Answer:
[tex]\large\boxed{\left(3x^2y\right)^3=27x^6y^3}[/tex]
Step-by-step explanation:
[tex]\text{Use}\ (ab)^n=a^nb^n\ \text{and}\ (a^n)^m=a^{nm}\\\\\left(3x^2y\right)^3=3^3(x^2)^3y^3=27x^6y^3[/tex]
Please help me! Thank you!!
Answer:
x = 113
Step-by-step explanation:
The corresponding angles in both triangles are congruent
Hence x = 113
Two-thirds of a number plus 5 is greater than 12. Find the number
Answer:
n >10.5
Step-by-step explanation:
Let n be our number
2/3 n+5 >12
Subtract 5 from each side
2/3 n +5-5 >12 -5
2/3 n >7
Multiply each side by 3/2 to isolate n
3/2*2/3n > 7 *3/2
n > 21/2
n >10.5
Answer:12
Step-by-step explanation: 12x2/3=8
8+5=13 GG
Use a calculator to find ln 0.0006. Round answer to 2 d.p.
Pls help, I'll give you 10 points!!!!!
ln(.0006) = -7.42
Any questions please just ask.
An online ticket seller charges $44 for each ticket ton concert, plus a fixed handling fee of $12. Define the unknown variables and write an equation to model the situation.
Answer:
x= number of tickets bought
y= total
44x+12=y
Will give 30 points
The parks department has started building a new playground at Canyonside Park. The shape of the playground with wood chips?
The supervisor needs to purchase wood chips to cover the ground in the playground area. If wood chips are sold in bags containing enough to cover 4 square feet and these bags cost $8.00 apiece, how much will it cost to cover the entire area of the playground with wood chips?
a. $612.00
b. $1,224.00
c. $1,728.00
d. $4,896.00
Answer:
Option B. [tex]\$1,224[/tex]
Step-by-step explanation:
step 1
Find the area of the playground
The area of the playground is equal to the area of a rectangle plus the area of a triangle
[tex]A=(10)(36)+\frac{1}{2}(36)(24-10)=612\ ft^{2}[/tex]
step 2
Find the number of bags of wood chips needed
by proportion
[tex]\frac{1}{4}=\frac{x}{612} \\ \\x=612/4\\ \\ x=153\ bags[/tex]
step 3
Find the cost
[tex]\$8.00*(153)=\$1,224[/tex]
Answer:
ANSWER IS B
Step-by-step explanation:
YOUR WELCOME ENDGEUNITY STUDENTS
Which point is a solution to the inequality shown in this graph? (0,-3)(5,0)
ANSWER
(0,-3)
EXPLANATION
The point which is a solution to the inequality must lie in the solution region ( the shaded region)
Also the boundary line is solid. This means that any point on the boundary line is a solution.
(6,0) zero falls outside the shaded region.
(5,-5) is also not in the shaded region.
(0,-5) is also not in the shaded region.
(0,-3) lies on the boundary line therefore it is a solution.
Answer: is 0,-3
Step-by-step explanation:
If m = 4 in and n = 6 in, what is the surface area of the geometric shape formed by this net?
A. 52 sq in
B. 56 sq in
C. 40 sq in
D. 64 sq in
Answer:
the answer is 64 sq. in
Step-by-step explanation:
first you need to find the area of the triangle
a =1/2 bh
= 1/2 (4 in) (6 in)
= 12 sq. in
then find the area of the square
area = lw
=(4 in) (4 in)
= 16 sq in.
then add
Surface area = 4 (12 sq in.) + 16 sq. in
= 64 sq. in
A tree casts a shadow of 23 meters. At the end of the shadow, the angle of elevation to the top of the tree is 37 degrees. Find the height of the tree
The best answer would give the hight of the shadow without the angle of elevation, not knowing the time of the day the shadow was measured
Answer:
17.33 meters
Step-by-step explanation:
Iterations question 12 :) just need some help
Answer:
A
Step-by-step explanation:
The function is f(x) = [tex]6^x[/tex]
we need to find the value of the function when x = 3. We simply plug in 3 into x and solve.
f (3) = [tex]6^3[/tex]
This means 6 multiplied by itself 3 times. So
6 * 6 * 6 = 216
correct answer is A
How do I find the percentages of things on a two way frequency table?
To find the percentages of things on a two-way frequency table, calculate the relative frequencies by dividing each frequency value by the total number of observations and multiplying by 100. This will give you the proportion of each category expressed as a percentage.
Explanation:To find the percentages of things on a two-way frequency table, you need to calculate the relative frequencies. The relative frequency is the fraction or decimal value that represents the proportion of each category. You can obtain the relative frequencies by dividing each frequency value by the total number of observations and then multiplying by 100 to convert it into a percentage.
For example, if you have a frequency of 5 in a certain category out of 100 total observations, the relative frequency would be -
= 5/100
= 0.05 or 5%.
Learn more about percentage calculation here:https://brainly.com/question/32197511
#SPJ12
Finding percentages in a two-way frequency table involves understanding joint, marginal, and conditional distributions. Relative frequencies are calculated row by row, and expected frequencies are calculated based on population size and expected percentages. Marginal and conditional distributions focus on one variable or a subpopulation, respectively.
Explanation:To find the percentages of things on a two-way frequency table, you first need to understand what the contents of the table represent. The numbers in the body of the table are called joint frequencies. For example, if you have a value of 20 signifying the count of women who prefer football, and the total sample size is 50, then the percentage of relative frequency is (20/50)*100 = 40%.
Expected frequencies are calculated by multiplying the expected percentages by the total population size. For example, with an expected percentage of 0.15 and 600 as the total population, you'd calculate 0.15*600=90 as the expected frequency.
Relative frequencies are calculated by dividing each frequency by the total frequency. For example, if in one row the frequency is .25, and the total cumulative frequency so far is .15, then the cumulative relative frequency for that row would be .15 + .25 = .40. Repeat this process for each row to fill out the rest of the table.
A marginal distribution involves focusing on only one of the variables in the table. The reason why 20 (in the ratio 20/50) is a marginal frequency is because it represents the margin or part of the total population that is women.
A conditional distribution goes a step further by focusing on a particular subset of the population, not just one variable. For example, if we focus only on the subset of women who prefer football, we'd calculate the conditional distributions differently.
To find statistical measures such as the median, you can use the cumulative relative frequencies. In this case, you would look for the value corresponding to the 50th percentile in the cumulative relative frequency column.
Learn more about Two-way Frequency Table here:https://brainly.com/question/30499460
#SPJ12
Lines
m
and
n
are parallel. The equation of line m is =3+3
y
=
3
x
+
3
. What is the equation of line
n
?
Answer:
y = 3x + bStep-by-step explanation:
Parallel lines have the same slope.
The slope-intercept form of an equation of a line:
[tex]y=mx+b[/tex]
m - slope
b - y-intercept
We have the equation of the line m:
[tex]m:\ y=3x+3\to m=3[/tex]
Therefore the equation of a line n parallel to the line m is:
[tex]y=3x+b[/tex]
where b is any real number
Answer y = 3x + b
Step-by-step explanation:
Which expression is a factor of both x^2 − 9 and x^2 + 8 x + 15
Answer:
x+3
Step-by-step explanation:
1. Use formula for the difference of squares:
[tex]a^2-b^2=(a-b)(a+b)[/tex]
to factor
[tex]x^2-9=(x-3)(x+3).[/tex]
2. Factor [tex]x^2+8x+15:[/tex]
[tex]x^2+8x+15=x^2+3x+5x+15=x(x+3)+5(x+3)=(x+3)(x+5).[/tex]
Now you can see that [tex]x+3[/tex] is the common factor.
Answer:
x + 3
Step-by-step explanation:
x² - 9 ← is a difference of squares and factors as
x² - 9 = (x - 3)(x + 3)
To factor x² + 8x + 15
Consider the factors of the constant term (+ 15) which sum to give the coefficient of the x- term (+ 8)
The factors are + 5 and + 3, since
5 × 3 = 15 and 5 + 3 = 8, thus
x² + 8x + 15 = (x + 5)(x + 3)
Thus the factor (x + 3) is common to both
Plot three points that solve the equation -x-2y=-10
Answer:
See the attachment for a plot
Step-by-step explanation:
I find it convenient to plot lines using their x- and y-intercepts, when those are integers. To find the intercepts, we can divide the equation by the constant on the right:
x/10 +y/5 = 1
This is "intercept form". The denominator in each term is the corresponding intercept:
the x-intercept is 10, point (10, 0)
the y-intercept is 5, point (0, 5)
We can choose another value of y to find a third solution. Let y=2. Then we have ...
-x -2(2) = -10 . . . . . put 2 for y in the original equation
-x = -6 . . . . . . . . . . add 4
x = 6 . . . . . . . . . . . . multiply by -1
A third point is (6, 2)
ASAP!!!!!!!!!!!!!!!!!!!!!!!!!!
It would be similar.
a cell phone is 84 mm long and 46 mm wide. what is the ratio of the width to the length
46:84, it can be simplified to 23:42
A ratio can be written in three different forms and then at that point will you simplify it. 46 width to 84 length, 46:84, 46/84. You can divide 46/84 by 2/2 which will then give you 23/42 or 23:42 or 23 mm wide to 42 mm long. Depends how you choose to express this ratio! Hope that helps
10(10-x) how do you distribute with this equation and what would you get?
Answer:
[tex]\boxed{100 - 10x}[/tex]
Step-by-step explanation:
The distributive property states that
a(b + c) = a·b + a·c
We can use this property solve your equation.
10(10 – x)
Distribute the 10
10×10 – 10×x
Do the multiplications
[tex]\boxed{100 - 10x}[/tex]
!!!please help!!!
The diagram below shows the dimensions of Tessa’s garden.
A) What is the perimeter, in feet, of Tessa’s garden? Show or explain all your work.
B) What is the area, in square feet, of Tessa’s garden? Show it explain all your work.
C) Tessa decoded that she liked the shape of her garden but wanted to have 2 times the area. She drew a design for a garden with every dimension multiplied by 2. Explain the error in Tessa’s design.
Perimeter =525.66 ft
Area = 10913.27 ft2
See photo
So, my buddy is new to doing Calculus and needs help understanding this equation, it would be very appeciated for some help
To evaluate the integral, rewrite the integrand as
[tex]x^{-x}=e^{\ln x^{-x}}=e^{-x\ln x}[/tex]
Recall that
[tex]e^x=\displaystyle\sum_{n=0}^\infty\frac{x^n}{n!}\implies x^{-x}=\sum_{n=0}^\infty\frac{(-x\ln x)^n}{n!}[/tex]
The leftmost sum is the well-known power series expansion for the function [tex]f(x)=e^x[/tex]. In the rightmost sum, we just replace [tex]x[/tex] with [tex]-x\ln x[/tex].
This particular power series has a property called "uniform convergence". Roughly speaking, it's a property that says a sequence of functions [tex]f_n(x)[/tex] converges to some limiting function [tex]f(x)[/tex] in the sense that [tex]f_n(x)[/tex] and [tex]f_{n+1}(x)[/tex] get arbitrarily close to one another. If you have an idea of what "convergence" alone means, then you can think of "uniform convergence" as a more powerful form of convergence.
Long story short, this property allows us to interchange the order of summation/integration to write
[tex]\displaystyle\int_0^1x^{-x}\,\mathrm dx=\int_0^1\sum_{n=0}^\infty\frac{(-x\ln x)^n}{n!}\,\mathrm dx=\sum_{n=0}^\infty\frac{(-1)^n}{n!}\int_0^1(x\ln x)^n\,\mathrm dx[/tex]
The integral can be tackled with a substitution,
[tex]x=e^{-u/(n+1)}\implies-(n+1)\ln x=u\implies\mathrm dx=-\dfrac1{n+1}e^{-u/(n+1)}\,\mathrm du[/tex]
so that the integral is equivalent to
[tex]\displaystyle\int_0^1(x\ln x)^n\,\mathrm dx=\int_\infty^0\left(e^{-u/(n+1)}\right)^n\left(-\frac u{n+1}\right)^n\left(-\frac1{n+1}e^{-u/(n+1)}\right)\,\mathrm du[/tex]
[tex]=\displaystyle\frac{(-1)^n}{(n+1)^{n+1}}\int_0^\infty e^{-u}u^n\,\mathrm du[/tex]
The remaining integral reduces to [tex]n![/tex], which you can derive for yourself via integration by parts/power reduction.
So we have
[tex]\displaystyle\int_0^1x^{-x}\,\mathrm dx=\sum_{n=0}^\infty\frac{(-1)^n}{n!}\cdot\frac{(-1)^nn!}{(n+1)^{n+1}}=\sum_{n=0}^\infty\frac1{(n+1)^{n+1}}[/tex]
which is the same as
[tex]\displaystyle\sum_{n=1}^\infty\frac1{n^n}=\sum_{n=1}^\infty n^{-n}[/tex]
and hence the identity.
Algebra manipulation. Thank you! My answer is - 8/5 but I want to make sure :)
Start with
[tex]\dfrac{2a+3b}{a+b}=7[/tex]
Assuming [tex]a\neq -b[/tex], multiply both sides by [tex]a+b[/tex]
[tex]2a+3b = 7a+7b[/tex]
Solve for [tex]a[/tex]
[tex]5a = -4b \iff a = -\dfrac{4b}{5}[/tex]
Substitute this value for [tex]a[/tex] in the desired expression:
[tex]\dfrac{2a}{b} = \dfrac{\frac{-8b}{5}}{b} = -\dfrac{8}{5}[/tex]
You were correct! :)
what is the surface area of the right cylinder with a height of 20 and a radius of 5
Answer: The answer is 785.4
Step-by-step explanation: Equation is 2πrh+2πr²
Plug in your numbers and hit enter!
Hope this helps
For this case we have by definition, that the surface area of a cylinder is given by:
[tex]SA = 2 \pi * r * h + 2 \pi * r ^ 2[/tex]
Where:
A: It's the radio
h: It's the height
According to the given data we have:
[tex]SA = 2 \pi * (5) * 20 + 2 \pi * (5) ^ 2\\SA = 200 \pi + 50 \pi\\SA = 250 \pi\\SA = 785 \ units ^ 2[/tex]
ANswer:
[tex]785 \ units ^ 2[/tex]
a, a +4,a+8,...
write the nth term of sequence in terms of the first term of the sequence
Final answer:
The nth term of the sequence can be found using the formula Tn = a + 4(n - 1), where a is the first term and n is the term position. This is based on the characteristics of an arithmetic sequence.
Explanation:
This pattern indicates that the sequence is an arithmetic sequence, where each term is obtained by adding a constant difference to the preceding term.
To find the nth term of an arithmetic sequence, we use the formula:
Tn = a + (n - 1)d
Where Tn is the nth term, a is the first term, n is the position of the term in the sequence, and d is the common difference between terms. For this sequence, d = 4.
Substituting the known values into the formula gives us:
Tn = a + 4(n - 1)
This expression allows us to calculate the nth term of the sequence given the first term (a) and the position (n) of the term we want to find.
find the range of the following data set 31,31,22,28,23
Answer:
9
Step-by-step explanation:
since 2 is the minimum and 31 is the maximum you subtract 31 by 22
To find the range of the given data set, follow these steps:
1. Identify the maximum value in the data set.
2. Identify the minimum value in the data set.
3. Subtract the minimum value from the maximum value.
Let's apply these steps to the provided data set:
Data set: 31, 31, 22, 28, 23
Step 1: Find the maximum value.
Looking at the numbers, the maximum value is 31. (Both occurrences of 31 are considered, but since they are the same, the maximum is still 31.)
Step 2: Find the minimum value.
Looking at the numbers, the minimum value is 22.
Step 3: Calculate the range.
Subtract the minimum value from the maximum value: 31 - 22 = 9.
Hence, the range of the given data set is 9.
Find the circumference if radius =26
Circumference can be found using [tex]C=2\pi r[/tex] formula. Where [tex]r[/tex] is radius.
Now we just put in the data.
[tex]C=2\pi\times26=52\pi\approx\boxed{163.36}[/tex]
If the radius is 26, firstly we have to calculate the diameter. The diameter is 2 times the radius.
Radius = 26
Diameter = 26 × 2 = 52
Circumference of circle = π × Diameter
= π × 52
= 163.3628 or 163.4 (to 1 dp)
What is the product of 2x + y and 5x – y + 3?
Answer:
The correct answer is 10x² + 3xy + 6x - y² + 3y
Step-by-step explanation:
It is given an expression (2x + y)(5x - y + 3)
To find the product
(2x + y)(5x - y + 3) = 2x * 5x - 2x*y + 2x*3 + y*5x -y² + 3y
= 10x² - 2xy + 6x + 5xy - y² + 3y
= 10x² + 3xy + 6x - y² + 3y
Therefore the correct answer is
10x² + 3xy + 6x - y² + 3y
The product of (2x + y) and (5x – y + 3) is found by using the distributive property of multiplication over addition, which gives us: 10x^2 + 3xy + 6x - y^2 + 3y.
Explanation:To find the product of (2x + y) and (5x – y + 3), we need to use the distributive property of multiplication over addition. This involves multiplying each term within the first parentheses by each term in the second parentheses.
The steps are as follows:
Multiply 2x by each term in the second parentheses: (2x*5x, 2x*-y, 2x*3)Multiply y by each term in the second parentheses: (y*5x, y*-y, y*3)Sum up all the products obtained.The result is 10x^2 -2xy + 6x + 5xy - y^2 + 3y. Simplifying further gives us: 10x^2 + 3xy + 6x - y^2 + 3y.
So, the product of (2x + y) and (5x – y + 3) is 10x^2 + 3xy + 6x - y^2 + 3y.
Learn more about Multiplication of Polynomials here:https://brainly.com/question/34232638
#SPJ6
Multiply 6x^2-4x-5(2x^2+3x)
Answer:
[tex]\large\boxed{6x^2-4x-5(2x^2+3x)=-4x^2-19x}[/tex]
Step-by-step explanation:
[tex]6x^2-4x-5(2x^2+3x)\qquad\text{use the distributive property}\\\\=6x^2-4x+(-5)(2x^2)+(-5)(3x)\\\\=6x^2-4x-10x^2-15x\qquad\text{combine like terms}\\\\=(6x^2-10x^2)+(-4x-15x)\\\\=-4x^2-19x[/tex]
Answer:
Step-by-step explanation:
I learned to solve these with a box method.
6x^2 -4x -5
2x^2
3x
with this method you add the matching terms
6x^2 -4x -5
2x^2 | 1 | 2 | 3
3x | 2 | 3 | 4
6x^2 -4x -5
2x^2 | 12x^4 | -8x^3 | -10x^2
3x | 18x^3 | -12x^2 | -15x
12x^4 + 10x^3 - 22x^2 - 15x
what is the x-coordinate of the solution
Answer:
x=-4
Step-by-step explanation:
Which expression is equivalent to the following complex fraction?
Answer:
Second Option: = 2(y-2x)/(3y-5x)
Step-by-step explanation:
The expression is:
=(2/x-4/y)/((-5)/y+3/x)
Taking LCM in both, numerator and denominator
= ((2y-4x)/xy)/((-5x+3y)/xy)
Since we know,
(a/b)/(c/d)=ad/bc
Applying the rule to the given fraction:
=(2y-4x)(xy)/(-5x+3y)(xy)
xy will be cancelled and we will be left with:
=(2y-4x)/(-5x+3y)
Taking 2 as common:
= 2(y-2x)/(3y-5x)
So the second option is the correct answer. ..
3/4 of Melissa's friends babysit for extra money. 2/3 of her friends babysit and pet sit. What fraction of those who babysit also pet sit?
A) 1/2
B) 1/4
C) 12/17
D) 8/9
Do 3/4 of 2/3
Turn the demoninator into 12 so:
9/12 8/12 so I’m guessing C
Answer: The correct option is (D) [tex]\dfrac{8}{9}.[/tex]
Step-by-step explanation: Given that [tex]\dfrac{3}{4}[/tex] of Melissa's friends babysit for extra money and [tex]\dfrac{2}{3}[/tex] of her friends babysit and pet sit.
We are to find the fraction of her friends those who babysits also pet sits.
Total fraction of Melissa's friends is given by
[tex]F=\dfrac{3}{4}.[/tex]
Therefore, the fraction of her friends those who babysits also pet sits is given by
[tex]f=\dfrac{\frac{2}{3}}{\frac{3}{4}}=\dfrac{2}{3}\times\dfrac{4}{3}=\dfrac{8}{9}.[/tex]
Thus, the required fraction is [tex]\dfrac{8}{9}.[/tex]
Option (D) is CORRECT.
what is the similarity ratio of the smaller to the larger cones?
Answer:
that the are both have a right angle. And that the are both cones.
Step-by-step explanation:
Answer:
3 : 5
Step-by-step explanation:
The ratio can be determined using the radii or the heights of the 2 cones
radii 6 : 10 = 3 : 5 ← in simplest form
height 9 : 15 = 3 : 5 ← in simplest form
Common multiples of 15 20 45
Answer:
15: 15, 30, 45, 60, 75, 90, 105, 120, 135...etc, 20: 20, 40, 60, 80, 100, 120, 140...etc, 45: 45, 90, 135, 180, 225, 270....etc
Common Multiples: Is 180, Because all of them have a multiple of 180.
Step-by-step explanation:
Hope i helped you. :)
Answer:
15:
20:
45:
hope this helps