Solve the following system of equations using Gaussian elimination method. If there are no solutions, type "N" for both xx, yy and zz. If there are infinitely many solutions, type "z" for zz, and expressions in terms of zz for xx and yy.-5x-7y-4z=-66x+2y+3z=-2-1x+2y-7z=0

Answers

Answer 1

Answer:

x=-224/229,

y=296/229,

z=118/229

Step-by-step explanation:

-5x-7y-4z=-6

6x+2y+3z=-2

-x+2y-7z=0...........( multiple with (-5) and sum with 1st equation, mult with 6 and                    sum with 2nd equation)

______________

-x+2y-7z=0

-17y+31z=-6.....(mult with 14)

14y-39z=-2.....(mult with -17) then sum

___________

-x+2y-7z=0

-229z=-118, so here we have z=118/229.

14y-39*(118/229)=-2, from here we have y=296/229

-x+2*(296/229)-7*(118/229)=0, we get that x=-234/229

In the same way you can do this in the matrix form>>


Related Questions

Which relationship is a direct variation?

Answers

Answer:

A relationship is said to have direct variation when one variable changes and the second variable changes proportionally; the ratio of the second variable to the first variable remains constant. For example, when y varies directly as x, there is a constant, k, that is the ratio of y:x.

For each part, give a relation that satisfies the condition. a. Reflexive and symmetric but not transitive b. Reflexive and transitive but not symmetric c. Symmetric and transitive but not reflexive

Answers

Answer:

For the set X = {a, b, c}, the following three relations satisfy the required conditions in (a), (b) and (c) respectively.

(a) R = {(a,a), (b,b), (c, c), (a, b), (b, a), (b, c), (c, b)} is reflexive and symmetric but not transitive .

(b) R = {(a, a), (b, b), (c, c), (a, b)} is reflexive and transitive but not symmetric .

(c) R = {(a,a), (a, b), (b, a)} is symmetric and transitive but not reflexive .

Step-by-step explanation:

Before, we go on to check these relations for the desired properties, let us define what it means for a relation to be reflexive, symmetric or transitive.

Given a relation R on a set X,

R is said to be reflexive if for every [tex]a \in X, (a,a) \in R[/tex].

R is said to be symmetric if for every [tex](a, b) \in R, (b, a) \in R[/tex].

R is said to be transitive if [tex](a, b) \in R[/tex] and [tex](b, c) \in R[/tex], then [tex](a, c) \in R[/tex].

(a) Let R = {(a,a), (b,b), (c, c), (a, b), (b, a), (b, c), (c, b)}.

Reflexive: [tex](a, a), (b, b), (c, c) \in R[/tex]

Therefore, R is reflexive.

Symmetric: [tex](a, b) \in R \implies (b, a) \in R[/tex]

Therefore R is symmetric.

Transitive: [tex](a, b) \in R \ and \ (b, c) \in R[/tex] but but (a,c) is not in  R.

Therefore, R is not transitive.

Therefore, R is reflexive and symmetric but not transitive .

(b) R = {(a, a), (b, b), (c, c), (a, b)}

Reflexive: [tex](a, a), (b, b) \ and \ (c, c) \in R[/tex]

Therefore, R is reflexive.

Symmetric: [tex](a, b) \in R \ but \ (b, a) \not \in R[/tex]

Therefore R is not symmetric.

Transitive: [tex](a, a), (a, b) \in R[/tex] and [tex](a, b) \in R[/tex].

Therefore, R is transitive.

Therefore, R is reflexive and transitive but not symmetric .

(c) R = {(a,a), (a, b), (b, a)}

Reflexive: [tex](a, a) \in R[/tex] but (b, b) and (c, c) are not in R

R must contain all ordered pairs of the form (x, x) for all x in R to be considered reflexive.

Therefore, R is not reflexive.

Symmetric: [tex](a, b) \in R[/tex] and [tex](b, a) \in R[/tex]

Therefore R is symmetric.

Transitive: [tex](a, a), (a, b) \in R[/tex] and [tex](a, b) \in R[/tex].

Therefore, R is transitive.

Therefore, R is symmetric and transitive but not reflexive .

Relation from the set of two variables is subset of certain product. The relation for the condition are,

[tex]R_1\;\;\;\;\ (1,1), (1,2),,(2,1), (2,2),(2,3)((3,2),3,3)[/tex]

[tex]R_2\;\;\;\;\ (1,1), (2,2),,(3,3)(1,3)3,1)[/tex]

[tex]R_3\;\;\;\;\ (1,2),,(2,1), ,(2,3)((3,2)[/tex]

Relation-

Relation from the set of two variables is subset of certain product. Relation are of three types-

ReflexiveSymmetricTransitive

1) Reflexive and symmetric but not transitive -

Let a data set as,

[tex]X=1,2,3[/tex]

For the data set the relation can be given as,

[tex]R_1\;\;\;\;\ (1,1), (1,2),,(2,1), (2,2),(2,3)((3,2),3,3)[/tex]

[tex]R_1[/tex] is reflexive as it can be represent as [tex]R_1(a,a)[/tex] for,

[tex]a=1,2,3, \;\;\;\;\; [/tex]

[tex]a[/tex] ∈ [tex]X[/tex]

[tex]R_1[/tex] is symmetric as it can be represent as [tex]R_1(a,b)[/tex] for,

[tex]a,b \;\;\;\;(1,2) (2,1)[/tex]

[tex]a,b[/tex] ∈ [tex]X[/tex]

[tex]R_1[/tex] is not transitive as it can be represent as [tex]R_1\neq (a,c)[/tex] .

[tex]a,c\neq \;\;\;\;(1,3) (3,1)[/tex]

2)  Reflexive and transitive but not symmetric

Let a data set as,

[tex]X=1,2,3[/tex]

For the data set the relation can be given as,

[tex]R_2\;\;\;\;\ (1,1), (2,2),,(3,3)(1,3)3,1)[/tex]

[tex]R_2[/tex] is reflexive as it can be represent as [tex]R_2(a,a)[/tex] for,

[tex]a=1,2,3, \;\;\;\;\; [/tex]

[tex]a[/tex] ∈ [tex]X[/tex]

[tex]R_1[/tex] is transitive as it can be represent as [tex]R_1(a,c)[/tex] for,

[tex]a,c \;\;\;\;(1,3) (3,1)[/tex]

[tex]a,c[/tex] ∈ [tex]X[/tex]

[tex]R_1[/tex] is not symmetric as it can be represent as [tex]R_1\neq (a,b)[/tex] .

[tex]a,b\neq \;\;\;\;(1,2) (2,1)[/tex]

3) Symmetric and transitive but not reflexive

Let a data set as,

[tex]X=1,2,3[/tex]

For the data set the relation can be given as,

[tex]R_3\;\;\;\;\ (1,2),,(2,1), ,(2,3)((3,2)[/tex]

[tex]R_1[/tex] is symmetric as it can be represent as [tex]R_3(a,b)[/tex] for,

[tex]a,b=(1,2),(2,1) \;\;\;\;\; [/tex]

[tex]a,b[/tex] ∈ [tex]X[/tex]

[tex]R_3[/tex] is transitive as it can be represent as [tex]R_3(a,c)[/tex] for,

[tex]a,c \;\;\;\;(1,3) (3,1)[/tex]

[tex]a,c[/tex] ∈ [tex]X[/tex]

[tex]R_1[/tex] is not reflexive as it can be represent as [tex]R_3\neq (a,a)[/tex] .

[tex]a,a\neq \;\;\;\;(1,1) [/tex]

Thus the relation for the condition are,

[tex]R_1\;\;\;\;\ (1,1), (1,2),,(2,1), (2,2),(2,3)((3,2),3,3)[/tex]

[tex]R_2\;\;\;\;\ (1,1), (2,2),,(3,3)(1,3)3,1)[/tex]

[tex]R_3\;\;\;\;\ (1,2),,(2,1), ,(2,3)((3,2)[/tex]

Learn more about the Reflexive, symmetric and transitive relation here;

https://brainly.com/question/1581464

Samples of skin experiencing desquamation are analyzed for both moisture and melanin content. The results from 100 skin samples are as follows: melanin content high low moisture high 13 10 content low 47 30 Let A denote the event that a sample has low melanin content, and let B denote the event that a sample has high moisture content. Determine the following probabilities. Round your answers to three decimal places (e.g. 98.765).
a) P(A)
b) P(B)
c) P (A|B)
d) P (BA)

Answers

Answer: a. 0.40   b. 0.23  c . 0.435   d . 0.25

Step-by-step explanation:

                                   melanin      content    Total

                                            high   low

moisture   high                     13      10                23

content    low                       47      30                77

 Total                                   60      40               100

Let A denote the event that a sample has low melanin content, and let B denote the event that a sample has high moisture content.

a) Total skin samples has low melanin content = 10+30=40

P(A)=[tex]\dfrac{40}{100}=0.40[/tex]

b) Total skin samples has high moisture content = 13+10=23

P(B) =[tex]\dfrac{23}{100}=0.23[/tex]

c) A ∩ B =  Total skin samples has both low melanin content and high moisture content =10

P(A ∩ B) =[tex]\dfrac{10}{100}=0.10[/tex]

Using conditional probability formula , [tex]P (A|B)=\dfrac{P(A\cap B)}{P(B)}[/tex]

[tex]P (A|B)=\dfrac{0.10}{0.23}=0.434782608696\approx0.435[/tex]

d)  [tex]P (B|A)=\dfrac{P(A\cap B)}{P(A)}[/tex]

[tex]P (B|A)=\dfrac{0.10}{0.40}=0.25[/tex]

Evaluate the limit using the appropriate Limit Law(s). (If an answer does not exist, enter DNE.) lim x→8 1 + 3 x 5 − 6x2 + x3

Answers

Answer:

[tex] [tex] lim_{x \to 8} (1+3\sqrt{x})(1-6x^2 +x^3)[/tex]=[tex]1-384 +512+3\sqrt{8} -18(8)^{5/2} +3 (8)^{7/2} =1223.601[/tex]

And the limit on this case exists.

Step-by-step explanation:

We want to find the following limit:

[tex] lim_{x \to 8} (1+3\sqrt{x})(1-6x^2 +x^3)[/tex]

First we can distribute the polynomials like this:

[tex] lim_{x \to 8} (1-6x^2 +x^3+3\sqrt{x} -18 x^{5/2} +3x^{7/2})[/tex]

And Now we can use the distributive property for the limit and we got:

[tex] lim_{x \to 8} 1 - 6 lim_{x \to 8} x^2 + lim_{x \to 8} x^3 +3 lim_{x \to 8} \sqrt{x} -18 lim_{x \to 8} x^{5/2} + 3 lim_{x \to 8} x^{7/2}[/tex]

And now we can evaluate the limit and we got:

[tex] [tex] lim_{x \to 8} (1+3\sqrt{x})(1-6x^2 +x^3)[/tex]=[tex]1-384 +512+3\sqrt{8} -18(8)^{5/2} +3 (8)^{7/2} =1223.601[/tex]

And the limit on this case exists.

Final answer:

To solve limit problems in mathematics, limit laws are often very useful. In this specific case, as the function is a polynomial and defined for all real number values, a direct substitution of x=8 into the function is sufficient. Therefore, the limit as x approaches 8 for function 1 + 3x5 - 6x2 + x3 is calculable.

Explanation:

In the field of mathematics, limit laws are used quite frequently for evaluating limits. In this case, we want to calculate the limit as x approaches 8 for the function 1 + 3x5 - 6x2 + x3.

For a given polynomial function like this one, an easy and very straightforward approach is to substitute the value x is approaching (in this scenario, x = 8) directly into the polynomial function.

So, after substitution, our function becomes: 1 + 3*(8)^5 - 6*(8)^2 + (8)^3. Simplifying it further, the limit as x approaches 8 of this function gives us a definite numeric value.

Always remember while applying limit laws, you might at times need the limit laws to evaluate complex limit problems but in this given scenario, direct substitution works perfectly fine because this polynomial function is defined for all real number values of X.

Learn more about Limit Laws here:

https://brainly.com/question/32518634

#SPJ3

You are certain to get 3 jacks when selecting 51 cards from a shuffled deck. Express the indicated degree of likelihood as a probability value between 0 and 1 inclusive.

Answers

Final answer:

The question pertains to calculating the probability of drawing exactly 3 jacks from 51 randomly drawn cards from a 52-card deck. While the probability is very high, it's not an absolute certainty. The exact calculations involve complex combinatorial mathematics.

Explanation:

The subject of this question pertains to probability in mathematics, specifically to calculate the likelihood of drawing 3 jacks when selecting 51 cards from a shuffled deck of 52 cards.

First off, we need to understand that in a well-shuffled 52-card deck, there are 4 Jacks. Even if you select 51 out of 52 cards, there isn't a guarantee that you will select 3 jacks because the selection is random. The scenario you provided indicates a nearly certain event (since you're pulling nearly all the cards), but it still isn't an absolute certainty.

The exact probability computation for this kind of problem are more complex as they would involve combinatorial calculations. For simplicity, let's consider a similar but simpler scenario. Let's assume you are drawing just 4 cards instead. The probability of getting exactly 3 Jacks would be a combination of the probability of picking a Jack, and the probability of picking a non-Jack card. This would be calculated as (C(4,3) * C(48,1)) / C(52,4), with C representing the combination formula. This gives us how many ways we can draw 3 Jacks and a non-Jack divided by how many ways we can draw any 4 cards.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

Final answer:

The probability of drawing 3 jacks from a standard deck of 52 cards when selecting 51 is 1 (certainty), as it is a guaranteed event given the conditions.

Explanation:

The question asks about the probability of a certain event occurring when dealing with a standard deck of 52 cards. In this case, the event is being certain to get 3 jacks when selecting 51 cards out of 52. Since there are 4 jacks in the deck, and upon drawing 51 cards you're left with only 1 card that is not drawn, it is guaranteed that you'll have the 3 jacks among the drawn cards.

Hence, the probability is 1 (certainty), as there is only one card you're not drawing and 4 chances to have drawn a jack, which means you will always end up with all 3 jacks among the chosen 51 cards.

10- [6-2•2 + (8-3)]•2

Answers

Answer:

10-[6-4+(5)]×2

10-[2+5]×2

10-(7)×2

10-14= -4

The stop-board of a shot-put circle is a circular arc 1.22 m in length. The radius of the circle is 1.06 m. What is the central angle?

Answers

Answer:

Central angle= 1.15 radians

Step-by-step explanation:

[tex]Arc\,\,length=s= 1.22\,m\\Radius=r=1.06\,m\\\\Central\,\, angle=\theta=?\\\\Using\\\\ s=r\theta\\\\\theta=\frac{s}{r}\\\\\theta= \frac{1.22}{1.06}\\\\\theta=1.15 \,rad[/tex]

Find the mean amount hospitals had to pay in wrong-site lawsuits. Round your answer to the nearest whole dollar.

Answers

Answer:

dont see much information here but as far as lawsuits go id aim for the highest answer

Step-by-step explanation:

_____________________________________

Determine which matrices are in reduced echelon form and which others are only in echelon form. a. [Start 3 By 4 Matrix 1st Row 1st Column 1 2nd Column 0 3rd Column 0 4st Column 0 2nd Row 1st Column 0 2nd Column 2 3rd Column 0 4st Column 0 3rd Row 1st Column 0 2nd Column 0 3rd Column 1 4st Column 1 EndMatrix ]1 0 0 0 0 2 0 0 0 0 1 1 b. [Start 3 By 4 Matrix 1st Row 1st Column 1 2nd Column 0 3rd Column 1 4st Column 1 2nd Row 1st Column 0 2nd Column 1 3rd Column 1 4st Column 1 3rd Row 1st Column 0 2nd Column 0 3rd Column 0 4st Column 0 EndMatrix ]1 0 1 1 0 1 1 1 0 0 0 0 c. [Start 4 By 4 Matrix 1st Row 1st Column 0 2nd Column 0 3rd Column 0 4st Column 0 2nd Row 1st Column 1 2nd Column 3 3rd Column 0 4st Column 0 3rd Row 1st Column 0 2nd Column 0 3rd Column 1 4st Column 0 4st Row 1st Column 0 2nd Column 0 3rd Column 0 4st Column 1 EndMatrix ]

Answers

Answer:

Step-by-step explanation:

Check the attachment for the solution

Answer:

Echelon form.Reduced Echelon form.Neither.

Step-by-step explanation:

The objective is to determine which of the following matrices are in reduced echelon form and which others are only in echelon form. The given matrices are

                       [tex]\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0& 2 & 0 & 0 \\ 0& 0 & 1 & 1 \end{bmatrix}[/tex],  [tex]\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0& 1& 1 & 1 \\ 0& 0 & 0 & 0 \end{bmatrix}[/tex]  and   [tex]\begin{bmatrix} 0& 0 & 0 & 0 \\ 1& 3 & 0 & 0 \\ 0& 0 & 1 & 0 \\ 0& 0 & 0 & 1 \end{bmatrix}[/tex].

First, recall what is an echelon and reduced echelon form of a matrix.

A matrix is said to be in a Echelon form if

If there is any zero rows, all nonzero rows are placed above them;Each first non-zero entry in a row, which is the leading entry, is placed to the right of the leading entry of the row above it;All elements below the leading entry must be equal to zero in each column.

A matrix is said to be in  a Reduced Echelon form if

In each non-zero row, the leading entry is 1.In its column, each leading 1 is actually the only non-zero element.

A column that contains a leading 1 which is the only non-zero element is called a pivot column.

Now, let's have a look at the first matrix

                                 [tex]\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0& 2 & 0 & 0 \\ 0& 0 & 1 & 1 \end{bmatrix}[/tex]

As we can see, it doesn't have any zero rows. Each leading entry in a row is placed to the right of the leading entry from the row above and all elements below the leading entries in all columns are equal to zero. Therefore, this matrix is in an Echelon form.

In the second row, the leading entry is 2, not 1, so because of the first property of the Reduced Echelon form, it is not in a Reduced Echelon form.

Notice that it can be transformed to the Reduced Echelon form by multiplying the second row by [tex]\frac{1}{2}.[/tex]

The second matrix is

                                         [tex]\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0& 1& 1 & 1 \\ 0& 0 & 0 & 0 \end{bmatrix}[/tex]

There is a zero row, and all non-zero rows are placed above it. Each leading entry in a row, which is the first non-zero entry, is placed to the right of the entry of the row above it and all elements below the leading entry are equal to zero in each column, so it is in the Echelon form.

It is also in the Reduced Echelon form, since all non-zero rows the leading entry is 1 and it is the only non zero element in each column.

The least given matrix is

                                        [tex]\begin{bmatrix} 0& 0 & 0 & 0 \\ 1& 3 & 0 & 0 \\ 0& 0 & 1 & 0 \\ 0& 0 & 0 & 1 \end{bmatrix}[/tex]

This matrix doesn't satisfy the condition that if there is any zero-row, it must be below all other non-zero rows, so it is not in Echelon form.

A matrix that is not in an Echelon form, it is not in an Reduced Echelon form either.

Therefore, this matrix is not in an Reduced Echelon form.

An airplane has a front nad a rear door that are bother openedto allow passengers to exit when the plane lands. the planehas 100 passengers seated. the number of passengers exitingthrought the front door shougl have

a) a binomial distribution with mean 50
b) a binomial distribution with 100 trials but successprobability not equal to .5
c)a normal didtribution with a standard deviation of5
d) none of the above

Answers

Answer:

a) a binomial distribution with mean 50

Step-by-step explanation:

Given that an  airplane has a front nad a rear door that are bother opened to allow passengers to exit when the plane lands. the plane has 100 passengers.

These 100 passengers can select either back door or front door with equal probability (assuming)

so probability for selecting front door = 0.5

No of passengers =100

Each passenger is independent of the other

Hence X no of passengers exiting through the front door is binomial with

p =0.5 and n =100

Mean of the variable X = np = 100(0.5) = 50

Variance of X = 100(0.5)(0.5)

Hence std dev = 10(0.5) = 5

So correct answers are

a) a binomial distribution with mean 50

The following scores represent the results of a midterm exam in Statistics class. 25 35 43 44 47 48 54 55 56 57 59 62 63 65 66 68 69 69 71 72 72 73 74 76 77 77 78 79 80 81 81 82 83 85 89 92 93 94 97 98 a) Find the lower and upper quartiles for the data. b) Find the interquartile range. c) Construct a boxplot for this data set.

Answers

Answer:

a.

lower Quartile= 57.5

Upper Quartile=81

b.

23.5

c.

box-plot is attached in excel file

Step-by-step explanation:

The data is arranged in ascending order so, the lower quartile denoted as Q1 can be calculated as under

Q1=((n+1)/4)th score=(41/4)th score=(10.25)th score

Q1=10th score+0.25(11th-10th)score

Q1=57+0.25(59-57)=57+0.5=57.5

Q1=57.5

The data is arranged in ascending order so, the third quartile denoted as Q3 can be calculated as under

Q3=(3(n+1)/4)th score=(3*41/4)th score=(30.75)th score

Q3=30th score+0.75(31th-30th)score

Q3=81+0.75(81-81)=81+0=81

Q3=81

b)

Interquartile range=IQR=Q3-Q1=81-57.5=23.5

IQR=23.5

c)

The box-plot is made in excel and it shows no outlier. The box-plot shows the 5-number summary(minimum-Q1-median-Q3-maximum) as 25-57.5-72-81-98.

Using data from 20 compact cars, a consumer group develops a model that predicts the stopping time for a vehicle by using its weight. You consider using this model to predict the stopping time for your large SUV. Explain why this is not advisable.

Answers

No, it is not advisable to predict the stopping time for your large SUV using model trained for compact cars.

Prediction means generating the values of the dependent variable using some specific models in machine learning.

Given that, the model is trained on 20 compact cars and the model is developed such that it predicts the stopping time for a vehicle by using its weight.

Here the dependent variable is stopping time which is required to be predicted. As the model is trained on compact cars that is medium size cars and if we expect the same model to predict stopping time for large SUV, then model is going to predict false stopping time as the weights for large SUV is quiet higher than the compact cars. So, model may consider it as an outlies and will lead to incorrect prediction.

Therefore, it is not advisable to use the same model for predicting the stopping time for your large SUV.

Learn more about prediction, here:

https://brainly.com/question/33800126

#SPJ12

Final answer:

Using a stopping time model developed from compact car data to predict the stopping time for a large SUV is not advisable due to differences in vehicle dynamics, which may lead to inaccurate results.

Explanation:

When a consumer group develops a model to predict the stopping time of a vehicle based on its weight, the model must be used within the context of the data from which it was derived. Using the model, which was built on data from 20 compact cars, to predict the stopping time of a larger SUV is not advisable due to differences in vehicle dynamics, size, weight distribution, and potentially different braking systems. Models are designed to be predictive within the range of data they are based on, and extrapolating them beyond that range can lead to inaccurate predictions. Specifically, the heavier mass of an SUV compared to compact cars means that it would likely have a longer stopping distance due to greater momentum, and this may not be represented in a model calibrated to lighter vehicles.

Factor the GCF out of the trinomial on the left side of the equation. (2 points: 1 for the GCF, 1 for the trinomial)2x^2 + 6x - 362(x^2 + 3x - 18)

Answers

Answer:

2(x+6)(x-3)

Step-by-step explanation:

Factor the GCF out of the trinomial on the left side of the equation.

[tex]2x^2 + 6x - 36 =2(x^2 + 3x - 18)[/tex]

Greatest common factor of 2, 6, 18 is 2

so GCF is 2

divide each term when we take out GCF 2

so [tex]2(x^2 + 3x - 18)[/tex]

now factor the trinomial

product is -18 and sum is +3

6 times -3 is -18  and 6-3=3

[tex]2(x^2+3x-18)\\2(x+6)(x-3)[/tex]

2-41 The time to complete a construction project is normally distributed with a mean of 60 weeks and a standard deviation of 4 weeks. What is the probability the project will be finished in 62 weeks or less? 62-60/4=2/4=0.5=69146 What is the probability the project will be finished in 66 weeks or less? 66-60/4=6/4=1.5 What is the probability the project will take longer than 65 weeks?

Answers

The probability that the project will be finished in 62 weeks or less is 0.6915.

The probability that the project will be finished in 66 weeks or less is 0.9332.

The probability that the project will take longer than 65 weeks is 0.1056.

Given that:

The time to complete a construction project is normally distributed.

The mean is :

μ = 60 weeks

The standard deviation is:

σ = 4 weeks

The z-score is:

[tex]z=\frac{x-\mu }{\sigma }[/tex]

When x = 62,

[tex]z=\frac{62-60}{4}[/tex]

   [tex]=0.5[/tex]

So, P(x ≤ 62) = P(z ≤ 0.5).

From the standard table, P(z ≤ 0.5) = 0.6915

When x = 66,

[tex]z=\frac{66-60}{4}[/tex]

   [tex]=1.5[/tex]

So, P(x ≤ 66) = P(z ≤ 1.5).

From the standard table, P(z ≤ 1.5) = 0.9332

When x = 65,

[tex]z=\frac{65-60}{4}[/tex]

   [tex]=1.25[/tex]

So, P(x > 65) = P(z > 1.25).

                     = 1 - P(z ≤ 1.25).

From the standard table, P(z ≤ 1.25) = 0.8944

So, P(x > 65) = P(z > 1.25)

                     = 1 - 0.8944

                     = 0.1056

Hence, the probabilities are 0.6915, 0.9332, and 0.1056 respectively.

Learn more about z-scores here :

https://brainly.com/question/31871890

#SPJ12

Final answer:

The probability the project will be finished in 62 weeks or less is approximately 69.15%. The probability the project will be finished in 66 weeks or less is approximately 93.32%. The probability the project will take longer than 65 weeks is approximately 10.56%.

Explanation:

To find the probability that the project will be finished in 62 weeks or less, we need to calculate the z-score. The z-score formula is (x - μ) / σ where x is the value we are interested in, μ is the mean, and σ is the standard deviation. Plugging in the values, we get (62 - 60) / 4 = 0.5. Using a z-score table, we can look up the probability corresponding to a z-score of 0.5, which is approximately 0.6915 or 69.15%.

Similarly, to find the probability that the project will be finished in 66 weeks or less, we calculate the z-score: (66 - 60) / 4 = 1.5. Looking up a z-score of 1.5 in the table, we find the probability is approximately 0.9332 or 93.32%.

To find the probability that the project will take longer than 65 weeks, we can subtract the probability of it being finished in 65 weeks or less from 1. Using the z-score formula, we get (65 - 60) / 4 = 1.25. The probability of finishing in 65 weeks or less is the area to the left of this z-score, which is approximately 0.8944 or 89.44%. Subtracting from 1, we get the probability of taking longer than 65 weeks is approximately 0.1056 or 10.56%.

Learn more about Probability here:

https://brainly.com/question/22962752

#SPJ3

A student who has created a linear model is disappointed to find that herR2 value is a very low 13%. a) Does this mean that a linear model is not appropriate? Explain. b) Does this model allow the student to make accurate predictions? Explain.

Answers

Answer:

a) No it doesn't mean that linear model is inappropriate

b) No. The prediction using this model will not be accurate.

Step-by-step explanation:

a)

For answering this part, firstly consider the concept of [tex]R^{2}[/tex]

The [tex]R^{2}[/tex] also known as coefficient of determination is used to determine the amount of variability in dependent variable is explained by the linear model. Lower [tex]R^{2}[/tex] depicts that less variation of dependent is explained by the independent variable using the linear model. The linearity of model is determined by scatter plot. Thus, if the [tex]R^{2}[/tex] is lower, it doesn't mean that linear model is inappropriate.

b)

The predictions made by the model having lower [tex]R^{2}[/tex] value are erroneous. The model is used for prediction if the linear model explains the larger portion of variability in dependent variation. If the predictions made from the model that have lower [tex]R^{2}[/tex] value then the predicted values will not be close to the actual value and thus residuals will not be minimum as residuals are the difference of actual and predicted values.

Not defined?
x-2/5x-10

Answers

Answer:

(x-2)/5(x-2)

cancel x-2 from the numerator and the denominator and the answer is 1/5

A general 2x2 diagonal matrix has the form(a00b). Thus the two unknown real numbers a b are needed to specify each 2x2 diagonal matrix. In Exercises 11 16, how many unknown real numbers are needed to specify each of the given matrices
1. An upper triangular 2x2 matrix?
2.) An m × n matrix?

Answers

Answer:

1. 3, and 2. m x n

Step-by-step explanation:

1. for an upper triangular 2x2 matrix i.e. (a,0,c,d), three (03) unknown elements a, c, and d are needed to be specified.

2. for m x n matrix, m*n elements are needed to be specified.

Final answer:

To specify an upper triangular 2x2 matrix, 3 unknown real numbers are needed. For an m × n matrix, m × n unknown real numbers are required.

Explanation:

The question asks how many unknown real numbers are needed to specify each of the given matrices: an upper triangular 2x2 matrix, and an m × n matrix.

1. An Upper Triangular 2x2 Matrix

An upper triangular matrix has the form:

(a, b)
(0, c)

Thus, to specify an upper triangular 2x2 matrix, 3 unknown real numbers are needed: a, b, and c.

2. An m × n Matrix

An m × n matrix has m rows and n columns. To specify such a matrix, one needs m × n unknown real numbers, representing each element in the matrix.

In a sample of 11 men, the mean height was 178 cm. In a sample of 30 women, the mean height was 167 cm. What was the mean height for both groups put together?

Answers

Answer:

I'm pretty sure it would be 345, just add the two 178 and 167

how many ways are there to list the digits {1,2,2,3,4,5,6} so that identical digits are not in consecutive position?

Answers

Answer: 2520 ways

Step-by-step explanation:

7!/2!

Answer:

no

Step-by-step explanation:

Equations - Item 2829
The circumference (C) of a circle is 16 cm. Which formula can you use to find the
diameter (d) if you know that C = 3.14d?​

Answers

The formula is used to find the diameter of circle is: [tex]d = \frac{C}{3.14}[/tex]

The diameter of circle is 5.1 cm

Solution:

Given that,

Circumference (C) of a circle is 16 cm

The formula for circumference of circle when diameter is given is:

[tex]C = \pi d\\\\\pi \text{ is a constant equal to 3.14}\\\\C = 3.14d[/tex]

Rearrange the formula to get "d"

Divide both sides by 3.14

[tex]d = \frac{C}{3.14}[/tex]

The above formula is used to find the diameter of circle

Given that, circumeference = C = 16 cm

Substituting we get,

[tex]d = \frac{16}{3.14}\\\\d = 5.095 \approx 5.1[/tex]

Thus diameter of circle is 5.1 cm

Sketch an approximate solution curve that passes through each of the indicated points.
dy/dx = e^(−0.01) xy²

Answers

Answer:

y=-2· e^(0.01)/ x²

Step-by-step explanation:

We calculate the given differential equation, we get

dy/dx = e^(−0.01) xy²

dy/y² = e^(−0.01) x dx

∫ y^(-2) dy= e^(−0.01) ∫ x dx

- y^(-1) = e^(−0.01) x²/2

-1/y=  e^(−0.01) x²/2

y=-2/ e^(−0.01) x²

y=-2· e^(0.01)/ x²

We use the site desmos.com, to plot graph for the solution of the the given differential equation. We get a graph.

The exponential probability distribution is a discrete distribution that is often used to describe time between customer arrivals.

Answers

Answer:

True

Step-by-step explanation:

The time between customer arrivals is called inter-arrival time. According to Queueing Notation, the inter-arrival time can be model based on difference probability distribution. The probability distribution by which the inter-arrival time can be modeled include:

Exponential Distribution or Markov distributionConstant or DeterministicHyper - exponentialArbitrary or General distribution

Which represents a quadratic function?

f(x) = −8x3 − 16x2 − 4x

f (x) = three-quarters x 2 + 2x − 5

f(x) = StartFraction 4 Over x squared EndFraction minus StartFraction 2 Over x EndFraction + 1

f(x) = 0x2 − 9x + 7

Answers

Answer:

The answer to your question is the second option

Step-by-step explanation:

A Quadratic function is a polynomial of degree two. That means that the higher exponent is 2.

a) This option is incorrect because the highest power is 3 not two.

b) This option is the right answer, the highest power is 2, so, it is a quadratic function.

c) This option is incorrect, the highest power is -2.

d) This option is incorrect, the highest option is 1.

Answer:

Option 2 is the correct answer

Step-by-step explanation:

A quadratic function is a function in which the highest power to which the variable is raised is 2

1) f(x) = −8x3 − 16x2 − 4x

The given function is a cubic function because the highest power

to which the variable,x is raised is 3

2) f(x) = 3x²/4 + 2x - 5

The given function is a quadratic function because the highest power

to which the variable,x is raised is 2

3) f(x) = 4/x² - 2/x + 1

It can be rewritten as

f(x) = 4x^-2 - 2x^-1 + 1

The given function is not a quadratic function because the highest power to which the variable,x is raised is - 2

4) f(x) = 0x2 − 9x + 7

It can be rewritten as

f(x) = - 9x + 7

The given function is not a quadratic function because the highest power to which the variable,x is raised is 1

1. Suppose the coefficient matrix of a linear system of four equations in four variables has a pivot in each column. Explain why the system has a unique solution.
2. What must be true of a linear system for it to have a unique​ solution?
Select all that apply.
A. The system has no free variables.
B. The system has one more equation than free variable.
C. The system is inconsistent.
D. The system is consistent. Your answer is correct.
E. The system has at least one free variable.
F. The system has exactly one free variable.

Answers

Answer:its A

Step-by-step explanation:it was

The data in below relates to characteristics of​ high-definition televisions A through E. Identify the​ individuals, variables, and data corresponding to the variables. Determine whether each variable is​ qualitative, continuous, or discrete.
Screen
Setup Size​ (in) Type Number of Channels Available
A 47 Projection 300
B 45 Plasma 118
C 60 Plasma 423
D 40 Plasma 269
E 43 Projection 290

Answers

Answer:

Step-by-step explanation:

Hello!

You have two variables of interest.

X: Setup size (inches)

Y: Type the number of channels available.

Qualitative variables are those who describe characteristics of the subject of study, for example, the eye color of a person.

Quantitative variables are those that count quantities, for example, the shoe size of a person.

Continuous and discrete variables are quantitative. The difference is that the continuous variables are those who count in a determined range of valours, but between two observed values, there are infinite possible outcomes, for example, the body temperature of a cat. The normal temperature of a cat is around 38ºC, using a normal thermometer you measure the body temperature of two cats and obtain the following values 37.8 and 37.9 if you change the thermometer to one designed to take more precise measurements, it is possible that you obtain more values, for example, 37.81 and 39.94 and with a more precise tool you may become temperatures with more digits, this means that within this two temperatures there are infinite values of temperature, only limited by the equipment available.

A discrete variable is a quantitative variable but between the values, these variables take there are no other possible observations, regardless of the method of equipment used. An example of a discrete variable is the amount of money in a pocket. If you have two bills in one pocket, one is a 10 dollar bill and the other is a 20 dollar bill, there are no possible values in between, you either have ten or twenty, there is not possible, in this example, to count 15 dollars.

Then the variable "Y: Type number of channels available." is quantitative discrete, it counts the number of channels and between each channel there is nothing.

The variable "X: Setup size (inches)", the "inch" is a unit of length, and these variables are usually continuos, but in this example, your variable describes the screen width of the televisions and the type of image definition. Both are characteristics of the TVs so the variable is a qualitative one.

I hope it helps!

27. In constructing a confidence interval estimate of the population mean you decide to select 49 random observations to get your point estimate of the mean (sample mean). Your friend is also constructing a similar confidence interval estimate but decides to use a sample size of 36 random observations.
Which of the following is true?
a.) Your confidence interval estimate is narrower
b.) Your friend’s confidence interval estimate has a greater degree of confidence
c.) Your confidence interval estimate is wider
d.) Your confidence interval estimate has a greater degree of confidence
2.) The width of a confidence interval estimate for a proportion will be:
a.) Narrower for 99% confidence level than for a 95% confidence level
b.) Wider for a sample size of 100 than for a sample size of 75
c.) Narrower for 90% confidence level than for a 95% confidence level
d.) Narrower when the sample proportion is .50 than when the sample proportion is 20.

Answers

Answer:

1) a.) Your confidence interval estimate is narrower

2) c.) The width of a confidence interval estimate for a proportion will be narrower for 90% confidence level than for a 95% confidence level

Step-by-step explanation:

Confidence Interval can be stated as  M±ME where

M is the sample meanME is the margin of error

Margin of Error determines the range of the confidence interval around the mean.

Margin of error (ME) of the mean can be calculated using the formula

ME=[tex]\frac{z*s}{\sqrt{N} }[/tex] where

z is the corresponding statistic in the given confidence levels is the standard deviation of the sample(or the population if it is known) N is the sample size

From the formula we can reach the following conclusions:

As N increases, ME decreases.as confidence level increases, corresponding statistic increases, and thus margin of error increases.

Since your sample size (49) is bigger than your friend's (36), your confidence interval is narrower, because margin of error is narrower.

Since the confidence level 90% has smaller statistic than the confidence level 95%, its confidence interval is narrower.

That is, we can estimate narrower confidence intervals with less confidence.

PLEASE HELP!!!

Carol paid $0.78 per liter for gas while driving across Canada. Find the cost per gallon to the nearest cent.


Please give a step by step

Answers

Answer:

2.95 cent

Step-by-step explanation:

1 gallon = 231 cubic inches

1 litre = 1000ml = 61.0237 cubic inches

1 galloon = 231 / 61.0237 = 3.7854118 liters

if Carol paid $0.78 per litre

1 galloon = 0.78 x 3.7854118 = 2.952621204 ≅ 2.95 cent

Question 5 (Fill-In-The-Blank Worth 1 points)
(05.05 MC)
A system of equations is shown below:
6x - 5y = 5 ,
3x + 5y = 4
The x-coordinate of the solution to this system of equations is
Numerical Answers Expected!

Answers

Answer:

The x-coordinate of the solution to this system of equations is 1.

Step-by-step explanation:

Given,

[tex]6x - 5y = 5\\\\3x + 5y = 4[/tex]

We have to find out the x-coordinate of the equation.

Solution,

Let [tex]6x-5y=5\ \ \ \ equation\ 1[/tex]

Again let [tex]3x+5y=4\ \ \ \ \ equation \ 2[/tex]

Now using elimination method we will solve the equations.

For this we will add equation 1 and equation 2 and get;

[tex](6x-5y)+(3x+5y)=5+4\\\\6x-5y+3x+5y=9\\\\9x=9[/tex]

Now on dividing both side by '9' we get;

[tex]\frac{9x}{9}=\frac{9}{9}\\\\x=1[/tex]

Hence The x-coordinate of the solution to this system of equations is 1.

1

ur welcome homie

poggers

Assume that about 30% of all U.S. adults try to pad their insurance claims. Suppose that you are the director of an insurance adjustment office. Your office has just received 140 insurance claims to be processed in the next few days. What is the probability that from 45 to 47 of the claims have been padded?

a. 0.222
b. 0.167
c. 0.119
d. 0.104
e. 0.056

Answers

Answer:

For x=45

sample proportion=45/140=0.321

z=(0.321-0.30)/sqrt(0.3*(1-0.3)/140)

z=0.54

For x=47

sample proportion=47/140=0.336

z=(0.336-0.30)/sqrt(0.3*(1-0.3)/140)

z=0.93

Now,

P(0.54<z<0.93)=P(z<0.93)-P(z<0.54)

=0.8238-0.7054

=0.118

So,correct option is 0.119

Suppose the coefficient matrix of a linear system of four equations in four variables has a pivot in each column. Explain why the system has a unique solution. What must be true of a linear system for it to have a unique​ solution? Select all that apply.

Answers

If the coefficient matrix has a pivot in each column, it means that it is shaped like this:

[tex]A=\left[\begin{array}{cccc}a_{1,1}&a_{1,2}&a_{1,3}&a_{1,4}\\0&a_{2,2}&a_{2,3}&a_{2,4}\\0&0&a_{3,3}&a_{3,4}\\0&0&0&a_{4,4}\end{array}\right][/tex]

So, the correspondant system

[tex]Ax = b[/tex]

will look like this:

[tex]\left[\begin{array}{cccc}a_{1,1}&a_{1,2}&a_{1,3}&a_{1,4}\\0&a_{2,2}&a_{2,3}&a_{2,4}\\0&0&a_{3,3}&a_{3,4}\\0&0&0&a_{4,4}\end{array}\right]\cdot \left[\begin{array}{c}x_1\\x_2\\x_3\\x_4\end{array}\right] = \left[\begin{array}{c}b_1\\b_2\\b_3\\b_4\end{array}\right][/tex]

This turn into the following system of equations:

[tex]\begin{cases}a_{1,1}x_1+a_{1,2}x_2+a_{1,3}x_3+a_{1,4}x_4=b_1\\a_{2,2}x_2+a_{2,3}x_3+a_{2,4}x_4=b_2\\a_{3,3}x_3+a_{3,4}x_4=b_3\\a_{4,4}x_4=b_4\end{cases}[/tex]

The last equation is solvable for [tex]x_4[/tex]: we easily have

[tex]x_4=\dfrac{b_4}{a_{4,4}}[/tex]

Once the value for [tex]x_4[/tex] is known, we can solve the third equation for [tex]x_3[/tex]:

[tex]x_3 = \dfrac{b_3-a_{3,4}x_4}{a_{3,3}}[/tex]

(recall that [tex]x_4[/tex] is now known)

The pattern should be clear: you can use the last equation to solve for [tex]x_4[/tex]. Once it is known, the third equation involves the only variable [tex]x_3[/tex]. Once

Other Questions
In response to the move by the governor of Arkansas to block the Little Rock nine from attending high school president Eisenhower?had had the governor arrest and remove the officesign executive order 9981 to force the school integrationorder the national guard to escort students safely into the schoolencourage the NAACP to file a lawsuit against the school districtC IS THE ANSWER Generally, regardless of threat or vulnerability, there will ____ be a chance a threat can exploit a vulnerability. a. never b. occasionally c. always d. seldom Help me please! 6x + 3x = 18 What piece of legislation deals with the 18th amendment Holly and her two friends went to the movies and total Holly paid 24$ for 3 tickets. how much did one ticket cost Consider two thin disks, of negligible thickness, of radiusR oriented perpendicular to thex axis such that the x axis runs through thecenter of each disk. The disk centered at x=0 has positive charge density eta, and the disk centered at x=a has negative charge density -\eta, where the charge density is charge perunit area. What is the magnitude E of the electric field at the point on thex axis with x coordinate a/2? For what value of the ratio R/a of plate radius to separation between the plates does the electric field at the point x=a/2 on the x axis differ by 1 percent from the result / for infinite sheets? A guitar string is 90 cm long and has a mass of 3.7 g . The distance from the bridge to the support post is L=62cm, and the string is under a tension of 500 N . What are the frequencies of the fundamental and first two overtones? Find the coordinates of the x- and y-intercepts for an ellipse with the equation (x+1)^2/9 + (y-2)^2/8 = 1 A bag contains 2 gold marbles, 10 silver marbles, and 26 black marbles. You randomly select one marble from the bag. What is the probability that you select a gold marble? Give your answer as a reduced fraction. How did the Romanov Dynasty end? Which general defied orders and left camp to help his men fight in battle What is the slope-intercept equation of this line?(0,6)(4,-2) Observational studies, such as the study that demonstrated that people who eat a Mediterranean diet live longer, healthier lives, are able to demonstrate cause and effect between two variables just like a well designed experiment.True/False 15-n/6=n/6-1please help me with this i need it Write a program that reads an integer (greater than 0) from the console and flips the digits of the number, using the arithmetic operators // and %, while only printing out the even digits in the flipped order. Make sure that your program works for any number of digits and that the output does not have a newline character at the end. ckson's Programming paid its June of $500 cash. demonstrate how to use the accounting equation to record the transaction by completing the following sentence.Jackson would decrease _________ and increase ________ in the accounting equation. I dont understand how to do this A chunk of an unidentified element (let's call it element "X") is reacted with sulfur to form an ionic compound with the chemical formula X2S. Which of the following elements is the most likely identity of X?a. Mgb. Lic. Ald. Ce. Cl Periods of depression that do not affect our daily lives are called adjustment disorders.Please select the best answer from the choices provided.TF Both Wiesel's All Rivers Run to the Sea and Spiegelman's Maus relate events of the Holocaustfrom a Jewish survivor's perspective.O using the third-person point of view.O by retelling the experiences of friends.through the eyes of their fathers. Steam Workshop Downloader