Answer:
I think is a for the answer
the simplified value of the given expression 2y (x+z) = w for z will be z = (w- 2xy)/2y.
What are mathematical operations?The term "operation" in mathematics refers to the process of computing a value utilizing operands and a math operator. For the specified operands or integers, the math operator's symbol has predetermined rules that must be followed. In mathematics, there are five basic operations: addition, subtraction, multiplication, division, and modular forms.
Given, an expression 2y (x+z) = w
Simplifying the given expression for z
=> 2y (x+z) = w
divide by 2y into both sides
=> x + z = w/2y
subtract by x into both sides
=> z = w/2y - x
=> z = w-2xy /2y
thus,
z = (w- 2xy)/2y
therefore, the simplified value of the given expression 2y (x+z) = w for z will be z = (w- 2xy)/2y.
Learn more about Mathematical operations here:
https://brainly.com/question/20628271
#SPJ5
Need help on this math question
Answer:
[tex]x = 16.6\ cm[/tex]
Step-by-step explanation:
To answer this question use the secant line theorem.
If two secant segments are drawn towards a circle from an outer point, then the product of the length of the secant segment y and the length of its outer secant segment is equal to the product of the length of the other secant segment and its external secant segment.
This is:
[tex](12+6)*6 = (5+x)*5[/tex]
Now we solve the equation for the variable x
[tex]18*6 = 5*5+x*5[/tex]
[tex]108 = 25+5x[/tex]
[tex]5x = 108-25[/tex]
[tex]5x = 83[/tex]
[tex]x = \frac{83}{5}[/tex]
[tex]x = 16.6\ cm[/tex]
Answer:
16.6
Step-by-step explanation:
got it right online
If you could help that would be so amazing im struggling w this concept :)
[tex]\bf ~\hspace{7em}\textit{negative exponents} \\\\ a^{-n} \implies \cfrac{1}{a^n} ~\hspace{4.5em} a^n\implies \cfrac{1}{a^{-n}} ~\hspace{4.5em} \cfrac{a^n}{a^m}\implies a^na^{-m}\implies a^{n-m} \\\\[-0.35em] \rule{34em}{0.25pt}[/tex]
[tex]\bf f(x)=\cfrac{20}{4+3e^{-0.2x}}\implies f(3)=\cfrac{20}{4+3e^{-0.2(\stackrel{\downarrow }{3})}}\implies f(3)=\cfrac{20}{4+3e^{-0.6}} \\\\\\ f(3)=\cfrac{20}{4+3\frac{1}{e^{0.6}}}\implies f(3)=\cfrac{20}{4+3\frac{1}{e^{\frac{3}{5}}}}\implies f(3)=\cfrac{20}{4+3\frac{1}{\sqrt[5]{e^3}}} \\\\\\ f(3)=\cfrac{20}{4+\frac{3}{\sqrt[5]{e^3}}}\implies f(3)\approx\cfrac{20}{4+5.6464}\implies f(3)\approx 3.5421[/tex]
you could also just use plug in 0.6 as the exponent for "e", Euler's constant, in your calculator, and that works the same.
In the above triangle, if x = , y = 1, and z = 2, then which of the following is equal to tan(60°)?
A. [tex]\sqrt{3}[/tex]
B. [tex]\frac{\sqrt{2} }{2}[/tex]
C. [tex]\frac{\sqrt{3} }{2}[/tex]
D. [tex]\frac{\sqrt{3} }{3}[/tex]
Answer: Option A
[tex]tan(60\°) = \sqrt{3}[/tex]
Step-by-step explanation:
We know the sides and z. So since it is a straight triangle we use the Pythagorean theorem to pull the length of the x side.
[tex]z ^ 2 = x ^ 2 + y ^ 2\\\\x^2 = z^2 - y^2\\\\x=\sqrt{z^2 - y^2}\\\\x=\sqrt{2^2 - 1^2}\\\\x=\sqrt{4 - 1}\\\\x=\sqrt{3}[/tex]
By definition, the tangent of an angle is:
[tex]tan(\theta) = \frac{opposite}{adjacent}[/tex]
In this case:
[tex]adjacent = y=1\\\\opposite=x =\sqrt{3}\\\\\theta=60\°[/tex]
Then:
[tex]tan(60\°) = \frac{\sqrt{3}}{1}[/tex]
[tex]tan(60\°) = \sqrt{3}[/tex]
The answer is:
The correct option is:
A. [tex]\sqrt{3}[/tex]
Why?Since we already know the hypothenuse and the opposite side of the triangle (y), we can calculate the value of "x" using the Pythagorean Theorem.
We have that:
[tex]Hypothenuse^{2}=Adjacent^{2}+Opposite^{2}[/tex]
We know that:
[tex]Hypothenuse=z=2\\Adjacent=x=1[/tex]
So, substituting and calculating we have:
[tex]2^{2}=1^{2}+Opposite^{2}[/tex]
[tex]4-1=Opposite^{2}[/tex]
[tex]Opposite^{2}=3\\Opposite=\sqrt{3}[/tex]
Then,using the following trigonometric relation:
[tex]Tan(\alpha)=\frac{Opposite}{Adjacent}\\\\Tan(60\°)=Tan(\frac{Opposite}{Adjacent})=Tan(\frac{\sqrt{3} }{1})^=\sqrt{3[/tex]
We have that the correct option is:
A. [tex]\sqrt{3}[/tex]
Have a nice day!
Iris is making hats for the members of the school marching band. She can make 3 hats in one and a half hours. She wants to know many hats she makes in 1 hour
Answer:
Iris can make 2 hats in an hour.
Step-by-step explanation:
3 hats in one and a half hours is 1 hat per half hour. 2 hats would take two half hours, which is one whole hour.
She can make 2 hats.
Since she can make 3 hats in 1.5 hours, divide 1.5 by 3 to find the unit amount of hats she can make.
1.5/3=.5
.5 of an hour is 30 mins.
Now, multiply 30 mins by 2 to find the amount of time it would take to make 2 hats.
30*2=60 or 1 hour.
She can make 2 hats in an hour.
Hope this helps!
Trigonometry help. The instructions don’t make sense to me. Can someone explain this!
Answer: x = 19.42, y = 18.47, z = 18°
Step-by-step explanation:
This is assumed to be a 90° triangle so you can use Soh Cah Toa to answer the questions. You must use a calculator for the last step.
[tex]cos\theta=\dfrac{adjacent}{hypotenuse}\implies cos72^o=\dfrac{6}{x}\implies x=\dfrac{6}{cos72^o}\implies x=19.42\\\\\\tan\theta=\dfrac{opposite}{adjacent}\implies tan72^o=\dfrac{y}{6}\implies y=6\ tan72^o}\implies y=18.47\\\\[/tex]
Use Triangle Sum Theorem to find the angle measure of z:
90° + 72° + z = 180°
162° + z = 180°
z = 18°
HELP PLEASEEEE !!!!!!!!!!!!!!
8 days ago is -8 and the time was 24 minutes
9 days ago is -9 and the time was 18 minutes.
The time 2 days ago was halfway in between.
Add the two times together and divide by 2:
24 + 18 = 42 / 2 = 21 minutes
The coordinate is at (-2,21)
Mason has 108 feet of material to build a fence around a rectangular pool on his property. If the width of the fence must be 6 feet, what is the length of the fence in yards if he uses all 108 feet of material? A. 48 yards B. 16 yards C. 96 yards D. 32 yards
Answer:
Option A (48 yards).
Step-by-step explanation:
The perimeter of any shape other than the ellipse is given by:
Perimeter = Sum of all sides.
Since there are two pairs of lines and both lines in the pair are congruent in each other in a rectangle, the formula can be updated as:
Perimeter of a rectangle = 2L + 2W; where L is the length and W is the width.
The perimeter of the fence around the rectangular pool is 108 feet and the width of the pool is 6 feet. The length can be calculated by plugging in the values in the above equation:
108 = 2L + 2(6).
2L = 108 - 12.
L = 96/2.
L = 48 feet.
So Option A is the correct answer!!!
The length of the fence in yards, if he uses all 108 feet of material, is 48 feet if Mason has 108 feet of material to build a fence around a rectangular pool on his property.
What is a rectangle?It is defined as two-dimensional geometry in which the angle between the adjacent sides is 90 degrees. It is a type of quadrilateral.
It is defined as the area occupied by the rectangle in two-dimensional planner geometry.
The area of a rectangle can be calculated using the following formula:
Rectangle area = length x width
It is given that:
Mason has 108 feet of material to build a fence around a rectangular pool on his property.
As we know,
Perimeter = Sum of all sides.
The perimeter of a rectangle (P) = 2L + 2W
Here L is the length and W is the width.
P = 109 feet
W = 6 feet
108 = 2L + 2(6)
2L = 108 - 12
L = 96/2
L = 48 feet.
Thus, the length of the fence in yards, if he uses all 108 feet of material, is 48 feet if Mason has 108 feet of material to build a fence around a rectangular pool on his property.
Learn more about the rectangle here:
https://brainly.com/question/15019502
#SPJ2
1. Determine if the lines that pass through the given points are parallel, perpendicular or neither. Line A: (-3, 5) and (0, 7) Line B: (6, 2) and (9, 4)
2. Write the equation of a line in slope-intercept form that is perpendicular to the line y = –4x and passes through the point (2, 6).
Turns out I had 2 more questions loll thank u!
Answer:
The lines are parallel.
Step-by-step explanation:
They are parallel if their slopes are the same.
Slope of Line A = rise / run = (7-5) / (0 - -3) = 2/3.
Slope of Line B = (4-2) / 9-6) = 2/3.
Therefore they are parallel.
The lines passing through points (-3,5) and (0,7) and through points (6,2) and (9,4) are parallel to each other. The equation of a line perpendicular to y=-4x that passes through the point (2,6) is y=1/4x+5.5.
Explanation:To determine whether the lines are parallel, perpendicular, or neither, we first need to calculate the slope of both lines. The slope of a line is the ratio of the vertical change to the horizontal change between any two points on the line. It's given by the formula m = (y2 - y1) / (x2 - x1).
For line A passing through points (-3,5) and (0,7), the slope (m1) is (7-5) / (0 - (-3)) = 2/3. For line B passing through points (6,2) and (9,4), the slope (m2) is (4-2) / (9-6) = 2/3. Since m1 = m2, Line A and Line B are parallel.
To write an equation of a line in slope-intercept form that is perpendicular to the line y = -4x and passes through the point (2,6), we first note that the slope of lines that are perpendicular to each other multiply to -1. Since the slope of the given line is -4, the slope of the line perpendicular to it would be 1/4. Using the slope-intercept form y = mx + b, where m is the slope and b is the y-intercept, we substitute for m and a point on the line (2,6) to solve for b: 6 = 1/4*2 + b. Solving for b gives b = 5.5. So the equation of the line is y = 1/4x + 5.5.
Learn more about Slope here:https://brainly.com/question/3605446
#SPJ3
Find the difference. Write your answer in scientific notation.
(6.33×10−9)−(4.5×10−9)=
Answer:
1.83×[tex]10^{-9}[/tex]
Step-by-step explanation:
The exponent on the base of ten is -9 for both. The easiest way to do this when that is the case is to factor it out:
[tex]10^{-9}(6.33-4.5)[/tex]
and then perform the subtraction to give you
1.83×[tex]10^{-9}[/tex]
BRAINLIEST AND 20 POINTS!
what is the multiplicative inverse of 5 ?
The multiplicative inverse of a number is the reciprocal of the number.
For a whole number this would be making it a fraction with 1 as the numerator.
The multiplicative inverse of 5 is 1/5
Multiplicative inverse means that the numerator and denominator switch places. Remember that all non fraction numbers can be turned into a fraction by making the denominator 1 like so...
[tex]\frac{5}{1}[/tex]
Now you can take the multiplicative inverse of 5/1 to get...
[tex]\frac{1}{5}[/tex]
^^^That is equal to 0.2
Hope this helped!
~Just a girl in love with Shawn Mendes
Question 13 of 45
1 Point
Which statement correctly describes the inverse of the following function?
A. It is negative.
B. It is a horizontal shift.
C. It is not a function.
D. It is a function.
please give an explanation as to why you chose that answer. (I think its either A or D.)
I think it is A because the numbers decreased
Which phrase could be represented by this expression?
k/5 + 8
eight more than a fifth of a number
eight more than five times a number
one-fifth of the sum of a number and eight
five times a number plus eight
Answer:
eight more than a fifth of a number
Step-by-step explanation:
k/5 is one-fifth of a number. When 8 is added to it, the result is ...
eight more than a fifth of a number
_____
There is no multiplication by 5, so any phrasing with "five times" is incorrect.
The one-fifth multiplier is applied only to k, not to any sum.
The tables above represent data points for two linear equations. If the two equations form a system, what is the x-coordinate of the solution to that system?
The x-coordinate of the solution to the system of linear equations is 0.
To find the x-coordinate of the solution to the given system of linear equations, we need to analyze the data points provided for both Equation 1 and Equation 2.
Similarly, examining the data points for Equation 2, we notice that as x increases by 4, y increases by 1. This implies a constant rate of change and suggests that Equation 2 also follows a linear pattern. We can express Equation 2 in the slope-intercept form:
y = (1/4)x + b.
To find the x-coordinate of the solution to the system, we need to set the two equations equal to each other and solve for x.
Equating the two equations, we have:
-x + b = (1/4)x + b
By simplifying the equation, we can eliminate the b term:
-x = (1/4)x
Next, we can multiply both sides of the equation by 4 to eliminate the fraction:
-4x = x
Bringing all the x terms to one side, we get:
-4x - x = 0
Combining like terms, we have:
-5x = 0
Finally, we divide both sides of the equation by -5 to solve for x:
x = 0
To know more about equation here
https://brainly.com/question/21835898
#SPJ2
if you know that 3+sqrt 11 is a root of a polynomial function, then the name given to 3 -sqrt 11, another root of that same function, is a______conjugate?
Answer: Radical conjugate.
Step-by-step explanation:
By definition [tex]a+\sqrt{b}[/tex] and [tex]a-\sqrt{b}[/tex] are called "Conjugate radicals".
Therefore, by this definition, you can know the following:
1) [tex]a+\sqrt{b}[/tex] is the conjugate of [tex]a-\sqrt{b}[/tex]
2) [tex]a-\sqrt{b}[/tex] is the conjugate of [tex]a+\sqrt{b}[/tex].
Then, since you know that [tex]3+\sqrt{11}[/tex] is a root of a polynomial function, therefore you can conclude that the name given to the other root [tex]3-\sqrt{11}[/tex] of the same function is the following:
"Radical conjugate".
Which statements are true of functions? Check all that apply.
All functions have a dependent variable.
All functions have an independent variable.
The range of a function includes its domain.
A vertical line is an example of a functional relationship.
A horizontal line is an example of a functional relationship.
Each output value of a function can correspond to only one input value.
Answer:
The correct statements that are true to functions are :
All functions have a dependent variable. All functions have an independent variable.These above two can be explained as : We write a function as y = f(x), where x is the independent variable, and y is dependent as it depends on x values.
A horizontal line is an example of a functional relationship.Rest all options are incorrect.
Answer:
The correct options are:
Option A: All functions have a dependent variable.
Option B: All functions have an independent variable.
Option E: A horizontal line is an example of a functional relationship.
Step-by-step explanation:
Consider the provided information.
Function: A function is a relationship where each input has only one output.
Which is denoted by "y=f(x)" where x is input value, also the variable x is independent and y is dependent.
Each input value has exactly one output value vice versa is not true.
Vertical line test: A equation is said to be a function if all vertical lines intersect the graph at most once.
Now consider the provided options:
Option A: All functions have a dependent variable.
This option is true, by the above definition of function.
Option B: All functions have an independent variable.
This option is true, by the above definition of function.
Option C: The range of a function includes its domain.
This option is false.
Understand this with the help of an example:
Consider the function [tex]y=x^2[/tex]
The range of the function is [0,∞) and domain of the function (-∞,∞).
Here range doesn't contains the domain.
Thus this option is wrong.
Option D: vertical line is an example of a functional relationship.
The equation of the vertical line is x=a where a can be any real number.
We have different values of y for a unique x also the function fails the vertical line test.
Thus the option D is False.
Option E: A horizontal line is an example of a functional relationship.
The equation of horizontal line is y=a where a can be any real number.
For each input has only one output also it satisfy the vertical line test. We will have same value of y for any x. Which satisfy the property of function.
Thus this option is true.
Option F: Each output value of a function can correspond to only one input value by definition of function.
Understand this with the help of an example:
Consider the function y=a
The function has same output value for each input value. Which is the contradictory to the option's statement.
Thus, this option is false.
The correct options are:
Option A: All functions have a dependent variable.
Option B: All functions have an independent variable.
Option E: A horizontal line is an example of a functional relationship.
To become a member at a local nature preserve, applicants must pay an initiation fee of $150 plus their yearly membership dues, as shown in the graph. What is the slope of the line joining these points, and what does the slope represent?
Answer:
slope = $125 per yearit represents the yearly membership duesStep-by-step explanation:
The values at two points that differ by 1 year differ by $125, so the slope is $125 per year.
The graph shows the total cost of membership, which includes the initiation fee (y-intercept) and yearly membership dues (increase per year). The slope represents the increase per year: the yearly membership dues.
The slope of a line is determined by the change in the y-axis divided by the change in the x-axis. In this case without specific graphical data, it is conjectured that the slope may represent the yearly membership cost increase or decrease over time. A positive slope shows an increase, while a negative slope shows a decrease.
Explanation:The question seems to be asking about the slope of a line related to the cost of a membership at a nature preserve. However, the provided reference information does not connect directly to this question, but outlines concepts of slope in economics and business scenarios rather than the nature preserve context. In general, the slope of a line is calculated by the change in the y-axis divided by the change in the x-axis. In this context, without a graph, one can conjecture that the slope may represent the yearly membership cost increase or decrease over time. A positive slope indicates an increase, whereas a negative slope indicates a decrease.
Learn more about Slope of a line here:https://brainly.com/question/34207674
#SPJ3
Solve for x. x3=8125 Enter your answer in the box as a fraction in simplest form.
The value of x is 20.1036 given that x³=8125. This can be obtained by using prime factorization.
Calculate the value of x:The number 8125 can be written as factors of primes as,
8125 = 5×5×5×5×13
x³ = 5×5×5×5×13
Take cube roots on both sides,
⇒ x = ∛5×5×5×5×13
x = 5∛5×13
x = 5 × 4.02072 ⇒ x = 20.1036
Hence the value of x is 20.1036 given that x³=8125.
Learn more about roots here:
brainly.com/question/27863878
#SPJ2
To solve the equation x^3 = 8125 for x, we need to take the cube root of both sides of the equation. The cube root of a number y, denoted as y^(1/3), is a number which, when raised to the power of 3, gives y.
So, let's calculate the cube root of 8125:
First, we can factor 8125 into its prime factors to help simplify the cube root:
8125 = 5 * 1625 = 5 * 5 * 325 = 5 * 5 * 5 * 65 = 5 * 5 * 5 * 5 * 13 (Since 65 = 5 * 13)
Now that we have the prime factorization of 8125, we can group the factors into triples:
8125 = (5 * 5 * 5) * 13
Notice that there are three 5s in one group and a leftover 13 that cannot form a triple.
The cube root of a product of factors is the product of the cube roots of those factors, so taking the cube root of both sides of the equation gives us:
x = (5 * 5 * 5)^(1/3) * 13^(1/3)
x = 5 * 13^(1/3)
Because 13 is a prime number and cannot be broken down any further, it does not have a rational cube root. As a result, 13^(1/3) is an irrational number and cannot be represented exactly as a fraction. However, we can write the exact answer as:
x = 5 * 13^(1/3)
To find an approximate rational representation, we can look for a fraction that is close to the cube root of 13. Since we cannot do this exactly without a calculator, we can only leave our final answer like this, with the understanding that the cube root of 13 remains irrational.
In conclusion, the exact result, in simplest form without using an irrational-to-rational conversion (which would not be exact), is:
x = 5 * 13^(1/3)
Jayda's house is located at (1, 5). She can walk in a straight line to get to Cristian's house. A fast-food restaurant is located at (9, 1) and partitions the way from Jayda's house to Cristian's house by a ratio of 4:1. Find the coordinate of Cristian's house.
Coordinates are the group of a number used to indicate the position of a point in a graph or at a scale.the coordinate of Cristian's house are (11,0)
Given-
Jayda's house is located at (1, 5).
A fast-food restaurant is located at (9, 1).
Fast-food restaurant partitions the way from Jayda's house to Cristian's house by a ratio of 4:1
What is the coordinate point?Coordinates are the group of a number used to indicate the position of a point in a graph or at a scale.
Let the coordinate of jadya's be A (1,5))
Let the coordinate of Cristian's be B ([tex]x_2,y_2[/tex])
Let the coordinate of fast food restaurant be R (9,1)
The ratio is 4:1. Thus m is 4 and n is 1.
The coordinate of the point B is,
[tex]x_R=\dfrac{nx_1+mx_2}{m+n}[/tex]
[tex]9=\dfrac{1\times1+4\times x_2}{1+4}[/tex]
[tex]9=\dfrac{1+4 x_2}{5}[/tex]
[tex]4 x_2=9\times 5-1[/tex]
[tex]x_2=\dfrac{44}{4} =11[/tex]
Find the other point of Critian's house,
[tex]y_R=\dfrac{ny_1+my_2}{m+n}[/tex]
[tex]1=\dfrac{1\times5+4\times y_2}{1+4}[/tex]
[tex]1=\dfrac{5+4 y_1}{5}[/tex]
[tex]4y_1=5-5[/tex]
[tex]y_1=0[/tex]
Thus the coordinate of Cristian's house are (11,0).
Learn more about the coordinate points here;
https://brainly.com/question/2550684
Plz, help! will give the brain!!!! 20 POINTS!
Answer:
The answer is B.
Step-by-step explanation:
Simply you change 6 3/4 into decimal form which is 6.75 then you divide it by the amount which is 3/4= .75
divide 6.75 by .75 equals 9
i hope this helps
Need help with a math question
For this case we have that there are a total of 14 male students and a total of 16 female students. Thus, there is a total of 30 students distributed in the four categories.
On the other hand, we have a total of 8 Junior students.
Then, the probability of selecting a student Junior is [tex]\frac {8} {30} * 100 = 26.67[/tex]
Rounding off we have 27%
Answer:
27%
The probability that the student is junior to the nearest whole percent is 27%
Probability is defined as the likelihood or chance that an event will occur.
Probability = Expected outcome/Total outcome
The total outcome will be the total number of students (both male and female)
Total outcome = 4+6+2+2+3+4+6+3
Total outcome = 30
Since we are to find the probability that the student is a junior.
Total Juniors = 2 + 6 = 8
Expected outcome = 8
Probability that the student is junior = 8/30
Express as a percentage:
[tex]Pr(Juniors)=\dfrac{8}{30} \times 100\%\\ Pr(Juniors)=\dfrac{800}{30}\\ Pr(Juniors)=26.66\%\\[/tex]
Hence the probability that the student is a junior is 27%.
Learn more here: https://brainly.com/question/12594357
a and b have the same direction, and they both have a magnitude of 6. What must be true about a and b ?
a. They are equal and parallel.
b. They are opposites, but not parallel.
c. They are opposites and parallel.
d. They are equal, but not parallel.
Answer: Option a
They are equal and parallel
Step-by-step explanation:
If a and b have the same direction then necessarily a and b are parallel.
We know that they also have the same magnitude.
Two vectors are equal if they have the same magnitude and direction.
Then we can say that a and b are equal and we can also say that they are parallel.
Therefore the correct option is the option a
On the coordinate plane shown below, points H and I have coordinates (-2,-3) and (3,2), respectively. Use the Pythagorean theorem to determine the distance between points H and I on the coordinate plane. A)5 B)5?2 C)10 D)25
Answer:
Option B [tex]HI=5\sqrt{2}\ units[/tex]
Step-by-step explanation:
Applying the Pythagoras Theorem
[tex]HI^{2}=(y2-y1)^{2}+(x2-x1)^{2}[/tex]
substitute the given values
[tex]HI^{2}=(2+3)^{2}+(3+2)^{2}[/tex]
[tex]HI^{2}=(5)^{2}+(5)^{2}[/tex]
[tex]HI^{2}=50[/tex]
[tex]HI=5\sqrt{2}\ units[/tex]
Answer:
B
Step-by-step explanation:
Consider triangle ABC. The legs have a length of 5 units each.
What is the length of the hypotenuse of the triangle?
5 units
units
10 units
units
Answer:
B
Step-by-step explanation:
Kate has a coin collection. She keeps 7 of the coins in a box witch is only 5%of her entire collection. What is the total number of coins in Kate's coin collection
Answer:
140 coins total
Step-by-step explanation:
Straightforward, this reads "7 is 5% of how many?". Algebraically, the word "is" means an equals sign, and the word "of" means you multiply. Of course, the 5% needs to be in decimal form. Taking the sentence above, algebraically it is: 7 = .05x. Divide by .05 on both sides to get x = 140
PLEASE HELP ME WITH THIS MATH QUESTION
Answer:
The coordinate would be (-1, -1)
Step-by-step explanation:
According to the Rational Root Theorem, what are all the potential rational roots of fx) = 5x - 7x + 11?
Answer:
±1/5, ±1, ±11/5, ±11
Step-by-step explanation:
Potential rational roots of 5x² -7x +11 will be of the form ...
(divisor of 11)/(divisor of 5)
so will include ...
±1/5, ±1, ±11/5, ±11
What is the value of r of the geometric series?
Answer:
r=0.8
Step-by-step explanation:
We know that a geometric series has the following look: (see picture attached).
Comparing both series, we can clearly see that r=0.8
The value of r in a geometric series can be positive, negative, or zero.
Explanation:The value of r in a geometric series can be positive, negative, or zero. When r is positive, it means the population is increasing in size. When r is negative, it means the population is decreasing in size. And when r is zero, it means the population size is unchanging, which is known as zero population growth.
Learn more about Geometric Series here:https://brainly.com/question/30264021
#SPJ12
please help asap urgent
Answer:
24 m
Step-by-step explanation:
The last un-labeled side of the figure is 6 - 4 = 2 m
Simply add all the sides (including the one not labeled) to get the perimeter
4+6+6+2+2+4 = 24 m
Answer:
24m
Step-by-step explanation:
6 + 6 + 2 + 2 + 4 + 4 =24
Circle 1 is centered at (5, 8) and has a radius of 8 centimeters. Circle 2 is centered at (1, −2) and has a radius of 4 centimeters. What transformations can be applied to Circle 1 to prove that the circles are similar? Enter your answers in the boxes.
Answer:
The answer in the procedure
Step-by-step explanation:
we know that
Figures can be proven similar if one, or more, similarity transformations (reflections, translations, rotations, dilation's) can be found that map one figure onto another.
In this problem to prove circle 1 and circle 2 are similar, a translation and a scale factor (from a dilation) will be found to map one circle onto another.
we have that
Circle 1 is centered at (5,8) and has a radius of 8 centimeters
Circle 2 is centered at (1,-2) and has a radius of 4 centimeters
step 1
Move the center of the circle 1 onto the center of the circle 2
the transformation has the following rule
(x,y)--------> (x-4,y-10)
so
(5,8)------> (5-4,8-10)-----> (1,-2)
center circle 1 is now equal to center circle 2
The circles are now concentric (they have the same center)
step 2
A dilation is needed to decrease the size of circle 1 to coincide with circle 2
scale factor=radius circle 2/radius circle 1-----> 4/8----> 0.5
radius circle 1 will be=8*scale factor-----> 8*0.5-----> 4 cm
radius circle 1 is now equal to radius circle 2
therefore
A translation, followed by a dilation will map one circle onto the other, thus proving that the circles are similar
Please answer this question correctly for 30 points and brainliest!!
Answer:
8 cm
Step-by-step explanation:
See the diagram below.
The triangle formed by the radius, half the chord length, and the distance (d) from the center to the water is a right triangle with hypotenuse 20 cm and one leg length 16 cm. Then the other leg (d) can be found using the Pythagorean theorem:
d^2 + 16^2 = 20^2
d = √(400 -256) = 12
The depth of the water is the difference between this distance and the radius, so is ...
20 cm - 12 cm = 8 cm
The maximum depth of the water in the pipe is 8 cm.
Answer:
8 cm
Step-by-step explanation: