in 1950, the U.S. federal budget was $39.4 billion, in 2000, the federal budget was $2025.2 billion. The exponential function is f=39.4Be^0.0787932i. Use your function to estimate the budget in 2010
Answer:
The budget in 2010 is $4453.10915 billion
Step-by-step explanation:
We are given exponential function as
[tex]f(t)=39.4e^{0.0787932t}[/tex]
where t is the time in years since 1950
now, we can find time in 2010
t=2010-1950=60
now, we can plug t=60
and we get
[tex]f(60)=39.4e^{0.0787932\times 60}[/tex]
we get
[tex]f(60)=4453.10915[/tex]
So, the budget in 2010 is $4453.10915 billion
BRAINLIEST AND 50 POINTS
1.) A jar contains 4 red, 5 white, and 3 blue marbles. A marble is drawn from the jar. What is the probability that the marble is
Blue?______ White?_____ Red?_____ Not red?_____
Answer:
P ( blue ) = 1/4
P ( white ) = 5/12
P ( red ) = 1/3
P ( not red ) = 2/3
Step-by-step explanation:
To find the probability of a marble being chosen, it is the number of that color over the total
We need to find the total number of marbles
4 red+ 5 white+3 blue = 12 marbles
P ( blue ) = 3 blue / 12 total = 3/12 = 1/4
P ( white ) = 5 white / 12 total = 5/12
P ( red ) = 4 red/ 12 total = 4/12 = 1/3
How man marbles are not red
total marbles - red marbles = 12-4 = 8
8 marbles are not red
P ( not red ) = 8 not red / 12 total = 8/12 = 2/3
What is the GCF of the following expression:
5y^5+35y^4+15y^3
Answer:
5y^3
Step-by-step explanation:
Find what is common to all the terms
5y^5 = 5 * y*y*y*y*y
35y^4 = 5*7*y*y*y*y
15y^3 = 3*5*y*y*y
The all have 5*y*y*y
So the GCF is 5 y*y*y or 5y^3
Write a linear function that passes through the points (-5, -6) and (2, 8).
The point-slope form of line:
[tex]y-y_1=m(x-x_1)\\\\m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have the points (-5, -6) and (2, 8). Substitute:
[tex]m=\dfrac{8-(-6)}{2-(-5)}=\dfrac{8+6}{2+5}=\dfrac{14}{7}=2\\\\y-(-6)=2(x-(-5))\\\\\boxed{y+6=2(x+5)}[/tex]
Write the equation of the line containing the point (3, –2) and having a slope of 2 in slope-intercept form.
Slope-intercept form:
y = mx + b
"m" is the slope, "b" is the y-intercept (the y value when x = 0 or (0,y))
You know m = 2, so you can plug it into the equation
y = 2x + b
To find "b", plug in the point (3, -2) into the equation
y = 2x + b
-2 = 2(3) + b
-2 = 6 + b
-8 = b
y = 2x - 8
The slope-intercept form:
[tex]y=mx+b[/tex]
m - slope
b - y-intercept
We have the slope m = 2 and the point (3, -2) → x = 3 and y = -2.
Substitute:
[tex]-2=(2)(3)+b[/tex]
[tex]-2=6+b[/tex] subtract 6 from both sides
[tex]-8=b\to b=-8[/tex]
Substitute to the equation y = mx + b:
Answer: y = 2x - 8800,000,000,000 + 20,000,000,000 + 3,000,000,000 + 50,000,000 + 4,000,000 + 600,000 + 50,000 + 8,000 + 700 + 80 + 6
Ivanna is saving money to buy a game. So far she has saved $24, which is three-fourths of the total cost of the game. How much does the game cost ?
Answer:
The game costs 32 dollars total, we know this because if you divid 32 by 4 its 8 and . if you multiply 8 times 3 its 24
Step-by-step explanation:
The total cost of the game is $32, calculated using the concept of fractions in mathematics where the given $24 was considered as three-fourths of the total game cost.
Explanation:The subject of the question involves the concept of fractions in mathematics. Here the information provided states that $24, which Ivanna has saved, represents three-fourths (or 3/4) of the total cost of the game. To find out the total cost of the game, we will consider the $24 as three parts, and we need to find out the value of one part (or one-fourth). So, we divide $24 by 3, which gives us $8. This $8 is one-fourth of the total game cost. Now, to get the total cost, we will multiply this one-fourth value ($8) by 4. So, the total cost of the game is $8 * 4 = $32.
Learn more about Fractions here:https://brainly.com/question/10354322
#SPJ3
when you multiply a function by -1, what is the effect on its graph?
a) the graph flips over the x-axis
b) the graph flips over the line y=x
c) the graph flips over the y-axis
Answer:
A. the graph flip over the x - axis...
Option b) the graph flips over the line y=x
When you multiply two function together, you will get a third function as the result, and that third function as the result, and that third function will be the product of the two original functions . when we multiply the function by -1 ,it becomes y=-f(x) . Then the coordinates becomes (x, -f(x))
Learn more about when you multiply by function
https://www.bing.com/ck/a?!&&p=b88f4edeae6ee079b997791361851a9e0e53e2503d5a1aeac9dcda6b08fe3426JmltdHM9MTY1NDc4NzExNyZpZ3VpZD1mNzY5MDJiMy1jMjk2LTQ2ZTUtODhmYy1lMTZhZjVkYTMwNzkmaW5zaWQ9NTE1Mg&ptn=3&fclid=92862157-e805-11ec-ada7-62fde73cb0a5&u=a1aHR0cHM6Ly9icmFpbmx5LmNvbS9xdWVzdGlvbi84NjQ3MDUy&ntb=1
#SPJ2
Explain how to solve 7 + x > 12 .Tell what property of inequality you would use
Answer:
x > 5
Step-by-step explanation:
isolate x by subtracting 7 from both sides
x > 12 - 7
x > 5
Find the ratio of the volume of one sphere to the volume of the right cylinder
Answer:
B
Step-by-step explanation:
Let [tex]r[/tex] be the radius of one sphere.
Volume of sphere is [tex]V=\frac{4}{3}\pi r^3[/tex]Since radius is r, the height of the cylinder will be [tex]4r[/tex]
Also, the cylinder has the same radius as the sphere: [tex]r[/tex]
Plugging in the values we get: [tex]V=\pi (r)^{2}(4r)=4\pi r^3[/tex]
Ratio of volume of 1 sphere to volume of cylinder is:
[tex]\frac{\frac{4}{3}\pi r^3}{4\pi r^3}=\frac{\frac{4}{3}}{4}=\frac{4}{3}*\frac{1}{4}=\frac{1}{3}[/tex]
The ratio is 1:3
Answer choice B is right.
The line with equation a+2b=0 coincides with the terminal side of an angle 0 in standard position and cos 0 < 0. What is the value of sin0?
Question:
line x + 2y = 0 is end side of angle θ
and cos θ < 0
Answer: sin θ = √5/5
Step-by-step explanation:
cos θ < 0 means x < 0
Line is y = -x/2, slope -1/2
Line intersects unit circle when x^2+y^2=1
x^2 + (-x/2)^2 = 1
x^2 + x^2/4 = 1
5x^2/4 = 1
x = -√(4/5) = -2√(1/5) = -2√5/5
y = √5/5
x^2 = 4/5, y^2 = 1/5
sin θ is y value at intersection of line and unit circle, √5/5
In this exercise we have to use the given equation and thus calculate the intersection value:
[tex]sin (\theta) = \sqrt{5/5}[/tex]
So knowing that you were informed:
Line x + 2y = 0 is end side of angle θ and cos θ < 0 means x < 0. Line is y = -x/2, slope -1/2 and the Line intersects unit circle when :
[tex]x^2+y^2=1\\x^2 + (-x/2)^2 = 1\\x^2 + x^2/4 = 1\\5x^2/4 = 1\\x = -\sqrt{4/5} = -2\sqrt{1/5} = -2\sqrt{5/5}\\y = \sqrt{5/5}\\x^2 = 4/5, y^2 = 1/5[/tex]
[tex]sin(\theta)[/tex] is y value at intersection of line and unit circle, [tex]\sqrt{5/5}[/tex]
See more about intersection at brainly.com/question/12089275
There are 8 students in a class: 2 boys and 6 girls. If the teacher picks a group of 5 at random, what is the probability that everyone in the group is a girl?
Answer:
0.1071
Step-by-step explanation:
Given
Total number of students=8
Boys=2
Girls=6
When we are picking a group from population we use combinations to calculate sample space and for event
So if a group of 5 has to be picked from 8 students
ⁿC_k= n!/(k!)(n-k)!
C_(n,k)= n!/(k!)(n-k)!
Here n=8 and k=5
C_8,5= 8!/(5!)(8-5)!
This will give us:
C_8,5=56
And if we have to pick only girls:
C_6,5= 6!/(5!)(6-5)!
=6
The probability of picking all girls:
=6/56
=0.1071
The correct answer to this question would be 3/28
40 Jenny is buying gifts for her family. So far she has spent $45,95, and she has one more gift to buy. She started with a total of $60 to spend on all of her gifts Write an inequality that shows how much she can spend on the final gift
Answer:
[tex]x \leq 14.05[/tex]
Step-by-step explanation:
First, to find the boundary we need to find the amount of money left, simply subtract the spent amount from the total:
60 - 45.95 = 14.05
Seeing as this is the amount, she can spend any amount up to and including 14.05, so we need an equal to or smaller than sign:
Let x be the value of the object:
[tex]x \leq 14.05[/tex]
Which is the inequality!
Analyze the key features of the graphs of the functions below. Select all of the quadratic functions that open down, have a vertex that is a maximum and a positive y-intercept.
f(x) = 2x2 - 4x - 3
g(x) = - x2 + x + 1
h(x) = -2x2 + 3x - 1
m(x) = x2 -9
n(x) = -3x2 + 7
f(x) = 2x^2 - 4x - 3; opens up; vertex: (1, -5); y-intercept: (0, -3)
g(x) = -x^2 + x + 1; opens down; vertex: (0.5, 1.25); y-intercept: (0, 1)
h(x) = -2x^2 + 3x - 1; opens down; vertex: (0.75, 0.125); y-intercept: (0, -1)
m(x) = x^2 - 9; opens up; vertex: (0, -9); y-intercept: (0, -9)
n(x) = -3x^2 + 7; opens down; vertex: (0, 7); y-intercept: (0, 7)
I have attached an image of the functions and their graphs.
Hope this helps!
Answer:
[tex]f(x) = -x^2 +x +1[/tex]
Step-by-step explanation:
Quadratic equation is in the form of
[tex]f(x)= ax^2+bx+c[/tex]
When the value of 'a' is positive then the graph opens up
When the value of 'a' is negative then the graph opens down
When the graph opens up then the vertex is minimum.
When the graph opens down then the vertex is maximum.
y intercept is the value of 'c'
[tex]f(x) = 2x^2 - 4x - 3[/tex], a=2 the graph opens up
[tex]f(x) = -x^2 +x +1[/tex], a=-1 the graph opens down. So the vertex is maximum. Y intercept is +1. y intercept is positive.
[tex]f(x) = -2x^2 +3x - 1[/tex], a=-2 the graph opens down. So the vertex is maximum. Y intercept is -1. y intercept is negative.
[tex]f(x) = 2x^2 - 4x - 3[/tex], a=2 the graph opens up
What is the distance between the points (21, 16) and (9, 11)?
Answer: 13 units
The x value goes from x = 21 to x = 9, which is an x distance of 12 units (21-9 = 12)
The y distance is 5 units (16-11 = 5)
We have a right triangle with legs of 12 and 5. The hypotenuse is x
Use the pythagorean theorem to find x
a^2 + b^2 = c^2
5^2 + 12^2 = x^2
25 + 144 = x^2
169 = x^2
x^2 = 169
x = sqrt(169)
x = 13
The hypotenuse of this right triangle is 13 units, so this is the distance between the two points.
Suppose the length and the width of the sandbox are doubled.
The length of the sandbox is 10 and the width is 6.
a.Find the percent of change in the perimeter.
b. Find the percent of change in the area.
Rectangle is the closed shaped polygon with 4 sides. Opposite sides of the rectangle are equal. when the length and the width of the sandbox are doubled the percent of change in the perimeter is 100 percent and the percent of change in the area is 300 percent.
Given-
The length of the sandbox is 10.
The width of the sandbox is 6.
a) The percent of change in the perimeter.
Perimeter of the rectangleThe perimeter of the rectangle is the twice of the sum of its side.The perimeter P of the sandbox is,
[tex]P =2\times (10+6)[/tex]
[tex]P =2\times (16)[/tex]
[tex]P=32[/tex]
When the length and the width of the sandbox are doubled the perimeter [tex]P_d[/tex] of the box is,
[tex]P_d=2\times(20+12)[/tex]
[tex]P_d=2\times(32)[/tex]
[tex]P_d=64[/tex]
Percentage [tex]\DeltaP[/tex][tex]\Delta P[/tex] change in the perimeter,
[tex]\Delta P=\dfrac{64-32}{32}\times 100[/tex]
[tex]\Delta P=100[/tex]
b) The percent of change in the area.
Area of the rectangleThe area of the rectangle is the product of its side.The area A of the sandbox is,
[tex]A = (10\times6)[/tex]
[tex]A=60[/tex]
When the length and the width of the sandbox are doubled the area [tex]A_d[/tex] of the box is,
[tex]A_d=20\times12[/tex]
[tex]P_d=240[/tex]
Percentage [tex]\DeltaP[/tex][tex]\Delta A[/tex] change in the area,
[tex]\Delta A=\dfrac{240-60}{60}\times 100[/tex]
[tex]\Delta P=300[/tex]
Thus when the length and the width of the sandbox are doubled the percent of change in the perimeter is 100 percent and the percent of change in the area is 300 percent.
Learn more about the area of the rectangle here;
https://brainly.com/question/14383947
Can someone help me with 7-9
Answer:
Warning:
I think that these are correct, but don't make this your official source :)
7. B
8. D
9. B
I hope this helps :)
Which equation represents the sentence? The sum of 14 and a number is 8 times the number
A.14+n=8n
B.14n=8+n
C.14n+8=n
D.14(n+8)=n
The correct equation is 14 + n = 8n, option A is correct.
What is an equation?An equation is a combination of different variables, in which two mathematical expressions are equal to each other.
Let the number is n,
8 times of the number = 8n
According to the condition, The sum of 14 and number n is 8 times the number,
Implies that,
14 + n = 8n
The correct equation is 14 + n = 8n.
To know more about Equation on:
https://brainly.com/question/187506
#SPJ5
( 85 x 6 ) - 69 thanks (:
Answer:
( 85 x 6 ) - 69 would equal 441
Step-by-step explanation:
You do 85 x 6 then - 69 (:
Answer:
441
Step-by-step explanation:
first do the
(85x6) you get 510
510-69
441
Help pleasee? Same ones
Since we are given that ABC is congruent to JKL, then AB has to be equal to JK
therefore --- [tex]14x+7=5x+34[/tex]
Subtract 7 from both sides
[tex]14x=5x+27[/tex]
Subtract 5x from each side
[tex]9x=27[/tex]
Divide 9 on each side
[tex]x=3[/tex]
Since, We are asked to find the length of AB and JK
plug in 3 for x
[tex]5(3)+34=15+34=49[/tex]
Thomas earns 15 per hour if he recurved a 10% per hour pay increase how much does Thomas now make per hour
Answer:
He will make 16.50 per hour after his raise.
Step-by-step explanation:
15 x .10 = 1.50
15.00 + 1.50 = 16.50
Can someone help me with this problem
Answer:
12
Step-by-step explanation:
There are 6 for tails. Each is 2. 6 x 2 =12
A population of bacteria is growing according to the exponential model P = 100e(.70)t, where P is the number of colonies and t is measured in hours. After how many hours will 300 colonies be present? [Round answer to the nearest tenth.]
A) 0.7
B) 1.6
C) 5.7
D) 7.2
Hannah buys 2/3 pound of roast beef.She uses 1/4 pound to make a sandwich for lunch. How many roast beef does she have left
Answer:
2/3 - 1/4
=> taking L.C.M of the denominators we get,
=> 8/12-3/12
=> 5/12 is left with her,, ;)
HOPE THIS HELPS YOU...;)
MATH HELP PLEASE!!
find the area of the shaded region.
use the formula A= pi r^2 to find the area of the circle.
a. 8pi x + 24pi
b. 8pi x - 24pi
c. x^2 + 8pi x + 24pi
d. x^2 +8pi x - 24pi
Answer:
b
Step-by-step explanation:
B// 8pi x-24pi
Divide the following polynomial, then place the answer in the proper location on the grid. Write your answer in order of descending powers of x.
(a^2n - a^n - 6) ÷ (a^n + 8)
The correct answer for dividing [tex](a^{2n} - a^n - 6) by (a^n + 8)[/tex] is indeed:
[tex](a^n - 9) + (-78)/(a^n + 8).[/tex]
Let's divide the given polynomials:
[tex]\frac{a^{2n -a^n -6}}{a^n +8}[/tex]
Here's the breakdown of the solution:
Factoring: We can factor the numerator [tex](a^{2n} - a^n - 6)[/tex] using difference of squares:
[tex](a^{2n} - a^n - 6) = (a^n)^2 - (a^n) - 6 = (a^n + 2)(a^n - 3)[/tex]
Division: Now, we can divide the factored numerator by the denominator:
[tex][(a^n + 2)(a^n - 3)] / (a^n + 8) = (a^n + 2) - [(a^n + 8) * (a^n - 3)] / (a^n + 8) = (a^n + 2) - (a^n - 3) = a^n - 9[/tex]
Remainder: Since the degree of the numerator is less than the degree of the denominator, we get a non-zero remainder.
This remainder is obtained by dividing the constant term (-6) in the numerator by the constant term (8) in the denominator, resulting in [tex]-78/(a^n + 8).[/tex]
Therefore, the final answer is [tex](a^n - 9) + (-78)/(a^n + 8)[/tex], with a quotient of [tex](a^n - 9)[/tex] and a non-zero remainder of [tex](-78)/(a^n + 8).[/tex]
CE and BD are angle bisectors of △ABC which intersect at point F. If ∠BFC=110°, find the measure of ∠A.
Answer:
∠A=40°
Step-by-step explanation:
Equation 1: ∠A+∠B+∠C=180°
Equation 2: ∠B/2+∠C/2+110°=180°
2(Equation 2): ∠B+∠C+220°=360°
∠B+∠C=140°
Equation 1 - 2(Equation 2): ∠A=40°
Therefore, ∠A=40°
What is the remainder R when the polynomial p(x) is divided by (x - 2)? Is (x - 2) a factor of p(x)? P(x) = -4x4 + 6x3 + 8x2 - 6x - 4 A) R = 0, no B) R = 0, yes C) R = -72, no D) R = -72, yes
Answer:
B
(x-2) is a factor since remainder is 0.
Step-by-step explanation:
We divide (x-2) into the polynomial [tex]-4x^4+6x^3+8x^2-6x-4[/tex] through long division or synthetic. We choose long division and look for what will multiply with (x-2) to make the polynomial [tex]-4x^4+6x^3+8x^2-6x-4[/tex] .
[tex](x-2)(-4x^3)=-4x^4+8x^3[/tex]
We subtract this from the original [tex]-4x^4-(-4x^4)+6x^3-(8x^3)+8x^2-6x-4[/tex].
This leaves [tex]-2x^3+8x^2-6x-4[/tex]. We repeat the step above.
[tex](x-2)(-2x^2)=-2x^3+4x^2[/tex].
We subtract this from [tex]-2x^3-(-2x^3)+8x^2-(4x^2)-6x-4=4x^2-6x-4[/tex]. We repeat the step above.
[tex](x-2)(4x)=4x^2-8x[/tex].
We subtract this from [tex]4x^2-(4x^2)-6x-(-8x)-4=2x-4[/tex]. We repeat the step above.
[tex](x-2)(2)=2x-4[/tex].
We subtract this from [tex]2x-(2x)-4-(4)=0[/tex]. There is no remainder. This means (x-2) is a factor.
The remainder R when the polynomial p(x) = -4x4 + 6x3 + 8x2 - 6x - 4 is divided by (x - 2) is 0, indicating that (x - 2) is indeed a factor of p(x).
Explanation:To find the remainder R when the polynomial p(x) = -4x4 + 6x3 + 8x2 - 6x - 4 is divided by (x - 2), we can use the Remainder Theorem. The Remainder Theorem states that the remainder of the division of a polynomial p(x) by a linear term (x - a) is equal to p(a). Therefore, to find R, simply calculate p(2).
p(2) = -4(2)4 + 6(2)3 + 8(2)2 - 6(2) - 4
p(2) = -4(16) + 6(8) + 8(4) - 12 - 4
p(2) = -64 + 48 + 32 - 12 - 4
p(2) = 0
Since the remainder is 0, this means that (x - 2) is a factor of p(x).
The correct answer is therefore R = 0, and yes, (x - 2) is a factor of p(x).
How do you recognize if a binomial is a difference of perfect squares and how is the pattern used to factor the binomial?
Answer:
A difference of squares has the following form [tex]a^2-b^2[/tex]. Any two perfect squares connected by subtraction can be factored.
It factors to (a+b)(a-b).
Step-by-step explanation:
A binomial is an expression with only terms where at least one is a term with a variable. When we can factor for difference of squares, we can have two variable terms or just one with a constant.
A difference of squares has the following form [tex]a^2-b^2[/tex]. Any two perfect squares connected by subtraction can be factored.
It factors to (a+b)(a-b).
Write an explicit rule to represent the sequence :
4, 10, 16, 22,...
It's an arithmetic sequence:
[tex]a_1=4;\ a_2=10;\ a_3=16;\ a_4=22;\ ...[/tex]
The explicit rule:
[tex]a_n=a_1+(n-1)d[/tex]
[tex]d=a_{n+1}-a_n\to d=a_2-a_1=a_3-a_2=a_4-a_3=...[/tex]
[tex]d=10-4=16-10=22-16=6[/tex]
Substitute:
[tex]f(n)=4+(n-1)(6)=4+6n-6=6n-2[/tex]
Answer: f(n) = 6n - 2The explicit rule for the arithmetic sequence 4, 10, 16, 22, ... is aₙ = 4 + (n - 1) x 6, where aₙ is the nth term of the sequence.
The given sequence is arithmetic, which means that it increases by the same amount each time. To find an explicit rule for the sequence, we should determine the common difference and use the formula for an arithmetic sequence, which is aₙ = a₁ + (n - 1)d, where an is the nth term, a1 is the first term, n is the number of the term in the sequence, and d is the common difference between terms.
In the sequence 4, 10, 16, 22, ..., the first term a1 is 4, and the common difference is 6 (since 10 - 4 = 16 - 10 = 22 - 16 = 6). Therefore, the explicit rule for the nth term of the sequence is aₙ = 4 + (n - 1) x 6.