+7*7-7= ?

Answers

Answer:

50

Step-by-step explanation:

7+7=14

14/7=2

2+7=9..

Answer:

50

Step-by-step explanation:

not enough information

a mixture of peanuts and corn sells for P40 per kilo. The peanuts sell for P42 per kilo while the corn sells for P36 per kilo. how many kilos of each kind are used in 12 kilos of a mixture

Answers

Answer:

The weight of peanuts in the mixture   = 8  kg

The weight of corns in the given mixture = 4 kg

Step-by-step explanation:

Let us assume the weight of peanuts in the mixture   = x kg

The weight if corns in the given mixture = y kg

Total weight = (x + y) kg

The combined mixture weight = 12 kg

x  + y = 12  ..... (1)

Cost of per kg if mixture  = $ 40

So, the cost of (x + y) kg mixture  = (x+y) 40 = 40(x+ y)   ..... (2)

 

The cost of 1 kg of peanuts =  $ 42

So cost of x kg of peanuts  = 42 (x)  = 42 x

The cost of 1 kg of corns  = $ 36

So cost of y kg of corns  = 36 (y)  = 36 y

So, the total cost of x kg peanuts  + y kg corns =  42 x +  36 y  .... (3)

From (1) and (2), we get:

40(x+ y)  = 42 x +  36 y

x +  y = 12 ⇒ y = 12 -x

Put this in  40(x+ y)  = 42 x +  36 y

We get:

40(x+ 12 -x)  = 42 x +  36 (12 -x)

480 = 42 x + 432 - 36 x

or, 480 - 432 = 6 x

or, x  = 8

y = 12 -x = 12 - 8 = 4

⇒  y = 4

Hence, the weight of peanuts in the mixture   = 8  kg

The weight of corns in the given mixture = 4 kg

Final answer:

The weight of peanuts in the mixture is 8  kg and the weight of corns in the given mixture = 4 kg

Explanation:

A mixture of peanuts and corn sells for P40 per kilo.

Let us assume the weight of peanuts in the mixture   = x kg

The weight of corn in the given mixture = y kg

Total weight = (x + y) kg

The combined mixture weight = 12 kg

= x  + y = 12  ..... (1)

Cost of per kg if mixture  = $ 40

So, the cost of (x + y) kg mixture  = (x+y) 40 = 40(x+ y)   ..... (2)

The cost of 1 kg of peanuts =  $ 42

So cost of x kg of peanuts  = 42 (x)  = 42 x

The cost of 1 kg of corn = $ 36

So cost of y kg of corn  = 36 (y)  = 36 y

So, the total cost of x kg peanuts  + y kg corns =  42 x +  36 y  .... (3)

From (1) and (2):

40(x+ y)  = 42 x +  36 y

x +  y = 12 ⇒ y = 12 -x

Put this in  40(x+ y)  = 42 x +  36 y

We get:

40(x+ 12 -x)  = 42 x +  36 (12 -x)

480 = 42 x + 432 - 36 x

or, 480 - 432 = 6 x

or, x  = 8

= y = 12 -x = 12 - 8 = 4

= y = 4

The price of blue blueberry muffins at a store can be determined by the equation: P=$.70n, where P is the price and the n is the number of blueberry muffins If Rod $16.10, how manny blueberry muffins could he buy?

Answers

Answer:

23

Step-by-step explanation:

if you have $16.10, he could buy 23 bluebarry muffins. Because if yo do

16.10 / 0.70 you woould get 23, and if you put that in the equasion you would

get this, P=$0.70(23) .  23 * 0.70 = 16.1

JAMES NEEDS TO BUY ONE CAN OF ORNGE SODA FOR EVERY FIVE CANS OF COLA. IF JAMES BUYS 35 CANS OF COLA, HOW MANY CANS OF ORANGE SODA SHOULD HE BUY?

Answers

Answer:

  7

Step-by-step explanation:

5 × 7 = 35

35 cans of cola can be grouped into 7 groups of 5 cans. For each of those 7 groups, James needs to buy one orange soda.

James should buy 7 orange sodas.

In her backyard jess is planting rows of squash. To plant a row of squash jess needs 6/7 square feet. There are 12 square feet in jess's backyard, so how many rows of squash can jess plant?

Answers

Answer:

14 rows.

Step-by-step explanation:

We have been given that Jess  is planting rows of squash. To plant a row of squash Jess needs 6/7 square feet. There are 12 square feet in Jess's backyard.

To find number of rows that Jess can plant, we will divide total area of backyard by area needed to plant each row as:

[tex]\text{Number of rows that Jess can plant}=12\div\frac{6}{7}[/tex]

[tex]\text{Number of rows that Jess can plant}=\frac{12}{1}\div\frac{6}{7}[/tex]

Convert into multiplication problem by flipping the 2nd fraction:

[tex]\text{Number of rows that Jess can plant}=\frac{12}{1}\times \frac{7}{6}[/tex]

[tex]\text{Number of rows that Jess can plant}=\frac{2}{1}\times \frac{7}{1}[/tex]

[tex]\text{Number of rows that Jess can plant}=14[/tex]

Therefore, Jess can plant 14 rows of squash in her backyard.

What is the measure of angle a1?
--> This was difficult for me. Is there anybody can help?

Answers

Answer:

40°

Step-by-step explanation:

Alternate angles

Angles BAC and ACD are equal

Consider a single-platter disk with the following parameters: rotation speed: 7200 rpm; number of tracks on one side of platter: 30,000; number of sectors per track: 600; seek time: one ms for every hundred tracks traversed. Let the disk receive a request to access a random sector on a random track and assume the disk head starts at track 0.

Answers

Answer:

These should be the question: a) What is the average seek time = 149.995 ms, b) average rotational latency = 4.16667ms , c) transfer time for a sector = 13.88us, and d) total average time to satisfy a request = 153.1805ms.

Step-by-step explanation:

A) average seek time.

Number of tracks transversed = 299.99ms

Seek time to access  the track = 0ms

= (0+299.99)/2 ==> 149.995ms

B) average rotational latency.

Rotation speed = 7,200rpm

rotation time = 60 / 7,200 = 0.008333s/rev

Rotational latency = 0.008333/2 = 0.004166sec

= 4.16667ms

C) Transfer time for a sector

at 7200rpm, a rev = 60 / 7200 = 0.00833s :    8.33ms

transfer time one sector = 8.333/600 ms

                                         = 0.01388ms  => 13.88us

D) average time to satisfy request

149 + 4.16667 + 0.013888

153.1805ms

it takes a machine 2 minutes and 15 seconds to assembly one chair if the machine runs continuously for 6 hours how many chairs will it produce

Answers

Answer:

160 Chairs

Step-by-step explanation:

Convert 6 hrs to seconds, this gives you 21600 seconds. Convert 2 min and 15 sec to seconds, and this gives you 135 seconds per chair. Divide 21600 by 135. This gives you 160 Chairs produced in 6 hours.

Using the distance formula, d = √(x2 - x1)2 + (y2 - y1)2, what is the distance between point (-5, -2) and point (8, -3) rounded to the nearest tenth?

10.3 units

12.6 units

1 unit

13 units

Answers

Option D: 13 units is the distance between the two points

Explanation:

Given that the points are [tex](-5,-2)[/tex] and [tex](8,-3)[/tex]

We need to find the distance between the two points.

The distance between the two points can be determined using the distance formula,

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Let us substitute the points [tex](-5,-2)[/tex] and [tex](8,-3)[/tex] in the above formula, we get,

[tex]d=\sqrt{(8-(-5))^2+(-3-(-2))^2}[/tex]

Simplifying the terms within the bracket, we have,

[tex]d=\sqrt{(8+5)^2+(-3+2)^2}[/tex]

Adding the terms within the bracket, we get,

[tex]d=\sqrt{(13)^2+(-1)^2}[/tex]

Squaring the terms, we have,

[tex]d=\sqrt{169+1}[/tex]

Adding, we get,

[tex]d=\sqrt{170}[/tex]

Simplifying, we have,

[tex]d=13.04[/tex]

Rounding off to the nearest tenth, we get,

[tex]d=13.0 \ units[/tex]

Hence, the distance between the two points is 13 units.

Therefore, Option D is the correct answer.

Final answer:

To determine the distance between two points, we apply the distance formula, substituting the x and y coordinates for each point into the equation. After simplifying, the resulting square root of 170 corresponds to a distance of 13.0 units when rounded to the nearest tenth. Thus, the distance between the given points is 13.0 units.

Explanation:

Let's apply the distance formula to the two points given: (-5, -2) and (8, -3). The distance formula, d = √[(x2 - x1)2 + (y2 - y1)2], allows us to calculate the distance between two points in a Cartesian coordinate system.

First identify the x and y coordinates for each point. For the point (-5, -2), x1= -5 and y1= -2. For the point (8, -3), x2= 8 and y2= -3.

Step 1: Substitute these values into the distance formula.

d = √[(8 - (-5))2 + ((-3) - (-2))2]

Step 2: Simplify inside the square root, which involves removing the brackets and calculating the squares of the differences of the coordinates.

d=√[(13)2 + (-1)2 ] = √[169 + 1] = √170

The final distance d is the square root of 170. Rounded to the nearest tenth, this equals 13.0 units.

Therefore, the distance between point (-5, -2) and point (8, -3) is 13.0 units.

Learn more about Distance Formula here:

https://brainly.com/question/11231122

#SPJ3

A small pizza has a diameter of 10 inches. A slice had a central angle of π/3 radians. What is the area of the slice?

Answers

The area of the slice is 13.0899 inch².

Explanation:

The pizza has an angle of 360°. If each slice has a central angle of π/3 = 60° then the number of slices = [tex]\frac{thetotalangleofthepizza}{theangleofoneslice}[/tex] = [tex]\frac{360}{60}[/tex] = 6 slices. So the pizza has 6 slices.To calculate one slice's area, we calculate the the entire pizza's area and divide it by 6 (number of slices).The circle's area is given by multiplying π with the square of its radius (r²). If the diameter is 10 inches, the radius is half i.e. the radius = 5 inches.The area of the pizza = π × 5 × 5 = 78.5398 inch².                                                   The area of the slice = [tex]\frac{78.5398}{6}[/tex] = 13.0899 inch².

Decide whether the table represents a linear or exponential function circle with a linear exponential then write the function formula.​

Answers

The table represents an exponential function, and the function formula is: [tex]\[ y = 3 \cdot 2^x \][/tex]

To determine whether the table represents a linear or an exponential function, we need to examine the rate of change in the `y` values as `x` increases.

For a linear function, the rate of change (the difference between one `y` value and the next) is constant.

For an exponential function, the rate of change is multiplicative – the `y` value is multiplied by a constant factor as `x` increases by a regular increment.

Looking at the provided table:

- When `x` increases by 1 (from 0 to 1, from 1 to 2, etc.), the `y` values are:

 - At `x=0`, `y=3`

 - At `x=1`, `y=6`

 - At `x=2`, `y=12`

 - At `x=3`, `y=24`

 - At `x=4`, `y=48`

 - At `x=5`, `y=96`

 - At `x=6`, `y=192`

 - At `x=7`, `y=384`

Each time `x` increases by 1, `y` is doubled. This is a characteristic of an exponential function.

The pattern suggests that `y` is being multiplied by 2 as `x` increases by 1. Therefore, we can express the function as:

[tex]\[ y = ab^x \][/tex]

where `a` is the initial value of `y` when `x` is 0 (which is 3 in this case), and `b` is the factor by which `y` is multiplied each time `x` increases by 1 (which is 2 in this case).

So the exponential function that fits the table is:

[tex]\[ y = 3 \cdot 2^x \][/tex]

Thus the table represents an exponential function, and the function formula is:

[tex]\[ y = 3 \cdot 2^x \][/tex]

The equation of the piecewise function f(x) is below. What is the value of f(3)?

Answers

Option B: 5 is the value of f(3)

Explanation:

The equation of the piecewise function is given by

[tex]f(x)=\left\{\begin{aligned}-x^{2}, & x<-2 \\3, &-2 \leq x<0 \\x+2, & x \geq 0\end{aligned}\right.[/tex]

We need to find the value of [tex]f(3)[/tex]

The value of the function f can be determined when [tex]x=3[/tex] by identifying in which interval does the value of [tex]x=3[/tex] lie in the piecewise function.

Thus, [tex]x=3[/tex] lies in the interval [tex]x\geq 0[/tex] , the function f is given by

[tex]f(x)=x+2[/tex]

Substituting [tex]x=3[/tex] in the function [tex]f(x)=x+2[/tex], we get,

[tex]f(3)=3+2[/tex]

[tex]f(3)=5[/tex]

Thus, the value of [tex]f(3)[/tex] is 5.

Therefore, Option B is the correct answer.

A circle has a circumference of \blue{12}12start color #6495ed, 12, end color #6495ed. It has an arc of length \dfrac{8}{5} 5 8 ​ start fraction, 8, divided by, 5, end fraction. What is the central angle of the arc, in degrees? ^\circ ∘ degrees

Answers

Final answer:

To find the central angle of an arc with a length of 8/5 in a circle with a circumference of 12, we set up a proportion with the full circle's 360 degrees and solve for the angle, resulting in a central angle of 48 degrees.

Explanation:

You want to find the central angle of an arc in degrees for a circle with a circumference of 12 units and an arc length of 8/5 units. Since the circumference of a circle is 2π times the radius (2πr) and corresponds to a full circle or 360 degrees, the angle for the entire circle is 360°. The arc length of 8/5 is a fraction of the total circumference, so to find the corresponding angle in degrees, set up the proportion:

(arc length) / (circumference) = (angle of arc) / (360 degrees)

Plug in the known values and solve for the angle of the arc:

(8/5) / 12 = (angle) / 360

Cross-multiply to solve for the angle:

360 * (8/5) = 12 * (angle)

angle = (360 * 8) / (5 * 12)

angle = 48 degrees

Therefore, the central angle of the arc is 48 degrees.

Evaluate the function

Answers

Answer:

Step-by-step explanation:

For a. you are asked to evaluate f(0).  This is a piecewise function with different domains for each piece of the function.  You can only evaluate f(0) in the function that has a domain that allows 0 in it.  In the first domain, it says

x < -3.  0 is not less than -3, so 0 is not in that domain, so you will not use that "piece" of the function to evaluate f(0).

In the next domain, it says that x is greater than or equal to -3 and less than 0.  Again, 0 is not included in that domain, so we can't use that "piece" of the function to evaluate f(0).

The last domain says that x is greater than OR EQUAL TO 0, so this is where we evaluate f(0):

f(0) = -0 - 4 so

f(0) = -4

When we want to evaluate f(2), we follow the same rules.  Find the piece of the function that allows 2 in its domain.  That's the middle piece:

f(2) = 2(2) - 6 so

f(2) = -2

An earthquake measuring 6.4 on the Richter scale struck Japan in July 2007, causing extensive damage. Earlier that year, a minor earthquake measuring 3.1 on the Richter scale was felt in parts of Pennsylvania. How many times more intense was the Japanese earthquake than the Pennsylvania earthquake

Answers

Japanese earthquake is 1996 times intense than the Pennsylvania earthquake.

What is ratio?

A ratio is a comparison between two amounts that is calculated by dividing one amount by the other. The quotient a/b is referred to as the ratio between a and b if a and b are two quantities of the same kind and with the same units, such that b is not equal to 0. Ratios are represented by the colon symbol. As a result, the ratio a/b has no units and is represented by the notation a: b.

Given:

An earthquake measuring 6.4 on the Richter scale struck Japan in July 2007.

and, a minor earthquake measuring 3.1 on the Richter scale was felt in parts of Pennsylvania.

Mow,  Mj= log Ij/S and Mp = log Ip/ S

Where S is the standard earthquake intensity.

Then,

6.4 = log Ij/S and 3.1  = log Ip/ S

S x [tex]10^{6.4[/tex] = Ij  and S x [tex]10^{3.1[/tex] = Ip

So, ratio of the intensities

Ij : Ip= [tex]10^{6.4[/tex] /  [tex]10^{3.1[/tex]

      = [tex]10^{3.3[/tex]

      = 1996

Hence, Japanese earthquake is 1996 times intense than the Pennsylvania earthquake.

Learn more about ratio here:

https://brainly.com/question/13419413

#SPJ5

In a certain game of chance, your chances of winning are 0.3. Assume outcomes are independent and that you will play the game four times. Q: What is the probability that you win at most once

Answers

Answer:

0.6517

Step-by-step explanation:

Given that in a certain game of chance, your chances of winning are 0.3.

We know that each game is independent of the other and hence probability of winning any game = 0.3 (constant)

Also there are only two outcomes

Let X be the number of games you win when you play 4 times

Then X is binomial with p = 0.3 and n =4

Required probability

= Probability that you win at most once

= [tex]P(X\leq 1)\\=P(X=0)+P(X=1)[/tex]

We have as per binomial theorem

P(X=r) = [tex]nCr p^r (1-p)^{n-r}[/tex]

Using the above the required prob

= 0.6517

Final answer:

To calculate the probability of winning at most once over four games with a win probability of 0.3, we calculate the binomial probabilities for winning 0 times and 1 time then add them, resulting in a total probability of approximately 0.6517.

Explanation:

The question involves calculating the probability of winning at most once in a game of chance played four times, where the chances of winning each game are 0.3. We use the binomial probability formula P(x) = C(n, x) * pˣ * q⁽ⁿ⁻ˣ⁾, where C(n, x) is the number of combinations, p is the probability of winning, q is the probability of losing (1-p), and n is the total number of games. In this case, n=4, p=0.3, and q=0.7. We need to find the probability of winning 0 times (P(0)) and 1 time (P(1)) and then add these probabilities together.

To win 0 times: P(0) = C(4, 0) * 0.3⁰ * 0.7⁴ = 1 * 1 * 0.7⁴ = 0.2401To win 1 time: P(1) = C(4, 1) * 0.3¹ * 0.7³ = 4 * 0.3 * 0.7³ = 0.4116

Adding these probabilities gives the probability of winning at most once as P(0) + P(1) = 0.2401 + 0.4116 = 0.6517. Therefore, the probability of winning at most once in four games is approximately 0.6517.

Other Questions
Hola! Me llamo Georgina. Siempre juego con mis primas y amigas despus de la escuela. Hoy, despus de clase, bajamos por estos toboganes de la escuela y despus, vamos a aquellos columpios en el parque. Por la tarde, despus de hacer la tarea y estudiar, jugamos a la rayuela y jugamos con estas canicas en mi calle. Por la noche leo y duermo con mi oso de peluche.Based on the text, what seems to be important for Georgina? Fitness and exercising Magazines and books School and fun activities Volunteer opportunities 15. Sulfur hexafluoride is an example of a Based on the Nielsen ratings, the local CBS affiliate claims its 11 p.m. newscast reaches 41% of the viewing audience in the area. In a survey of 100 viewers, 36% indicated that they watch the late evening news on this local CBS station. What is the z test statistic? The Northridge and Landers earthquakes may be part of a pattern of increasing seismicity prior to failure along the segment of the San Andreas opposite Los Angeles. True False Which equation is equivalent to the square root of x^2 + 81 = x + 10 (I put a picture up with the question and answers) How many articles does the Constitution have?OA. 1OB. 7oc. 6D. 27 An example of an obsession is:_____.a) constant hand washingb) repeating someone's name five times every time you see herc) concern of contracting syphilis from a handshaked) repeatedly checking to see if the stove is turned off Suppose you are a human resource executive, supporting strategy. Executives in your industry are concluding that a certain HR-related law no longer seems relevant in the Internet age. To which government branch would it be most effective to turn for addressing the need for a change in the legal environment? A. the executive branch, requesting it not enforce the existing law B. the executive branch, requesting a new law in this area C. the judicial branch, requesting a new law in this area D. the legislative branch, requesting a new law in this area E. the legislative branch, requesting it not enforce the existing law a 34 inch piece of wood is 20% of a longer piece of wood. How long is the longer piece of wood? which equation goes with the table? line 4: "Upon the page, enwrapped from every reader."question: which of these defines the word ENWRAPPED in line 4 to be expected to be revealed to be explained to be hidden If a Subway train traveled 12 km in 8 minutes how many km/h was the train going? I need help justifying why my classification is correct which number indicates how the moon is seen from earth during the second week of the lunar cycle?please help is this true or false 2x + 3y = 2 x + 6y = 4 Which layer of skin is the deepest?The, also known as subcutaneous tissue or subcutis, is the deepest layer of the skin. It attaches the skin to the underlyingmuscles and bones, and supplies the skin with blood vessels and nerves. Compare the movement of nematodes (vinegar eel) with that of annelid worms (earthworm) relating these different kinds of movement to the arrangement of muscle layers in these animals. Why might peristaltic motion be considered an advancement relative to sinusiodal movement? In a study of the relationships of the shape of a tablet to its dissolution time, 6 disk-shaped ibuprofen tablets and 8 oval-shaped ibuprofen tablets were dissolved in water. The dissolve times, in seconds, were as follows: Disk: 269.0, 249.3, 255.2, 252.7, 247.0, 261.6 Oval: 268.8, 260.0, 273.5, 253.9, 278.5, 289.4, 261.6, 280.2 Can you conclude that the mean dissolve time is less for disk shaped tablets than for mean dissolve time for oval shaped tablets? Assume that the two samples come from normal distributions and disk= oval. a. Carry out the appropriate test at the 5% level. Be sure to show the hypothesis statements. b. Generate the appropriate 95% one-sided confidence interval. During the 2004 season, New York theater goers bought 11.3 million tickets for a total of $749.0 . Theater goers spent a total of 3.2% more than the year before. What was the totalamount spent during 2003?