Answer:
The answer to your question is: D) Ф₂ = 49.71°
Explanation:
Data
n₁ = 1.33
Ф₁ = 35°C
n₂ = 1
Ф₂ = sin⁻¹ (n₁ sinФ₁/n₂)
Process
Substitution
Ф₂ = sin⁻¹ (n₁ sinФ₁/n₂)
Ф₂ = sin⁻¹ (1.33 sin 35/1)
Ф₂ = sin⁻¹ (1.33 x 0.574/ 1)
Ф₂ = sin⁻¹ ( 0.7628 / 1)
Ф₂ = sin⁻¹ (0.7628)
Ф₂ = 49.71°
Ionic compounds have high melting points.
This can best be explained by the fact that the bonds in ionic compounds
A. involve the sharing of electrons.
B. require a great deal of energy to break.
C. occur between metals and nonmetals.
D. form between a positively charged atom and a negatively charged atom.
Ionic compounds have high melting points due to the strong electrostatic forces of attraction between ions, which require a great deal of energy to break.
Explanation:The high melting points of ionic compounds are best explained by the B option: ionic bonds require a great deal of energy to break. This is because ionic compounds are formed by the strong electrostatic forces of attraction between positively charged cations and negatively charged anions. This strong inter-ionic bonding makes ionic compounds hard, requiring substantial energy to overcome and result in a high melting point.
Learn more about Ionic Compounds here:https://brainly.com/question/33500527
#SPJ6
If a substance is in the gas phase, which of qualities of the gas will stay constant?
A: volume
B: mass
C: shape
D: position of particles
Answer:
Mass will remain constant...
Explanation:
All will change but not mass in gas phase...
Which atomic model was proposed as a result of j. J. Thomson’s work?
Explanation:
During the 19th century the accepted atomic model, was Dalton's atomic model, which postulated the atom was an "individible and indestructible mass".
However, at the end of 19th century J.J. Thomson began experimenting with cathode ray tubes and found out that atoms contain small subatomic particles with a negative charge (later called electrons). This meant the atom was not indivisible as Dalton proposed. So, Thomson developed a new atomic model.
Taking into consideration that at that time there was still no evidence of the atom nucleus, Thomson thought the electrons (with negative charge) were immersed in the atom of positive charge that counteracted the negative charge of the electrons. Just like the raisins embedded in a pudding or bread.
That is why this model was called the raisin pudding atomic model.
What does the atomic mass of an atom tell us?
How much the atom weighs
The number of electrons in the atom
Which row the element is in on the periodic table
The number of energy levels in the atom
"The atomic mass of an atom tells us the mass of an atom relative to carbon-12, which is assigned a mass of exactly 12 atomic mass units (amu). It is approximately equal to the sum of the number of protons and neutrons in the nucleus of an atom. The correct answer to the question is: How much the atom weighs.
The atomic mass is a measure of the mass of a single atom, and it is useful for comparing the masses of different atoms. It is important to note that the atomic mass is not an absolute measure of mass, but a relative one, based on the carbon-12 standard. The atomic mass listed on the periodic table for a given element is the weighted average of the masses of all the naturally occurring isotopes of that element.
To clarify the other options: - The number of electrons in the atom: This is indicated by the atomic number, not the atomic mass. The atomic number is the number of protons in the nucleus of an atom, and for a neutral atom, it is also equal to the number of electrons.
- Which row the element is in on the periodic table: The period (row) in which an element is located on the periodic table is determined by the number of electron shells or energy levels in the atom. This is related to the atomic number, not the atomic mass.
- The number of energy levels in the atom: Similar to the period in which an element is located, the number of energy levels (or electron shells) is also determined by the atomic number and not the atomic mass. The electron configuration of an atom, which is related to its position in the periodic table, dictates the number of energy levels."
Resistivity of a material is the resistance of a cm long sample of the material of 1 cm2 cross-sectional area.
Yes the formula of resistivity is:
[tex]R=\dfrac{\rho l}{A}[/tex]
Where [tex]\rho[/tex] is relativistic resistance with units [tex]\dfrac{\Omega}{m}[/tex], each metal has different relativistic resistance you must find the relativistic resistance of your material using the table of relativistic resistances.
[tex]l[/tex] stands for the length of a wire.
[tex]A[/tex] stands for the area of the wire. Usually it is equal to [tex]\pi r^2[/tex] because.
So now we have data [tex]A=1cm^2[/tex] but nothing else was specified so we are unable to calculate anything.
Hope this helps.
r3t40
Answer:
Your answer is going to be 1 cm.
Explanation:
A force of 45 newtons is applied on an object, moving it 12 meters away in the same direction as the force. What is the magnitude of work done on the object by this force? Part A: Enter the variable symbol for the quantity you need to find. Use your keyboard and the keypad to enter your answer. Then click Done.
Explanation:
The Work [tex]W[/tex] done by a Force [tex]F[/tex] refers to the release of potential energy from a body that is moved by the application of that force to overcome a resistance along a path.
Now, when the applied force is constant and the direction of the force and the direction of the movement are parallel, the equation to calculate it is:
[tex]W=(F)(d)[/tex] (1)
In this case both (the force and the distance in the path) are parallel (this means they are in the same direction), so the work [tex]W[/tex] performed is the product of the force exerted to push the box [tex]F=45N[/tex] by the distance traveled [tex]d=12m[/tex].
Hence:
[tex]W=(45N)(12m)[/tex] (2)
[tex]W=540Nm=540J[/tex]
Answer: W
Explanation:
For Edmentum the answer is simply W
You are driving on an Interstate highway in bad weather, and you do not feel safe at the speed limit. You should A: Follow closely behind a large truck. It will shield you from the weather. B: Slow down to the speed that allows you to have complete control of your vehicle. C: Always drive the same speed as other vehicles, even if it feels unsafe.
Answer:
B. Slow down to the speed that allows you to have complete control of your vehicle.
Explanation:
Your life is very important, and driving at the same speed as others or even closely behind could endanger your life. Being directly behind someone else, if they stop immediately you will hit them because you can't stop fast enough. If something feels unsafe never continue doing it.
Answer:
B. slow down to the speed that allows you to h ave complete control of your vehicle.
Explanation:
You can also reduce the risk of external factors by slowing down and keeping a safe distance from the vehicle in front of you.
A balloon was filled to a volume of 2.50 l when the temperature was 30.0∘c. What would the volume become if the temperature dropped to 11.0∘c.
Answer:
2.34 L
Explanation:
Assuming the pressure inside the balloon remains constant, then we can use Charle's law, which states that for a gas kept at constant pressure, the ratio between the volume of the gas and its temperature remainst constant:
[tex]\frac{V_1}{T_1}=\frac{V_2}{T_2}[/tex]
where in this problem we have:
[tex]V_1 = 2.50 L[/tex] is the initial volume
[tex]V_2 [/tex] is the final volume
[tex]T_1 = 30.0^{\circ}C+273 = 303 K[/tex] is the initial temperature
[tex]T_2 = 11.0^{\circ}C+273 = 284 K[/tex] is the final temperature
Substituting into the equation and solving for V2, we find the final volume:
[tex]V_2 = \frac{V_1 T_2}{T_1}=\frac{(2.50 L)(284 K)}{303 K}=2.34 L[/tex]
Final answer:
The volume of a balloon filled to 2.50 L at 30.0°C will decrease to approximately 2.34 L when the temperature drops to 11.0°C, as calculated using Charles's Law.
Explanation:
To determine the new volume of a balloon when the temperature drops from 30.0°C to 11.0°C, we can use Charles's Law which states that the volume of a gas is directly proportional to its temperature in kelvins. First, we convert the temperatures from Celsius to Kelvin by adding 273.15:
Initial temperature (T1) = 30.0°C = 303.15 KFinal temperature (T2) = 11.0°C = 284.15 KWith an initial volume (V1) of 2.50 L, we can set up the proportionality:
V1/T1 = V2/T2
Solving for the new volume (V2):
V2 = V1 · (T2/T1)
V2 = 2.50 L · (284.15 K / 303.15 K)
V2 = 2.50 L · 0.9373
V2 ≈ 2.34 L
The volume of the balloon will decrease to approximately 2.34 L when the temperature drops to 11.0°C.
Mariner 10 was the first to visit this planet in 1974. what is this planet?
The Mariner 10 probe was launched by NASA on November 3rd, 1973, with the purpose of exploring the characteristics of two planets in the solar system that were closest to the Sun, Mercury and Venus.
In addition, it was launched to explore the atmosphere and surface of both planets and prove that it was possible to use gravitational assistance (also called slingshot effect, a special orbital maneuver in order to use the gravitational field energy of a planet or massive body to accelerate or slow the probe and change the direction of its trajectory) in long interplanetary trips to save fuel.
In this case, Mariner 10 first arrived at Venus and succeded in using its gravitational field to accelerate its trajectory towards Mercury.
The planet visited by Mariner 10 in 1974 was Mercury.
In 1974, Mariner 10 passed within 9500 kilometers of Mercury's surface and transmitted more than 2000 photographs back to Earth. These images provided unprecedented details of Mercury's surface.Leonard designed a parallel circuit to light two lightbulbs. But his circuit doesn't work. Which two items in the circuit must be addressed for the lightbulbs to light as planned?
Answer:
1. The source of power
2. Connection and accessories including, the power cable condition, switches and light bulbs
Explanation:
The items listed above should be tested with a suitable probe and any identified defective component should be replaced
Calculate the kinetic energy in joules of an automobile weighing 4345 lb and traveling at 75 mph. (1 mile
Answer:
1.11×10⁶ J
Explanation:
75 mi/hr × (1609.34 m / mi) × (1 hr / 3600 s) = 33.5 m/s
4345 lbf × (1 lbm / lbf) × (1 kg / 2.2 lbm) = 1975 kg
KE = 1/2 mv²
KE = 1/2 (1975 kg) (33.5 m/s)²
KE = 1.11×10⁶ J
The kinetic energy of the automobile weighing 4345lb and with a speed of 75mph is 1.1077 × 10⁶J
Given the data in the question;
Mass of the automobile [tex]m = 4345lb = 1970.859 kg[/tex][we convert from pound to kilogram]
Velocity of the automobile; [tex]v = 75mph = 33.528m/s[/tex][ we convert from miles per hour to meter per second]
Kinetic energy; [tex]K.E = ?[/tex]
We know that, Kinetic Energy ( K.E ) is a form of energy that a matter possesses by reason of its motion.
It is directly proportional to the mass of the matter and to the square of its velocity.
That is; [tex]K.E = \frac{1}{2} mv^2[/tex]
To find the Kinetic Energy, we simply substitute our given values into the equation
[tex]K.E = \frac{1}{2}\ * 1970.859kg\ *\ ( 33.528m/s)^2\\\\K.E = 1107747.69 kg.m^2/s^2\\\\K.E = 1.1077 * 10^6 J[/tex]
Therefore, the kinetic energy of the automobile weighing 4345lb and with a speed of 75 mph is 1.1077 × 10⁶J
Learn more; https://brainly.com/question/6883026
The force of gravity on an object varies directly with its mass. The constant of variation due to gravity is 32.2 feet per second squared. Which equation represents F, the force on an object due to gravity according to m, the object’s mass?F = 16.1mF =F = 32.2mF =
Explanation:
According Newton's 2nd Law of Motion the force [tex]F[/tex] is directly proportional to the mass [tex]m[/tex] and to the acceleration [tex]a[/tex] of a body:
[tex]F=m.a[/tex] (1)
When we talk about the force of gravity on an object (the weight) the constant acceleration is due gravity, this means:
[tex]a=g=32.2ft/s^{2}[/tex] (2)
Substituting (2) in (1):
[tex]F=m(32.2ft/s^{2})[/tex] (3)
This means the equation that best represents the force on an object due to gravity according to its mass, among the given options is:
[tex]F=32.2m[/tex]
The center of the Milky Way most likely contains
A.
empty space.
B.
a red giant star.
C.
a globular cluster.
D.
a supermassive black hole.
Answer:
The center of the Milky Way most likely contains a supermassive black hole.
Explanation:
Because it is an eleptical galaxy, it has a little rotation to it but not enough to flatten out so the center will contain a supermassive black hole.
What property of objects is best measured by their capacitance?
Explanation:
The capacitance [tex]C[/tex] is defined as the relationship between the electric charge of each conductor and the potential difference between them. That is, it is the capacity of a device to store electrical charge.
In other words:
It is the property that bodies have to maintain an electric charge.
Mathematically it is defined as:
[tex]C=\frac{Q}{V}[/tex]
where:
[tex]C[/tex] is the capacitance value of a capacitor. Its unit is Farad [tex]F[/tex]; named in honor of the physicist Michael Faraday
[tex]Q[/tex] is the electric charge of the conductor, measured in coulombs [tex]C[/tex].
[tex]V[/tex]is the electric potential to which the conductor is located, measured in Volt.
The property of objects best measured by their capacitance is their ability to store electrical charge.
Explanation:The property of objects that is best measured by their capacitance is their ability to store electrical charge. Capacitance is a measure of how much charge an object can hold per unit voltage. It depends on the size and shape of the object, as well as the material between its conductive plates or electrodes.
Capacitors are devices that are specifically designed to have a high capacitance. They are used in many electronic circuits to store and release electrical energy. The capacitance of a capacitor can be increased by increasing the area of the plates, decreasing the distance between them, or changing the dielectric material between them.
Measuring capacitance is important in various applications, such as designing and optimizing electronic circuits, as well as understanding the behavior of electrical systems in general.
Learn more about Capacitance here:https://brainly.com/question/31871398
#SPJ2
The mean free path of a helium atom in helium gas at standard temperature and pressure is 0.2 um.What is the radius of the helium atom in nanometers?
Answer:
r = 0.1217 nm
Explanation:
r^2 = (RT) / ( 4 * pi *P * A* L)
r^2 = 8.314 * 273 / ( 4 * pi * (1.01*10^5) * (6.022*10^23) * (0.2*10^-6))
r = 1.217*10^-10
r = 0.1217 nm
The radius of the helium atom in helium gas can be determined using the mean free path and the concept of cross-sectional area.
Explanation:The radius of a helium atom can be determined using the mean free path and the concept of cross-sectional area. The mean free path is the average distance a molecule travels between collisions. In this case, the mean free path of a helium atom in helium gas at standard temperature and pressure is given as 0.2 um.
To find the radius of the helium atom, we can relate the cross-sectional area, which is 4r², to the mean free path using the formula (N/V)(4r²)(λ) = 1. Rearranging this formula, we have r = sqrt(1 / (4 * N / V * λ)), where N/V is the molar density of helium gas at standard temperature and pressure.
Since we are given the mean free path as 0.2 um, we can substitute this value into the formula. The molar density of helium gas at standard temperature and pressure is approximately 1.78 x 10^25 atoms/m³. Plugging in these values, we can calculate the radius of the helium atom in nanometers.
Using the formula, r = sqrt( 1 / (4 * 1.78 x 10^25 * 0.2 x 10^-6)), we can simplify and convert to nanometers to get r ≈ 0.109 nm. Therefore, the radius of the helium atom is approximately 0.109 nanometers.
Learn more about helium atom here:https://brainly.com/question/591766
#SPJ11
When two point charges are a distance d part, the electric force that each one feels from the other has magnitude F. In order to make this force twice as strong, the distance would have to be changed to
A) 2d
B) d/2
C) sqrt2*d
D) d/4
E) d/sqrt2
Answer:
E) d/sqrt2
Explanation:
The initial electric force between the two charge is given by:
[tex]F=k\frac{q_1 q_2}{d^2}[/tex]
where
k is the Coulomb's constant
q1, q2 are the two charges
d is the separation between the two charges
We can also rewrite it as
[tex]d=\sqrt{k\frac{q_1 q_2}{F}}[/tex]
So if we want to make the force F twice as strong,
F' = 2F
the new distance between the charges would be
[tex]d'=\sqrt{k\frac{q_1 q_2}{(2F)}}=\frac{1}{\sqrt{2}}\sqrt{k\frac{q_1 q_2}{(2F)}}=\frac{d}{\sqrt{2}}[/tex]
so the correct option is E.
Two Earth satellites, A and B, each of mass m, are to be launched into circular orbits about Earth's center. Satellite A is to orbit at an altitude of 6380 km. Satellite B is to orbit at an altitude of 22700 km. The radius of Earth REis 6370 km. (a) What is the ratio of the potential energy of satellite B to that of satellite A, in orbit? (b) What is the ratio of the kinetic energy of satellite B to that of satellite A, in orbit? (c) Which satellite (answer A or B) has the greater total energy if each has a mass of 35.0 kg? (d) By how much?
(a) 0.439
The potential energy of a satellite in orbit is given by
[tex]U=-\frac{GmM}{R+h}[/tex]
where
G is the gravitational constant
m is the mass of the satellite
M is the mass of the Earth
R is the Earth's radius
h is the altitude of the satellite
If we call
[tex]U_A=-\frac{GmM}{R+h_A}[/tex]
the potential energy of satellite A, with
[tex]h_A = 6380 km = 6.38\cdot 10^6 m[/tex]
being its altitude, and
[tex]U_B=-\frac{GmM}{R+h_B}[/tex]
the potential energy of satellite B, with
[tex]h_B = 22700 km = 22.7\cdot 10^6 m[/tex]
being the altitude of satellite B
and
[tex]R=6370 km = 6.37 \cdot 10^6 m[/tex] being the Earth's radius
The ratio between the potential energy of satellite B to that of satellite A will be
[tex]\frac{U_B}{U_A}=\frac{R+h_A}{R+h_B}=\frac{6.37\cdot 10^6 m+6.38\cdot 10^6 m}{6.37\cdot 10^6 m+22.7\cdot 10^6 m}=0.439[/tex]
(b) 0.439
The kinetic energy of a satellite in orbit has a similar expression to the potential energy
[tex]K=\frac{1}{2} \frac{GmM}{R+h}[/tex]
As before, if we call
[tex]K_A=\frac{1}{2} \frac{GmM}{R+h_A}[/tex]
the kinetic energy of satellite A, with
[tex]h_A = 6380 km = 6.38\cdot 10^6 m[/tex]
being its altitude, and
[tex]K_B=\frac{1}{2} \frac{GmM}{R+h_B}[/tex]
the kinetic energy of satellite B, with
[tex]h_B = 22700 km = 22.7\cdot 10^6 m[/tex]
being the altitude of satellite B,
the ratio between the kinetic energy of satellite B to that of satellite A is
[tex]\frac{K_B}{K_A}=\frac{R+h_A}{R+h_B}=\frac{6.37\cdot 10^6 m+6.38\cdot 10^6 m}{6.37\cdot 10^6 m+22.7\cdot 10^6 m}=0.439[/tex]
(c) Satellite B
The total energy of each satellite is given by the sum of the potential energy and the kinetic energy:
[tex]E= U+K = -\frac{GMm}{R+h}+\frac{1}{2} \frac{GMm}{R+h}=-\frac{1}{2}\frac{GMm}{R+h}[/tex]
For satellite A we have:
[tex]E_A = -\frac{1}{2}\frac{GMm}{R+h_A}[/tex]
While for satellite B we have
[tex]E_B = -\frac{1}{2}\frac{GMm}{R+h_B}[/tex]
We see that the total energy is inversely proportional to the altitude of the satellite: therefore, the higher the satellite, the smaller the energy. So, satellite A will have the greater total energy (in magnitude), since [tex]h_A < h_B[/tex]; however, the value of the total energy is negative, so actually satellite B will have a greater energy than satellite A.
(d) [tex]3.07\cdot 10^8 J[/tex]
The total energy of satellite A is
[tex]E_A = -\frac{1}{2}\frac{GMm}{R+h_A}[/tex]
with
[tex]h_A = 6380 km = 6.38\cdot 10^6 m[/tex]
while the total energy of satellite B is
[tex]E_B = -\frac{1}{2}\frac{GMm}{R+h_B}[/tex]
with
[tex]h_B = 22700 km = 22.7\cdot 10^6 m[/tex]
So the difference between the two energies is
[tex]E_B - E_A = -\frac{1}{2}\frac{(6.67\cdot 10^{-11}(35 kg)(5.98\cdot 10^{24} kg)}{6.37\cdot 10^6 m +22.7\cdot 10^6 m}-(-\frac{1}{2}\frac{(6.67\cdot 10^{-11}(35 kg)(5.98\cdot 10^{24} kg)}{6.37\cdot 10^6 m +6.38\cdot 10^6 m})=3.07\cdot 10^8 J[/tex]
What do we mean when we say that the sun is in gravitational equilibrium?
D)
It has played a role throughout the Sun's history, but it was most important right after nuclear fusion began in the Sun's core. What do we mean when we say that the Sun is in gravitational equilibrium? ... There is a balance within the Sun between the outward push of pressure and the inward pull of gravity.
When we say that the sun is in gravitational equilibrium, it simply means that there's a balance within the sun between the outward push of pressure and the inward pull of gravity.
The sun is important as it holds the solar system together. The sun is the most important body to the Earth. It. helps in the provision of heat and energy to the Earth. Without the sun, the Earth will be lifeless.It should be noted that the sun is stable. In this case, it's neither contracting nor expanding. In this case, the sun is in equilibrium and the forces within it are balanced.Gravitational Equilibrium ensures that the core of the sun is at the right level of nuclear fusion. When the sun is in gravitational equilibrium, there is a balance within the sun between the outward push of pressure and the inward pull of gravity.In conclusion, the amount of energy that's released by fusion in the core of the sun will then be equal to the amount of energy that radiated from the surface of the sun into space.
Read related link on:
https://brainly.com/question/8011818
An athlete is working out in the weight room. He steadily holds 50 kilograms above his head for 10 seconds. Which statement is true about this situation? A. The athlete isn't doing any work because he doesn't move the weight. B. The athlete isn't doing any work because he doesn't hold the weight long enough. C. The athlete is doing work because he prevents the weight from falling downward. D. The athlete is doing work because 50 kilograms is a significant load to lift.
Answer:
A. The athlete isn't doing any work because he doesn't move the weight.
Explanation:
As we know that work done is defined as the product of force and displacement of the object in the direction of the force
so here we can say
[tex]W = F d cos\theta[/tex]
now we know that here force is applied by the athlete to hold the mass but the mass is steady at its position
The mass is not moving so we can say that
[tex]d = 0[/tex]
so the work done by the athlete will be zero
so correct answer is
A. The athlete isn't doing any work because he doesn't move the weight.
How far did lewis and clark travel round trip
Answer:
8,000 miles and for 2 years
Explanation:
from May 14, 1804, to September 23, 1806, from St. Louis, Missouri, to the Pacific Ocean and back Lewis and Clark traveled. They traveled nearly 8,000 miles (13,000 km). There expedition was called Corps of Discovery.
Hope this helps:)
If it does please mark brainliest :D
-A.Hazle
The frequency of the middle c note on a piano is 261.63 hz. What is the wavelength of this note in centimeters? The speed of sound in air is 343.06 m/s.
Answer:
1.31 m
Explanation:
The relationship between frequency and wavelength of a sound wave is
[tex]c=f \lambda[/tex]
where
c is the speed of the wave
f is the frequency
[tex]\lambda[/tex] is the wavelenfth
In this problem, we have
c = 343.06 m/s
f = 261.63 Hz
So we can solve the formula for the wavelength:
[tex]\lambda=\frac{c}{f}=\frac{343.06 m/s}{261.63 Hz}=1.31 m[/tex]
Wavelength of the note of the piano is the ratio of speed of sound to its frequency. The wavelength of the note is centimeters is 131 centimeters.
What is wavelength of a wave?Wavelength of a wave is the distance between the two consecutive crest or the thrust of that wave. The wavelength of the wave is represented with the Greek latter lambda (λ).
The wavelength of the wave can be given as,
[tex]\lambda=\dfrac{v}{f}[/tex]
Here, (v) is the speed of wave and (f) is the frequency of the wave.
It is given that, the frequency of the middle c note on a piano is 261.63 hz.
As the speed of sound in air is 343.06 meter per second. Thus put the values of the known variables in the above formula to find the wavelength of the note as,
[tex]\lambda=\dfrac{343.06}{261.63}\\\lambda=1.31\rm m[/tex]
The wavelength of this note in centimeters is 131 centimeters.
Learn more about the wavelength of a wave here;
https://brainly.com/question/25847009
to permit a large water flow , the pipe must have, A.enough strength,B.a large cross sectional area, C.enough length to conduct the flow or ,D. a sufficient drop
Answer:
B. A large cross sectional area,
Explanation:
To permit a large flow of water in a pipe, the cross sectional area of the pipe must be significantly large. According to the flow rate equation:
V = [tex]\frac{Q}{A}[/tex]
Where:
Q is the Volume flow rate and it is the volume of fluid that flows through the pipe
V is the velocity of the fluid in the pipe
A is the cross sectional area of the pipe.
From the equation, we see that for a larger amount of water to flow in a pipe, the cross-sectional area must be very large. In short, Q varies directly as A.
Answer:
a large cross-sectional area
Explanation:
The law of conservation of energy states that (4 points)
energy is always created and destroyed
energy cannot be created or destroyed
energy is unable to change forms
energy should be saved as often as possible
Answer:
energy cannot be created or destroyed
Explanation:
Energy can't be created nor destroyed; rather, it transforms from one form to another.
Answer:
The law of conservation of energy states that energy cannot be created or destroyed.
In which type of chemical reaction are electrons transferred
Answer:
Redox reactions
Explanation:
Redox (Reduction-Oxidation) reactions are reactions which involves the transfer of electrons. Here, one specie loses electrons while the other gains the electrons. The loss and gain of electrons makes one atom reduced while the other becomes oxidized. Transfer of electrons from one specie to another would eventually lead to a change in oxidation number of the reactants as they proceed to form products.
In non-redox reactions, there is no loss or gain of electrons and no change in oxidation number. An example is neutralization reaction.
All atoms of the same element must have the same number of
Answer: Protons
Explanation: The number of protons corresponds to the atomic number.
Explanation:
Atomic number is defined as the total number of protons present in an element.
Each element of the periodic table has different atomic number because each of them have different number of protons.
For example, atomic number of Na is 11, and atomic number of Ca is 20.
On the other hand, atomic mass is the sum of total number of protons and neutrons present in an atom.
For example, atomic mass of nitrogen is 14 that is, it contains 7 protons and 7 neutrons.
Thus, we can conclude that all atoms of the same element must have the same number of protons.
How do I solve this question?
Explanation:
You can solve this with kinematics or with energy. It looks like you want to use energy.
Energy is conserved, so:
initial energy = final energy
Kinetic energy = potential energy
1/2 m v² = m g h
1/2 v² = g h
h = v² / (2g)
If we double the velocity:
H = (2v)² / (2g)
H = 4v² / (2g)
H = 4h
So the new height is 4h.
Relationship between electricity and magnetism
Which of the following represents an upside-down image?
O A. +do
O B. -do
O c. +m
O D.-m
Answer:
D. -m
Explanation:
The magnification of an image is equal to the following ratio:
[tex]m = \frac{y'}{y}[/tex]
where
y' is the size of the image
y is the size of the real object
We have two situations:
- When m is positive, it means that y' has the same sign of y --> so the image has same orientation of the object (= image is upright)
- When m is negative, it means that y' has opposite sign to y --> so the image has opposite orientation to the object (= image is upside down)
So, the correct answer that describes an upside-down image is
D. -m
Final answer:
The representation of an upside-down image in optical physics is given as option D. -m, indicating a negative magnification, which means the image is inverted relative to the object.
Explanation:
The question is related to the formation of images by mirrors or lenses in physics and specifically refers to the sign conventions used to describe the nature of images. An upside-down image is produced when the magnification (m) is negative. This negative magnification indicates that the image is inverted relative to the object. In optics, a real image (produced by a single lens or mirror that can be displayed on a screen) is considered to be upside down if its magnification is negative. Thus, the option that represents an upside-down image is D. -m.
Does current flow through or across a resistor?
Answer:
Current flows across a resistor.
Explanation:
Please mark brainliest and have a great day!
It's not exactly clear what you think the difference is between "through" and "across".
A resistor has two wires. Electric current that flows into one wire, continues through the entire body of the resistor and out through the other wire. If there's a crack or break anywhere along the body of the resistor, the circuit will be 'open' and the current will stop flowing.
Now, if you were to connect a voltmeter between the ends of the resistor, the meter would measure and indicate the difference in electric potential between those two points. That would be called the voltage 'across' the resistor. Numerically, it would be equal to the product of the resistor's resistance and the current through it.
Is the wavelength comparable to the size of atoms?
The wavelength of objects like baseballs is extremely small compared to the size of atoms, rendering such wavelengths undetectable in the macroscopic world. However, for subatomic particles like electrons, their wavelength can be comparable to the size of atoms, influencing their behavior and energy levels within the atom. X-rays have wavelengths comparable to the size of the structures they interact with, allowing them to be effective in observing atomic and molecular structures.
Explanation:When considering the size of an atom, which is typically on the order of 0.1 nanometers (10-10 meters), and comparing it to the wavelengths of various particles or types of radiation, we can make several observations. For instance, the diameter of an atom's nucleus is approximately 10⁻¹⁴ meters.
If we calculate the wavelength of a 0.145 kg baseball moving at 40 m/s, the resultant wavelength would be about 10-34 meters. This is immeasurably small compared to the size of an atom, indicating Their wavelength is very small compared to the object's size.
However, for subatomic particles like electrons, the wavelength is of the same order of magnitude as the size of an atom. The wavelike behavior of electrons is significant when they are confined within the atom, as this affects their possible energy levels. In the case of X-rays, the wavelength is comparable to the size of the structures it interacts with, such as the distances between atoms in a molecule, allowing X-rays to 'see' these structures.
If we scale an atom up to a size comparable to a mid-sized campus, the nucleus would be only a tiny fraction of that size, possibly comparable to a small familiar object like a marble.
Final answer:
Wavelengths of everyday large objects are considerably smaller than the size of atoms, and thus their wave properties are not detectable. However, for subatomic particles like electrons, their wavelengths can be of the same order as the size of atoms, indicating observable wavelike behavior. X-rays have wavelengths comparable to atomic dimensions and can effectively image atomic structures.
Explanation:
When considering the scale of wavelengths to the size of atoms, it's important to understand that typically the wavelength of everyday large objects, such as a baseball, is considerably smaller than atomic dimensions. If we calculate the wavelength of a 0.145 kg baseball moving at a speed of 40 m/s, we would get a wavelength of approximately 10-34 m. This is so short that it is undetectable even with the most advanced scientific instruments and is much smaller than the size of an atom, which is in the order of 10-10 m.
In contrast, the phenomena of wave-particle duality, as demonstrated by electrons, shows that wavelike behavior becomes prominent when the wavelength of particles is on the order of magnitude of atoms. The classic example involves the wave nature of electrons showing quantized wavelengths that fit just right around an atom, explaining why they can only occupy specific energy levels within an atom.
The significance of wavelengths being comparable to atomic sizes comes into focus especially in fields involving the electromagnetic spectrum, such as when using X-rays to probe structures at the atomic or molecular level. Here, the fact that the wavelength of X-rays is comparable to the spacing between atoms allows for the detailed imaging of such structures through diffraction patterns.