Step-by-step explanation:
3
√
2
2
⋅
2
Pull terms out from under the radical.
3
(
2
√
2
)
Multiply
2
by
3
.
6
√
2
The result can be shown in multiple forms.
Exact Form:
6
√
2
Decimal Form:
8.48528137
…
For this case we must simplify the following expression:
[tex]3 \sqrt {2} +3 \sqrt {8}[/tex]
We rewrite:
[tex]8 = 2 ^ 3 = 2 ^ 2 * 2\\3 \sqrt {2} +3 \sqrt {2 ^ 2 * 2} =[/tex]
For properties of potecnias and roots we have that:
[tex]\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}[/tex]
Then, rewriting the expression:
[tex]3 \sqrt {2} + 2 * 3 \sqrt {2} =\\3 \sqrt {2} +6 \sqrt {2} =\\9 \sqrt {2}[/tex]
Answer:
[tex]9 \sqrt {2}[/tex]
what is the sum of the cards card one-9 card 2 is 4 card 3 is -3 card 4 is 2
Answer:
-6
Step-by-step explanation:
-9+4=-5-3=-8+2=-6
The Options: Fx and Gx
Answer: f(x) has a domain that contains the domain of g(x).
Step-by-step explanation:
The domain of f(x) is: x - 2 > 0
--> x > 2
The domain of the graph g(x) is: x ≥ 3
All of the values of x ≥ 3 are included in x > 2.
What are the first four terms of 3n²
Answer:
3;14;27;48
Step-by-step explanation:
Answer:
3, 12, 27, 48
Step-by-step explanation:
To find the first 4 terms substitute n = 1, 2, 3, 4 into the rule, that is
n = 1 → 3 × 1² = 3 × 1 = 3 ← first term
n = 2 → 3 × 2² = 3 × 4 = 12 ← second term
n = 3 → 3 × 3² = 3 × 9 = 27 ← third term
n = 4 → 3 × 4² = 3 × 16 = 48 ← fourth term
Can’t work out angle 2x-30 I don’t know what this means and is the angle next to 68 a right angle or straight line : would I subtract 180 - 68
Answer:
x = 63 degrees.
Step-by-step explanation:
So first, 2y - 30 = 68 degrees.
It is because of alternative interior angles.
2y - 30 = 68
2y = 98 Move the -30 to the other side
98/2 = 49 So, y = 49
So in a triangle, the 3 angles equal 180 degrees.
So you do 49 + 68 = 117 degrees. You do this, because the 2 angle not including x is 49 and 68
Then you subtract 117 from 180
180 - 117 = 63 degrees. You do this because the 3 angles of a triangle equal 180 degrees.
So x = 63 degrees
Answer:
x = 63
Step-by-step explanation:
Since AB and CD are parallel lines, then
2y - 30 = 68 ( corresponding angles )
Add 30 to both sides
2y = 98 ( divide both sides by 2 )
y = 49
The third angle in the triangle = 68 ( alternate angles )
The sum of the 3 angles in the triangle = 180°, that is
x + y + 68 = 180 ← substitute value of y
x + 49 + 68 = 180
x + 117 = 180 ( subtract 117 from both sides )
x = 63
Find the area of a parallelogram with sides of 6 and 12 and an angle of 60°.
ANSWER
36√3 square units.
EXPLANATION
The area of a parallelogram is obtained by multiplying the base by the height.
We use the sine ratio to obtain the height.
[tex] \sin(60 \degree) = \frac{h}{6} [/tex]
[tex]h = 6 \sin(60 \degree) [/tex]
[tex]h = 3 \sqrt{3} [/tex]
The area becomes:
[tex]12 \times 3 \sqrt{3} = 36 \sqrt{3} {units}^{2} [/tex]
Use the order of operations to evaluate the expression below.
3 + [9 -
(7-6) + 9 - 5] . 3
Answer: The answer I got was 39
Step-by-step explanation:
#13 pls I need this ASAP tmr I my last day!!!
Answer:
Step-by-step explanation:
-1 is included in the inequality. 2 is not included.
-1 ≤ x < 2
So this reads as x is greater than or equal to - 1 and x is less than 2.
Answer: -1 less equals x < 2
rue or False? The first distribution shown below has a smaller standard deviation than does the second distribution. A) 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22. B) 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122
False, the min and max of A are the same distance as the min and max of B from each other, therefore the standard deviation is the same.
Find the product.
3(x + 4) (x - 5)
A.
3x2 − 20x
B.
3x2 − 11x − 20
C.
3x2 − 3x − 60
D.
3x2 − x − 20
Answer:
C. 3x2 − 3x − 60
Step-by-step explanation:
3(x + 4) (x - 5) = (3x+12) (x-5)
(3x+12) (x-5) = 3x2+12x-15x-60
3x2+12x-15x-60 = 3x2 − 3x − 60
C. 3x^2-3x-60 Hope it helps
Tim has swimming practice at 7 o clock the swimming practice ends 30 minutes later what time does it end ?
Answer:
It ends at 7:30.
Final answer:
Tim's swimming practice starts at 7 o'clock and after adding the 30 minutes duration, it ends at 7:30.
Explanation:
The question pertains to adding time, specifically calculating the end time of an activity based on its duration. If Tim's swimming practice starts at 7 o'clock and ends 30 minutes later, the end time can be found by adding 30 minutes to the start time.
Here's how you calculate it:
Start with the initial time of the practice, which is 7:00.
Add the duration of the practice, which is 30 minutes.
Since there are 60 minutes in an hour, adding 30 minutes to 7:00 does not increase the hour value. Therefore, the practice ends at 7:30.
So, Tim's swimming practice ends at 7:30.
help me please i neeeeeeeeed to get this right
Answer:
d)96π
Step-by-step explanation:
Given:
Cyliner with radius,a= 4
Height b=8
Surface area of cylinder, A=2πrh+2πr^2
=2π(rh+r^2)
=2π(4(8) + 4^2)
= 2π(32+16)
=2π(48)
=96π !
Answer: Option D.
[tex]A =96\pi\ cm^2[/tex]
Step-by-step explanation:
The area of the circular bases is:
[tex]A_c = 2\pi(a) ^ 2[/tex]
Where
[tex]a=4\ cm[/tex] is the radius of the circle
Then
[tex]A = 2\pi(4) ^ 2[/tex]
[tex]A = 32\pi\ cm^2[/tex]
The area of the rectangle is:
[tex]A_r=b * 2\pi r[/tex]
Where
[tex]b=8\ cm[/tex]
b is the width of the rectangle and [tex]2\pi r[/tex] is the length
Then the area of the rectangle is:
[tex]A_r=8 * 2\pi (4)[/tex]
[tex]A_r=64\pi\ cm^2[/tex]
Finally the total area is:
[tex]A = A_c + A_r\\\\A = 32\pi\ cm^2 + 64\pi\ cm^2\\\\[/tex]
[tex]A =96\pi\ cm^2[/tex]
A mountain climbing team is camped at an altitude of 18,460 feet on Mount Everest. The team wants to reach the 29,029 foot summit within 6 days. Write an inequality to find the average number of feet per day the team must climb to accomplish its objective.
The average number of feet per day they need to ascend is 'Feet climbed per day ≥ 1,761.5'.
The mountain climbing team must calculate the average number of feet to climb each day in order to reach the summit of Mount Everest, which is at an altitude of 29,029 feet. Starting from an altitude of 18,460 feet, the team needs to climb the remaining distance to the summit within 6 days. To find the average feet per day they need to ascend, we use an inequality.
First, we determine the total feet that the team must climb:
Total feet to climb = Summit altitude - Current altitude
= 29,029 feet - 18,460 feet
= 10,569 feet
Now we divide the total feet by the number of days to find the average feet per day:
Average feet per day = Total feet to climb / Number of days
= 10,569 feet / 6 days
Since the team must climb at least this average number of feet daily, the inequality will be:
Feet climbed per day ≥ 10,569 feet / 6 days
By solving the inequality, we find that the team must climb at least 1,761.5 feet per day.
Therefore, the inequality to represent the average number of feet the team must climb per day to reach the summit within 6 days is:
Feet climbed per day ≥ 1,761.5
How many layers of material were the roads made of?
A.two
B.three
C.four
D.five
The table shows Alice's age (a) and her daughter Martha's age (m). Complete the table and the equation.
Alice’s Age in Years
(a) Martha’s Age in Years
(m)
28 6
33
37 15
41 19
48
This equation relates Alice’s and Martha's ages in years.
Alice’s age (a) = Martha’s age (m) +
this is easy but i want u guys to get points
Answer:44
Step-by-step explanation:
The equation relates Alice’s and Martha's ages in years. Alice’s age (a) = Martha’s age (m) + 22 The blank spots on table are filled by 33-11 and 48-26.
What does it mean to solve an equation?An equation represents the equality of two or more mathematical expressions.
When someone asks you to solve an equation, then they usually mean to find the values of the unknowns for which that equation would be true (the equality between expressions should hold true for those values).
Solutions to an equation are those values of the variables involved in that equation for which the equation is true.
The table shows Alice's age (a) and her daughter Martha's age (m).
In order to find the blank spots, we need to find the difference in the filled spots. We are trying to figure out the difference which is subtraction.
28 - 6 = 22
37 - 15 = 22
To find Martha's age when Alice was 33, we would subract 22.
33 - 22 = 11
similarly, when Alice was 48.
48 - 22 = 26
And the last equation is asking the difference between them, which is 22.
Learn more about solving equations here:
https://brainly.com/question/18015090
#SPJ2
Talk Time Phone Company charges $0.12 per minute of phone use plus a monthly service fee of $8.00 for its phone service. The equation below can be used to find c, the total cost for one month when m minutes are used. If a customer’s bill for the month is $38.00, how many minutes did the customer use the phone?
Take the total price - rate . 0.12
38 - 8 = 30 / 0.12 = 250 <- The customer used 250 mins.
Hope I helped :)
What sequence is modeled by the graph below?
Coordinate plane showing the points (2,1) (3,2) (4,4) (5,8)
A
an = 2(2)n − 1
B
an = 2( one half )n − 1
C
an = 4(−2)n − 1
D
an = one half (2)n − 1
ANSWER
[tex]a_n= \frac{1}{2}( {2}^{n - 1} )[/tex]
EXPLANATION
The corresponding ordered pairs from the graph are:
(2,1) (3,2) (4,4) (5,8)
The y-values are:
1,2,4,8
The first term term is the term before 1,this has to be.
[tex]a_1= \frac{1}{2} [/tex]
The common ratio is
[tex]r = \frac{2}{1} = 2[/tex]
The nth term is given by
[tex]a_n=a_1 {(r}^{n - 1} )[/tex]
Let's substitute the values to get,
[tex]a_n= \frac{1}{2} \times {(2}^{n - 1} )[/tex]
This simplifies to,
[tex]a_n= \frac{1}{2} {(2}^{n - 1} )[/tex]
The graph represents a geometric sequence with a common ratio of 2, best defined by the function an = 2(2)^n – 1.
Explanation:This graph represents a geometric sequence. A geometric sequence is a sequence of numbers where each term after the first is found by multiplying the previous term by a fixed, non-zero number called the 'common ratio'. In this case, the common ratio is 2, because each y-coordinate is twice the y-coordinate of the point before it (2, 1), (3, 2), (4, 4), (5, 8). Therefore, the sequence is best represented by the option A an = 2(2)^n – 1.
Learn more about Geometric Sequence here:https://brainly.com/question/34721734
#SPJ3
If the triangles in the figure are similar what is the length of side b?
Answer:
A 36
Step-by-step explanation:
We can determine the scale factor
From triangle ABC BC =9
DEF EF = 90
We multiply by 10
The scale factor is 10
AC ( 10) = DF
We know DF = 360
b * 10 = 360
Divide each side by 10
10b/10 = 360/10
b = 36
Three consecutive integers whose sum is 363.
For this case we must find three consecutive whole numbers whose sum is equal to 363. These numbers should be close to 120. So, these numbers are:
120,121 and 122. If we add them together we have:
[tex]120 + 121 + 122 = 363[/tex]
Answer:
120,121 and 122
[tex]120 + 121 + 122 = 363[/tex]
Please,Can you help me?
Answer:
x = 4
Step-by-step explanation:
The volume (V) of the triangular prism is calculated as
V = area of triangular face × length
Area of triangle = [tex]\frac{1}{2}[/tex] bh
b is the base and h the perpendicular height
here b = 9 and h = 12 ← sides at right angles
A = [tex]\frac{1}{2}[/tex] × 9 × 12 = 54 m²
The length of the prism = x and V = 216, hence
54x = 216 ( divide both sides by 54 )
x = 4
Find the missing lengths of the sides. b = , c = 16 b = , c = b = , c = b = , c = 12
To find the missing lengths of the sides, you need to use the Pythagorean theorem. The Pythagorean theorem states that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
Explanation:To find the missing lengths of the sides, you need to use the Pythagorean theorem. The Pythagorean theorem states that in a right triangle, the square of the length of the hypotenuse (c) is equal to the sum of the squares of the lengths of the other two sides (a and b). So, the equation is: a² + b² = c².
For example, if b is missing and c is 16, you can plug the values into the equation and solve for b: a² + b² = 16². Once you find the value of b, you can follow the same process for the other missing lengths.
Remember to square each side length before adding them. Then, find the square root of the sum to find the length of the hypotenuse.
combining like terms please asap
The like terms are 1.3b and -3.2b because they both have the variable b attached to it so you may combine them
(1.3b + (-3.2b) ) + 7.8
-1.9b + 7.8
Hope this helped!
~Just a girl in love with Shawn Mendes
Help I need it
A laptop computer has a selling price of $800. This includes a 20% mark up. The computer is also being offered at a discount of 20%. A customer thinks that the seller is going to break even given this information. Is the customer correct Explain your reasoning?
A. what was the price of the laptop before the markup?
b. what is the discounted price of the laptop?
Answer: customer is incorrect
Step-by-step explanation:
I am working this from b first
b $800 x .20 (20%) = $160 discount
$800 - $160 = $640 customers price
the price of the computer after the 20% discount would be $640
a customer thinks seller is going to break even this is not true
$640 (customer cost after discount) x .20 (20% discount) =$ 128
$640 + $128 = $768
Cost of the laptop before the 20% markup is $667.67
$666.67 x .20 = $133.33
$666.67 + $133.33 = $800
$768 ≠ $667.67
Please help :) I’m struggling
Answer:
an = -1.3n -2.4
Step-by-step explanation:
The formula for an arithmetic sequence is
an = a1 +d (n-1)
where a1 is the first term and d is the common difference
an = -3.7 - 1.3(n-1)
Distribute
an = -3.7 -1.3n +1.3
an = -2.4 - 1.3n
an = -1.3n -2.4
A random sample of students at North High School were polled on whether they prefer a 15-minute break between classes in the morning or in the afternoon. The results are shown in the frequency table. What is the joint relative frequency for 11th graders who want the break in the afternoon? Round to the nearest percent. 21% 25% 40% 61%
Answer:
Step-by-step explanation: the answer is 21%
Answer:
21%
Step-by-stStep-by-stepep explanation:
the line that passes through the points (-5,-6) and (-3,2) and the line with equation y=x-4 intersect at what point?
Answer:(-6,-10)
Step-by-step explanation:
Let’s say that A is (-5,-6) and B is (-3,2). The slope of AB is (-6-2)/(-5+3)=(-8)/(-2)=4
The equation of AB is:
y-2=4(x+3)
y=4x+14
The lines intersect in:
4x+14=x-4
3x=-18
x=-6
(-6,-10)
What is the first step to solving the division problem below
Answer:
The answer is A.
Step-by-step explanation:
I got this answer by going through the regular division system.
What is the perimeter of this square?
26 ft
26.5 ft
24.5 ft
13 ft
6.5 x 4 = 26
The perimeter of the square is 26 ft.
Answer: 26 ft
Step-by-step explanation: you have add all sides.
Which is the better buy?
A. 2-gallon container of laundry detergent for $21.76
B. 12-cup container of laundry detergent for $7.20
How many multiples of $6$ are between $100$ and $500$?
Answer:
67
Step-by-step explanation:
First number between 100 to 500 which is divisible by 6 is 102
Multiples of 6 between 100 to 500 :
102,102+6,102+6+6,....
This Forms an AP
a= first term = 102
d = common difference = 6
Last number between 100 to 500 which is divisible by 6 is 498
So, [tex]a_n=498[/tex]
Formula of nth term = [tex]a_n=a+(n-1)d[/tex]
[tex]498=102+(n-1)6[/tex]
[tex]498-102=(n-1)6[/tex]
[tex]396=(n-1)6[/tex]
[tex]\frac{396}{6}=n-1[/tex]
[tex]66=n-1[/tex]
[tex]66+1=n[/tex]
[tex]67=n[/tex]
Hence there are 67 multiples of 6 between 100 to 500.
What is the length of the diagonal of a poster board with dimensions 22 inches by 28 inches? Round to the nearest tenth.
Answer:
The length of the diagonal of a poster board is [tex]35.6\ in[/tex]
Step-by-step explanation:
Let
x----> the length of the diagonal of a poster board
we know that
Applying the Pythagoras Theorem
[tex]x^{2}=22^{2}+28^{2} \\ \\x^{2}=1,268\\ \\x=35.6\ in[/tex]
Answer:
The length of the diagonal of a poster board is 35.6 inches.
Step-by-step explanation:
To find : What is the length of the diagonal of a poster board with dimensions 22 inches by 28 inches?
Solution :
The dimensions of a poster board is
Length = 22 inches
Breadth = 28 inches
The diagonal is given by,
[tex]D=\sqrt{L^2+B^2}[/tex]
[tex]D=\sqrt{22^2+28^2}[/tex]
[tex]D=\sqrt{484+784}[/tex]
[tex]D=\sqrt{1268}[/tex]
[tex]D=35.60[/tex]
Therefore, the length of the diagonal of a poster board is 35.6 inches.