Simplifying the expression requires expanding the brackets, combining like terms, and applying algebraic rules including distribution. The resulting simplified form is – 35x2 + 8x – 8 after properly eliminating unnecessary terms and ensuring the solution is valid.
Explanation:To simplify the expression 3x(x – 12x) + 3x2 – 2(x – 2)2, we need to apply standard algebraic techniques such as distribution, combining like terms, and simplifying polynomial expressions.
Firstly, distribute the 3x across the parentheses: 3x×(x – 12x) becomes 3x2 – 36x2.
Then, expand the square: – 2(x – 2)2 becomes – 2(x2 – 4x + 4).
Next, we can simplify the expression by combining like terms and further distributing where necessary:
3x2 – 36x2 + 3x2 – 2x2 + 8x – 8Combine like terms:
– 35x2 + 8x – 8Eliminate terms wherever possible and check to see if the simplified expression is reasonable. We are using multiplication, distribution, and combination of like terms to simplify the algebraic expression.
What is the domain of y=cos(2x)?
Answer is C: (-∞, ∞)
Answer:
Step-by-step explanation:
There is no restriction on the input values of x , since it is periodic it can have any real value. Hence the domain of cos (2x) is (-∞,∞).
Because cos is periodic the output value keeps on repeating for any smaller or bigger input x .
find the value of r in (4, r), (r, 2) so that the slope of the line containing them is -5/3
[tex]\bf (\stackrel{x_1}{4}~,~\stackrel{y_1}{r})\qquad (\stackrel{x_2}{r}~,~\stackrel{y_2}{2}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{2-r}{r-4}=\stackrel{\stackrel{given}{\downarrow }}{-\cfrac{5}{3}}\implies 3(2-r)=-5(r-4) \\\\\\ 6-3r=-5r+20\implies 6+2r=20\implies 2r=14\implies r=\cfrac{14}{2}\implies r=7[/tex]
Answer:
r = 7
Step-by-step explanation:
looking at the slope -5/3, -5 is the change in y and 3 is the change in x. so, we have to start from the point ( 4 , r ) and get to the next point ( r , 2 ) by using the given slope. we would first add 3 to our x value in the first point since that's our change in x and we would get r = 7. then we can substitute that in the other point and it works perfectly.
i hope this helps :)
Hw 30 surface area.
Answer:
5. LA = 301.6 sq. cm., SA = 402.1 sq. cm.
6. LA = 377.0 sq. in., SA = 603.2 sq. in.
7. LA = 113.1 sq. cm., SA = 169.6 sq. cm.
8. LA = 502.7 sq. cm., SA = 603.2 sq. cm.
9. 396 sq. in.
Step-by-step explanation:
The lateral area is the area of all the faces, except the base(s). The surface area is the area of ALL the faces of the shape.
5.
The lateral area of a cylinder is given by the formula:
LA = 2πrh
where r is the radius and h is the height of the cylinder
So, lateral area would be 2π(4)(12) = 301.6 sq. cm.
The surface are would be the lateral area (301.6) PLUS the area of 2 of the circular bases. Circle has an area of πr^2.
So 2 bases would have area of (π(4)^2)*2=100.5
Thus, the surface area = 301.6 + 100.5 = 402.1
6.
The lateral area would be LA = 2πrh
The radius is given as 6 and height as 10. Plugging it would give us:
LA = 2πrh = 2π(6)(10) = 377.0 sq. in.
For the surface area, we would need to add the top and bottom (which are 2 identical circles with area πr^2 each) with the lateral area. So we have:
2 * (π(6)^2)
=226.2
Surface area = 377.0 + 226.2 = 603.2 sq. in.
7.
The radius of the cylinder is 3 and height is 6. We will plug them into the respective formulas.
lateral area:
LA = 2πrh = 2π(3)(6) = 113.1
surface area:
area of 2 circles (top and bottom) = (πr^2)*2 = (π(3)^2)*2 = 56.5
Surface area = 113.1 + 56.5 = 169.6
8.
diameter is given as 8, so radius is half of it. Hence, radius is 4 and height given as 20.
Plugging these values into the respective formula we will get the answer.
lateral area:
LA = 2πrh = 2π(4)(20) = 502.7
surface area:
area of both the circles (top and bottom) PLUS the lateral area of 502.7.
So, surface area = 502.7 + (πr^2)*2 = 502.7 + (π(4)^2)*2 = 603.2
9.
The frosting area of area of two rectangles (left and right) + area of two rectangles (back and front) + area of rectangle (top).
So, surface area of the frosting part = 2 (4*15) + 2(4*12) + (12)(15) = 396
jelanie wrote the system of linear equations below to represent the number of student and adult tickets he and his friend sold to their school play 12s+10a=128 16s+21a=232 jelani also wrote the augmented sound matrix to represent this system which matrix could melanin have written
Answer:
[tex]\left[\begin{array}{ccc}12&10&|128\\16&21&|232\end{array}\right][/tex]
Step-by-step explanation:
The two equations Jelani wrote are:
12s+10a=128
16s+21a=232
The coefficient matrix is:
[tex]\left[\begin{array}{cc}12&10\\16&21\end{array}\right][/tex]
The constant matrix is:
[tex]\binom{128}{232}[/tex]
The augmented matrix is the combination of the coefficient matrix and the constant matrix.
[tex]\left[\begin{array}{ccc}12&10&|128\\16&21&|232\end{array}\right][/tex]
Answer:
[tex]\large\boxed{\left[\begin{array}{ccc}12&10&128\\16&21&232\end{array}\right] }[/tex]
Step-by-step explanation:
[tex]\left\{\begin{array}{ccc}ax+by=n\\cx+dy=m\end{array}\right\Rightarrow\left[\begin{array}{ccc}a&b&n\\c&d&m\end{array}\right][/tex]
[tex]\text{We have the system of equations:}\\\\\left\{\begin{array}{ccc}12s+10a=128\\16s+21a=232\end{array}\right\Rightarrow\left[\begin{array}{ccc}12&10&128\\16&21&232\end{array}\right][/tex]
Can someone give me an explanation of how to do this.
[tex]\bf \sqrt{6x^2}\cdot \sqrt{18x^2}\implies \sqrt{(6x^2)(18x^2)}\implies \sqrt{108x^2x^2}\implies \sqrt{108(x^2)^2} \\\\\\ \begin{cases} 108=&2\cdot 2\cdot 3\cdot 3\cdot 3\\ &2^2\cdot 3^2\cdot 3\\ &(2\cdot 3)^2\cdot 3\\ &6^2\cdot 3 \end{cases}\implies \sqrt{6^2(x^2)^2\cdot 3}\implies 6x^2\sqrt{3}[/tex]
Answer:
the correct answer is option D. 6x²√3
Step-by-step explanation:
It is given that
√6x² * √18x²
To find the value of √6x² * √18x²
√6x² * √18x² = √(6x² ) * (18x²)
= √(6 * 18 x² *x²)
= √(6 * 6 * 3 x² *x²)
= 6x√3
The equivalent of √6x² * √18x² = 6x²√3
Therefore the correct answer is option D. 6x²√3
In circle P, what is the measure of DAB
*HELPP
Answer:
218°
Step-by-step explanation:
We are given that arc AD is 128° and arc AB is 90°, because the measure of an arc is equal to its corresponding central angle, and ∠APB = 90°, since right angles are 90°.
Also, arc DAB combines arc AD and AB. That means that we add the measures. 90 + 128 = 218°
For a certain experiment, if we expect to get a red marble twelve times in 60 trials, what is the theoretical probability of getting a red marble? 1/12 1/10 1/5 1/4
Answer:
1/5
Step-by-step explanation:
You expect to get 12 red marbles out of 60 trials.
So, you expect to get a red marbles 12/60 of the times.
We can simplify that 12/60 to 1/5, which is a choice of answers. :-)
We assume here you correctly assume your probability level when you did your forecast of 12/60. And either you're picking from a small pool and re-insert the marble, or you have a very large amount of marbles (at least 60).
plz help god bless if do only 5 stuff to do :3
Referring to the tables above, which students have earned exactly five minutes of free time on Friday? Select all that apply.
Winslow
Amelia
Demetrius
Harley
Jackson
Tyler
Jasmine
Joe
None of the students
Referring to the tables above, which students will receive notes home on Friday? Select all that apply.
Winslow
Amelia
Demetrius
Harley
Jackson
Tyler
Jasmine
Joe
None of the students
Referring to the tables above, which students will receive no rewards or consequences? Select all that apply.
Winslow
Amelia
Demetrius
Harley
Jackson
Tyler
Jasmine
Joe
None of the students
Referring to the tables above, which students will receive at least ten minutes of free time on Friday? Select all that apply.
Winslow
Amelia
Demetrius
Harley
Jackson
Tyler
Jasmine
Joe
None of the students
Referring to the tables above, which students will receive at least fifteen minutes of free time on Friday? Select all that apply.
Winslow
Amelia
Demetrius
Harley
Jackson
Tyler
Jasmine
Joe
None of the students
Ok I got it.
Question 1 - Demetrius, Jackson, Tyler, and Amelia
Question 2 - Winslow
Question 3 - Joe
Question 4 - Harley and Jasmine
Question 5 - No one recieves fifteen minutes of free time
I hurried this one because Imma go see avengers endgame.
I hope this helps you very much.
I would appreciate making me the brainliest.
Thanks in advance
245.5 cm - 20 cm in standard form
Answer:
Standard form of 245.5 cm - 20 cm
=225.5 cm
The equation that measures the shape of your contact lens is -0.5x2 + 6x – 16 = 0. The lens maker cuts the lens material at the x-axis for fitting. Find the zero(s) where the lens material starts and ends.
Answer:
Step-by-step explanation:
The correct zero(s) where the lens material starts and ends are at x = 4 and x = 8.
To find the zero(s) of the quadratic equation [tex]-0.5x^2 + 6x - 16 = 0[/tex] , we can use the quadratic formula, which is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where a, b, and c are the coefficients of the quadratic equation [tex]ax^2 + bx + c = 0.[/tex]
For the given equation, a = -0.5, b = 6, and c = -16. Plugging these values into the quadratic formula, we get:
[tex]\[ x = \frac{-6 \pm \sqrt{6^2 - 4(-0.5)(-16)}}{2(-0.5)} \][/tex]
[tex]\[ x = \frac{-6 \pm \sqrt{36 - 32}}{-1} \][/tex]
[tex]\[ x = \frac{-6 \pm \sqrt{4}}{-1} \][/tex]
[tex]\[ x = \frac{-6 \pm 2}{-1} \][/tex]
Now, we have two possible solutions for x:
[tex]\[ x = \frac{-6 + 2}{-1} = \frac{-4}{-1} = 4 \][/tex]
[tex]\[ x = \frac{-6 - 2}{-1} = \frac{-8}{-1} = 8 \][/tex]
Therefore, the zero(s) where the lens material starts and ends are at x = 4 and x = 8. These are the points where the lens maker cuts the lens material along the x-axis for fitting.
A class of 25 students took a spelling test. Two students scored 100 on each test, nine students scored 95 on each test, ten students scored 90 on each test, three students scored 80 on each test and one student scored 70. What is the average score of the spelling test rounded to one decimal place? Enter your answer in the box.
data:
2 scored 100
9 scored 95
10 scored 90
3 scored 80
1 scored 70
set of data:
70, 80, 80, 80, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 95, 95, 95, 95, 95, 95, 95, 95, 95, 100, 100
to find the average score of the spelling test, we have to add all of the numbers up and then divide by 2
all of those numbers added up would be 2,265
next, divide 2,265 by 2
2,265 / 2 = 1,132.5
finally, round 1,132.5
= 1,133 (average score of spelling test)
A class of 25 students took a spelling test. The average score of the students on the spelling test is 90.6.
How to find the average data?The average data is calculated as follows:
Add all the data elementsDivide the sum by the number of data items.Calculation:Given that,
A class of 25 students took a spelling test.
The data of scores of those students:
2 students - 100
9 students - 95
10 students - 90
3 students - 80
1 student - 70
Adding all the scores of each student:
2×100 + 9×95 + 10×90 + 3×80 + 1×70 = 2265
Dividing the sum by the number of students (25):
⇒ 2265/25
⇒ 90.6
Therefore, the average of the given data is 90.6.
Learn more about the average of the data here:
https://brainly.com/question/20118982
#SPJ2
If the hypotenuse of a 45°-45°-90° triangle is 13, what is the length of one of the legs?
Answer:
9.19
Step-by-step explanation:
Using Law of sines to find other two lengths:
a/sinA=b/sinB
let a be length of side unknown and b be hypotenuse then sinB=sin90 and sinA=sin45
a/sin45=13/sin90
a=13sin45
a=13(0.707)
=9.19
As the given triangle is isosceles hence the length of other two legs will be same i.e 9.19 !
What substitution should be used to rewrite x8 – 3x4 + 2 = 0 as a quadratic equation?
Answer:
The substitution is
[tex]u = x ^ 4[/tex]
[tex]u ^ 2 -3u +2 = 0[/tex]
Step-by-step explanation:
We have the 8th degree polynomial equation
[tex]x ^ 8 - 3x^4 -+2 = 0[/tex]
To rewrite the equation as a quadratic function, take the common factor of the term x with the smallest exponent, in this case it is [tex]x ^ 4[/tex].
Now make a change of variable
[tex]u = x ^ 4[/tex].
So rewriting the equation in terms of u, we have:
[tex]u ^ 2 -3u +2 = 0[/tex]
Now the initial equation became a quadratic equation
Factoring is left:
[tex](u-2) (u-1) = 0[/tex]
[tex]u = 2[/tex] and [tex]u = 1[/tex]
[tex]x ^ 4 = 2[/tex] and [tex]x ^ 4 = 1[/tex]
Answer:
substitution should be p = x⁴
Step-by-step explanation:
It is given that,
x⁸ - 3x⁴ + 2 = 0
we can rewrite the equation,
(x⁴)² - 3x⁴ + 2 =0
To find the substitution
Here we can see that x⁴ is common in two terms of the given equation
we can substitute p instead of x⁴, the equation becomes,
p² - 3p +2 = 0
Therefore substitution should be used to rewrite x8 – 3x4 + 2 = 0 as a quadratic equation is p = x⁴
A health club charges non-members $5 per day to swim and $9 per day for an exercise class. Members pay a yearly fee of $300 plus $4 per day to attend an exercise class and no swim fee. If Robert swims and takes an exercise class every time he goes to the gym, which equation shows the number of days he must use the gym to make the membership worthwhile? m
Answer:
300+4x < (9+5)*x
Step-by-step explanation:
x is number of times Robert goes to the gym
Answer:
5d+ 9d=300+4d
Step-by-step explanation:
Answer on EDGE
Anyone know if this is right?
(n-1)^2 = n^2 +1 -2n so the third option form top down
Answer:
n² - 2n + 1
Step-by-step explanation:
You are to square;
(n - 1)²
This is the same as,
(n - 1)(n - 1)
Multiplying the above we get;
n² - n - n + 1
Finally,
n² - 2n + 1
Is there more wood in a 70-foot-high tree trunk with a radius of 2.1 feet or in a 60-foot-high tree trunk with a radius of 2.4 feet? Assume that the trees can be regarded as right circular cylinders.
There is
nothing
▼
ft
ft cubed
ft squared
of wood in the 70-foot-high tree and
nothing
▼
ft cubed
ft squared
ft
of wood in the 60-foot-high tree. There is more wood in the
▼
60
70
-foot-high tree
Answer:
There is more wood in a 60-foot-high tree trunk with a radius of 2.4 feet
Step-by-step explanation:
* Lets talk about the right circular cylinder
- It has two circular bases
- The volume of it = Area of the base × its height
- The area of the base = πr²
- The quantity of wood in the tree is the volume of the cylinder
* Lets calculate the volumes the two trees and compare
between them
- Volume of the first tree:
∵ Its radius = 2.1 feet
∴ The area of its base = π(2.1)² = 4.41π feet²
∵ Its height = 70 feet
∴ Its volume = 4.41π × 70 = 308.7π = 969.8 feet³
- Volume of the second tree:
∵ Its radius = 2.4 feet
∴ The area of its base = π(2.4)² = 5.76π feet²
∵ Its height = 60 feet
∴ Its volume = 5.76π × 60 = 345.6π = 1085.7 feet³
∵ 1085.7 > 969.8
∴ The volume of wood in 2nd tree > the volume of wood in 1st tree
* There is more wood in a 60-foot-high tree trunk with a radius of 2.4 feet
Please help!!!!!!!!!!
Answer:
1.
[tex]\dfrac{1}{2}at^2=vt-d[/tex]
2.
[tex]at^2=2(vt-d)[/tex]
3.
[tex]a=\dfrac{2(vt-d)}{t^2}.[/tex]
Step-by-step explanation:
First, express from the formula [tex]d=vt-\dfrac{1}{2}at^2[/tex] the term [tex]\dfrac{1}{2}at^2:[/tex]
[tex]\dfrac{1}{2}at^2=vt-d[/tex]
Now multiply this equation by 2:
[tex]at^2=2(vt-d)[/tex]
and divide it by [tex]t^2:[/tex]
[tex]a=\dfrac{2(vt-d)}{t^2}.[/tex]
two vertices of a right angle have coordinates (3,7) and (3,10). The segment that connects these points a leg of the triangle. which set of coordinates for the third vertex would create a right triangle?
Answer:
(x,7) or (x,10)
Step-by-step explanation:
It is given that two vertices of a right triangle have coordinates (3, 7) and (3, 10), we can see that the x-coordinate is same for both vertices, therefore it is a vertical line and thus base of the right angle triangle.
We need to find the height of this triangle which will be perpendicular to this line, so the value of y-coordinate of third point must be either 7 or 10.
Example
(8,7)
the rectangular floor of a classroom is 36 ft in length and 32 ft in width and scale drawing of the floor has a length of 9 inches what is the area in square inches of the floor in scale drawing
72 square inches.
Start by finding the dimensions of the scale drawing. If 36 divided by a number equals 9, then that number is 4. 36 / 4 = 9
So, you need to divide 32 by 4 as well to get 8.
This means the scale drawing is 9 inches long and 8 inches wide.
Finally, to find the area, multiply the length and width together. 9 * 8 = 72
The area of the scale drawing is 72 square inches.
The image of (6, 9) under a dilation is (4, 6). The scale factor is -2 2/3 -2/3
Answer:
The scale factor is 2/3.
Step-by-step explanation:
Given data,
The given image is (6,9)
The image after dilation is (4,6)
The scale factor is calculated by dividing the resultant image by the initial image.
For example, if the initial dimensions are (x1, y1) and the final dimensions are (x2,y2). The scale factor is calculated using x2/x1 = y2/y1 = Scale Factor
In our scenario,
x1 = 6
x2 = 4
y1 = 9
y2 = 6
Scale Factor = x2/x1
=> 4/6
=> 2/3
Similarly for y axis,
Scale Factor = y2/y1
=> 6/9
=> 2/3
Therefore, the scale factor is 2/3.
Please help me I don’t understand
Answer:
the answer is 50 percent
Step-by-step explanation:because each of the lines count as 25% and the blue boxes are another 25% each. so the answer is 50%
I don’t know what the answer is I wish I could help
1. (16 points) John wants his friends to figure out what number he is thinking of. He gives
them three clues: an
It is a whole number.
The number divided by 2 is greater than 9 and less than 13.
The sum of its prime factors is 9.
A. What are the possible numbers that John could be describing?
i’m sorry this isn’t an answer but hat kind of people play a game like that?
Answer: John is thinking of the number 20
please rate my answer
Alicia is making cupcakes for a party she is having and wants to make sure everyone gets at least 1 cupcake
The recipe calls for 1/2 teaspoon of salt for every batch and each batch makes 21 cupcakes if the part will have a total of 84 people attending how many teaspoon of salt will Alicia need.
2 teaspoons
21+21=42 so for every 1 teaspoon there is 42 people
42+42=84 so it’s 2 teaspoons
Answer:
Let's imagine that x is the number of teaspoon of salt needed to make at least 84 cupcakes.
So we know that, 1 batch makes 21 cupcakes, and we need at least 84 cupcakes, so the number of cupcakes batch needed here should be:
84 ÷ 21 = 4 (batches)
Since we knew the number of batches that we need to make the cupcakes, we now calculate the amount of sugar needed. We have:
1/2 teaspoon of salt for every 1 batch.
x teaspoon of salt for every 4 batches.
x = (4 . 1/2) . 1 = 2 (teaspoons)
find the interest rate on the loan if he borrowed $2,500 @ an annual interest rate of 6% for 15 years
Answer: $2250
Step-by-step explanation: (2500x.06)=150
150x15=2250
Answer:
I think you want the monthly payment. (Equation is attached).
Monthly Payment equals 21.10
If you are looking for the total interest paid then we need the
Total Loan Cost Formula. (attached)
The monthly loan rate is .06 / 12 = .005 and
number of payments = 12 months * 15 years = 180
Total Cost = .005 * 2,500 * 180 / 1 -(1.005)^-180
= 3,797.36
Total Cost 3,797.36
Minus Principal 2,500
Equals total interest paid = 1,297.36
Step-by-step explanation:
Maria runs 10 miles every day. If she doubles her usual speed, she can run the 10 miles in one hour less than her usual time. What is her usual speed?
Answer:
Her usual speed is 5 miles an hour.
Step-by-step explanation:
Since it takes one hour for her to run ten miles that means she is running at 10 miles an hour. So if you divide that by 2 it would be five.
Have a nice and great day.
this is the rest of the first question
-7x/7 > 56/7
x < -8
Diagram with a hollow dot on 8.
what is 8 times 5/6
Answer:
it is 6.66
Step-by-step explanation:
A total of 771 tickets were sold for the school play. They were either adult tickets or student tickets. There were 71 more student tickets sold than adult tickets. How many adult tickets were sold?
Answer:
350
Step-by-step explanation:
771=x+x+71 (x+71 is kids,x is adults)
2x=700
x=350
To find out how many adult tickets were sold, we set up equations based on the given information: total tickets and the difference between student and adult tickets. By solving these equations, we determined that 350 adult tickets were sold.
The question involves determining how many adult tickets were sold for a school play, given that a total of 771 tickets were sold and there were 71 more student tickets than adult tickets. To solve this, we can set up an equation to represent the situation.
Let A represent the number of adult tickets and S represent the number of student tickets. We know that:
Substituting the second equation into the first gives us A + (A + 71) = 771.
Simplifying, we get 2A + 71 = 771.
Subtracting 71 from both sides gives us 2A = 700.
Dividing both sides by 2 gives us A = 350.
Therefore, 350 adult tickets were sold for the school play
what is the expression for the difference between five times a number and twice that number?
Answer:
5x-2x
///////////////
Step-by-step explanation:
Answer:
[tex]5x-2x[/tex]
Step-by-step explanation:
Let's call that number [tex]x[/tex].
when we are asked for a difference we must substract quantities.
In this case we need the difference between five times a number (the number is represented by [tex]x[/tex]) and twice that number:
five times the number x is equal to
[tex]x+x+x+x+x=5x[/tex]
twice that number x is equal to:
[tex]x+x=2x[/tex]
thus, the difference is: [tex]5x-2x[/tex]
a dealer purchased a car for 24500 and marked it up 17%. what is the sticker price of the car?
a) $27,599
b) $26,500
c) $28,665
d) $28,425
The answer is B.$28,665!!
Answer:
C
Step-by-step explanation: 17 percent of 24500 is 4165 so 24500 plus 4165 is 28665, therefore the answer is C
mark me brainliest if this is right :)