Question Help For the month of MarchMarch in a certain​ city, 5757​% of the days are cloudycloudy. Also in the month of MarchMarch in the same​ city, 5555​% of the days are cloudycloudy and foggyfoggy. What is the probability that a randomly selected day in MarchMarch will be foggyfoggy if it is cloudycloudy​?

Answers

Answer 1

Answer: There is probability of 96.4% that  a day in March will be foggy if it is a cloudy.

Step-by-step explanation:

Since we have given that

Probability of the days in March are cloudy = 57%

Probability of the cloudy days in March are foggy = 55%

Let A be the event of cloudy days in March.

Let B be the event of foggy days in March.

So, here,

P(A) = 0.57

P(A∩B) = 0.55

We need to find the probability that days are foggy given that it is cloudy.

We would use "Conditional probability":

[tex]P(B\mid A)=\dfrac{P(A\cap B)}{P(A)}=\dfrac{0.55}{0.57}=0.964=96.4\%[/tex]

Hence, There is probability of 96.4% that  a day in March will be foggy if it is a cloudy.


Related Questions

According to a​ study, 80​% of​ K-12 schools or districts in a country use digital content such as​ ebooks, audio​ books, and digital textbooks. Of these 80​%, 5 out of 10 use digital content as part of their curriculum. Find the probability that a randomly selected school or district uses digital content and uses it as part of their curriculum.

Answers

Answer: There is a probability of 40% of getting a school or district uses digital content and uses it as part of their curriculum.

Step-by-step explanation:

Since we have given that

Probability that schools or districts in a country use digital content = 80%

Probability that schools uses digital content as a part of their curriculum out of 80% = [tex]\dfrac{5}{10}[/tex]

So, the probability that a selected school or district uses digital content and uses it as  a part of their curriculum is given by

[tex]\dfrac{80}{100}\times \dfrac{5}{10}\\\\=0.8\times 0.5\\\\=0.4\\\\=40\%[/tex]

Hence, there is a probability of 40% of getting a school or district uses digital content and uses it as part of their curriculum.

Final answer:

The probability that a randomly selected school or district uses digital content and uses it as part of their curriculum is 40%.

Explanation:

To find the probability that a randomly selected school or district uses digital content and uses it as part of their curriculum, we need to multiply the probabilities of these events occurring.

Given that 80% of K-12 schools or districts use digital content and 5 out of 10 of these schools use it as part of their curriculum, we can calculate the probability as:

P(Uses digital content and uses it as part of curriculum) = P(Uses digital content) x P(Uses it as part of curriculum | Uses digital content)

Substituting the values, we have:

P(Uses digital content and uses it as part of curriculum) = 0.80 x 0.50 = 0.40 or 40%

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

What is the GCF of the expression a2b2c2 + a2bc2 - a2b2c

Answers

Answer:

a^2bc

Step-by-step explanation:

The GCF of the expression a2b2c2 + a2bc2 - a2b2c is a2bc.

The greatest common factor (GCF) of an algebraic expression is the largest polynomial that divides each of the terms without leaving a remainder. To find the GCF of the expression a2b2c2 + a2bc2 - a2b2c, first identify the common factors in each term.

Inspecting each term we see that a2 is a common factor for all of them, and the smallest power of b and c present in all terms is b and c, respectively. Therefore, the GCF is a2bc.

In January 2013 a country‘s first class mail rates increased to 42 cents for the 1st ounce and 22 cents for each additional ounce. Is Sabrina spent $16.24 for a total of 52 stamps of these two denominations how many stamps of each denomination did she buy?

She bought ___ 42 cent stamps
And _____ 22 cent stamps

Answers

Answer:

She bought 24 42-cent stampsAnd 28 22-cent stamps

Step-by-step explanation:

Let n represent the number of 42-cent stamps Sabrina bought. Then 52-n is the number of 22-cent stamps she bought. Her total expense was ...

  0.42n +0.22(52 -n) = 16.24 . . . . total price of stamps

  0.20n + 11.44 = 16.24 . . . . . . . . . simplify

  0.20n = 4.80 . . . . . . . . . . . . . . . . subtract 11.44

  n = 24 . . . . . . . . . . . . . . . . . . . . . . divide by the coefficient of n

  52-n = 28 . . . . . . . . . . . . . . . . . . . find the number of 22-cent stamps

She bought 24 42-cent stamps and 28 22-cent stamps.

She bought 24-42 cent stamps

And, 28-22 cent stamps.

Calculation of number of stamps:

Here we assume  n be the number of 42-cent stamps

The equation should be

0.42n +0.22(52 -n) = 16.24

0.20n + 11.44 = 16.24

0.20n = 4.80

n = 24

Now

= 52 - n

= 52 - 24

= 28

Learn more about the cent here; https://brainly.com/question/3789339

Translate the Variable Expression 3n -7 into Verbal Expression​

Answers

Step-by-step explanation:

[tex]3n-7\\\\\text{The difference between three times the number n and seven.}[/tex]

An expression is a set of numbers, variables, and mathematical operations. The Variable Expression 3n -7 into Verbal Expression​ can be written as expression 7 less than 3 times a number 'n'.

What is an Expression?

In mathematics, an expression is defined as a set of numbers, variables, and mathematical operations formed according to rules dependent on the context.

The expression that is given to us is 3n -7, this expression can be written as a verbal expression 7 less than 3 times a number 'n' or 7 subtracted from  3 times of number 'n'.

Hence, the Variable Expression 3n -7 into Verbal Expression​ can be written as expression 7 less than 3 times a number 'n'.

Learn more about Expression here:

https://brainly.com/question/13947055

#SPJ5

A packet of sour worms contains four​ strawberry, four​ lime, two black​ currant, two orange​ sour, and three green apple worms. What is the probability that Dustin will choose a green apple sour​ worm, P(green​ apple)?

Answers

Answer:

3/15 or 0.2

Step-by-step explanation:

Consider two sizes of disk, both of mass M. One size of disk has radius R; the other has radius 4R. System A consists of two of the larger disks rigidly connected to each other with a common axis of rotation. System B consists of one of the larger disks and a number of the smaller disks rigidly connected with a common axis of rotation. If the moment of inertia for system A = the moment of inertia for system B, how many of the smaller disks are in system B? 1 4 10 16

Answers

Answer:

  16

Step-by-step explanation:

Moment of inertia of a disk is proportional to its mass and to the square of its radius. For two disks with the same mass, the larger one will have a moment of inertia that is (4R/R)^2 = 16 times that of the smaller one.

It will take 16 smaller disks to make the systems have the same moment of inertia.

A class of 32 students is organised in 33 teams every team consists of 3 students and there are no identical teams . show that there are two teams with exactly one common student

Answers

Answer:

Step-by-step explanation:

Let's start by making up as many teams as we can with the 32 student. Given that each team is different, we can make 10 teams of 3 each. (we still have 23 more teams to make).

The last two people make a team of only 2. No matter which student from the 30 other students is picked, the team of two and the one the student is coming from will have one student in common. Though there are more borrowings that take place (many more), the results remain as stated. At least 2 teams will have 1 person in common.

The method is called the pigeon hole method.

Final answer:

By applying the Pigeonhole Principle in combinatorics, in a scenario where 32 students are assigned to 33 teams of 3 students each, there must exist two teams that share exactly one student.

Explanation:

This problem can be solved by using the principles of Combinatorics and the Pigeonhole Principle. The Pigeonhole Principle states that if you try to distribute n items into m containers and n > m, then at least one container must contain more than one item.

In the given scenario, we have 32 students that are being assigned to 33 teams, with each team consisting of 3 students. That means a total of 96 (3 x 32) places in teams.

If each student is a 'pigeon' and each 'place' in a team is a 'pigeonhole', the Pigeonhole Principle tells us that at least two pigeons must share at least one pigeonhole. Since each student can't be in more than one place at a time nor in the same team more than once, there must exist two teams that share exactly one student.

Learn more about Pigeonhole Principle here:

https://brainly.com/question/34617354

#SPJ11

What are the solutions of the equation x4 + 6x2 + 5 = 0? Use u substitution to solve.

Answers

Answer:

2nd answer.

Step-by-step explanation:

see attached.

Answer with Step-by-step explanation:

We have to find the solution of the equation:

[tex]x^4+6x^2+5=0[/tex]

Let u=x²

Then, above equation is transformed to:

[tex]u^2+6u+5=0[/tex]

it could also be written as:

[tex]u^2+5u+u+5=0[/tex]

u(u+5)+1(u+5)=0

(u+1)(u+5)=0

either  u+1=0 or u+5=0

either u= -1 or u= -5

Putting u=x²

x² = -1 or x² = -5

On taking square root both sides

x= ± i  or  x= ± i√5

Hence, roots of the equation [tex]x^4+6x^2+5=0[/tex] are:

i , -i , i√5 and -i√5


Nico is saving money for his college education. He invests some money at 7%, and $1200 less than that amount at 3%. The investments produced a total of $174 interest in 1 yr. How much did he invest at each rate?

He invested $____at 7% and _____ at 3%.

Answers

Answer:

Nico invest [tex]\$2,100[/tex] at 7% and [tex]x=\$900[/tex] at 3%

Step-by-step explanation:

we know that

The simple interest formula is equal to

[tex]I=P(rt)[/tex]

where

I is the Final Interest Value

P is the Principal amount of money to be invested

r is the rate of interest  

t is Number of Time Periods

in this problem we have

At 7%

[tex]t=1\ years\\ P=\$x\\r=0.07[/tex]

substitute in the formula above

[tex]I1=x(0.07*1)[/tex]

[tex]I1=0.07x[/tex]

At 3%

[tex]t=1\ years\\ P=\$(x-1,200)\\r=0.03[/tex]

substitute in the formula above

[tex]I2=(x-1,200)(0.03*1)[/tex]

[tex]I2=0.03x-36[/tex]

The total interest is equal to

I=I1+I2

I=$174

substitute

[tex]174=0.07x+0.03x-36[/tex]

[tex]0.10x=174+36[/tex]

[tex]0.10x=210[/tex]

[tex]x=\$2,100[/tex]

[tex]x-1,200=2,100-1,200=\$900[/tex]

therefore

Nico invest [tex]\$2,100[/tex] at 7% and [tex]x=\$900[/tex] at 3%

There are red blood cells contained in 50 oubic millimeters of blood se scientific notation. Use the multiplication symbol in the math palette as needed )

Answers

Answer: 5\times10

Step-by-step explanation:

We know that the scientific notation is a representation of a very large or a very small number in the product of a decimal form of number (commonly between 1 and 10) and powers of ten.

Given : There are red blood cells contained in 50 cubic millimeters of blood .

The representation of 50 cubic millimeters in scientific notation is given by :-

[tex]5\times10\ \text{cubic millimeters }[/tex]

Evaluate the Expression B^2-4 ac given by that a = -2 ,, b= -2 and c =2​

Answers

F* you B*!!!!!! Your so S*! That's the easiest thing in the world!!

Consider a bag that contains 220 coins of which 6 are rare Indian pennies. For the given pair of events A and​ B, complete parts​ (a) and​ (b) below. ​A: When one of the 220 coins is randomly​ selected, it is one of the 6 Indian pennies. ​B: When another one of the 220 coins is randomly selected​ (with replacement), it is also one of the 6 Indian pennies. a. Determine whether events A and B are independent or dependent. b. Find​ P(A and​ B), the probability that events A and B both occur.

Answers

Answer:

a. The two events are dependent.

b. [tex]P(A\cap B)[/tex]= [tex]\frac{1}{220}[/tex].

Step-by-step explanation:

Given

Total coins =220

Number of Indian pennies= 6

A: When one of the 220 coins is randomly selected, it is one of the Indian pennies.

Therefore , the probability of getting an  Indian pennies=[tex]\frac{6}{220 }[/tex]

By using formula of probability=[tex]\frac{Number \; of\; favourable\; cases}{total\; number \; of \;cases}[/tex]

Probability of getting an  Indian pennies=[tex]\frac{3}{110}[/tex]

B: When another one of the 220 coins is randomly selected( with replacement) , It is also one of the Indian pennies.

Therefore, probability of getting an Indian pennies=[tex]\frac{6}{220}[/tex]

Probability of getting an Indian pennies =[tex]\frac{3}{110}[/tex]

[tex]A\cap B[/tex]: 1

[tex]P(A\cap B)=\frac{1}{220}[/tex]

If two events are independent. Then

[tex]P(A\cap B)= P(A)\times p(B)[/tex]

P(A).P(B)= [tex]\frac{3}{110} \times \frac{3}{110}[/tex]=[tex]\frac{9}{12100}[/tex]

Hence, [tex]P(A\cap B)\neq P(A).P(B)[/tex]

Therefore, the two events are dependent.

b. Probability that events A and B both occur

Number of favourable cases when both events A and B occur=1

Total coins=220

Probability=[tex]\frac{Number \; of\; favourable \; cases}{Total\; number\; of\; cases}[/tex]

[tex]P(A\cap B)=\frac{1}{220}[/tex]

Let F = (z − y) i + (x − z) j + (y − x) k . Let C be the rectangle of width 2 and length 5 centered at (7, 7, 7) on the plane x + y + z = 21, oriented clockwise when viewed from the origin. (a) Find curlF . curlF = ⟨2,2,2⟩ (b) Use Stokes' Theorem to find F · dr C . F · dr C = −60 √3​

Answers

Final answer:

The curl of the vector field F is 2i + 2j + 2k. The dot product of F and dr along the closed path C is -60√3.

Explanation:

To find the curl of vector field F, we need to compute the partial derivatives of its components with respect to x, y, and z. In this case, F = (z-y)i + (x-z)j + (y-x)k. Taking the partial derivatives, we get curlF = 2i + 2j + 2k.

The dot product of F and dr along the closed path C can be calculated using Stokes' Theorem. By evaluating the dot product and integrating over C, we find that F · dr = -60√3.

Learn more about Curl and Stokes' Theorem here:

https://brainly.com/question/34111637

#SPJ11

find the solutions of the system

y=x^2+3x-4

y=2x+2


a. (-3,6) and (2,-4)

b. (-3,-4) and (2,6)

c. (-3,-4) and (-2,-2)

d. no solution

Answers

Answer:

b. (-3, -4) and (2, 6)

Step-by-step explanation:

By the transitive property of equality, if y equals thing 1 and y also equals thing 2, then thing1 and thing 2 are also equal.  So we will set them equal to each other and factor to solve for the 2 values of x:

[tex]2x+2=x^2+3x-4[/tex]

Get everything on one side of the equals sign, set the whole mess equal to 0, and combine like terms to get:

[tex]0=x^2+x-6[/tex]

Because this is a second degree polynomial, a quadratic to be precise, it has 2 solutions.  We need to find those 2 values of x and then use them in either one of the original equations to solve for the y values that go with each x.  

Factoring that polynomial above gives you the x values of x = -3 and 2.  Sub in -3 first:

y = 2(-3) + 2 and

y = -6 + 2 so

y = -4

Therefore, the coordinate is (-3, -4).

Onto the next x value of 2:

y = 2(2) + 2 and

y = 4 + 2 so

y = 6

Therefore, the coordinate is (2, 6)

Translate the phrase "" Nine times the difference of a number and 8"" into a algebraic expression . Simplify your result​

Answers

click on picture, sorry if it's hard to read, but my phone messed up the typing

The phrase 'Nine times the difference of a number and 8' is translated into the algebraic expression 9(n - 8) and simplified to 9n - 72.

The phrase 'Nine times the difference of a number and 8' translates to an algebraic expression by following specific mathematical operations. To represent an unknown number, we use a variable, such as 'n', and the phrase 'the difference of a number and 8' would be written as 'n - 8'. To adhere to the phrase 'nine times', we multiply the difference by 9, leading to the expression 9(n - 8).

When we simplify the expression, we need to distribute the 9 to both terms within the parentheses: 9 × n and 9 × (-8), which gives us 9n - 72. Thus, the simplified algebraic expression for the phrase 'Nine times the difference of a number and 8' is 9n - 72.

which of the following is the quotient of .4375 divided by .35

Answers

Answer:

Quotient will be 1.25

Step-by-step explanation:

First we convert decimal numbers to fractions. So write down the decimal divided by 1 and then multiply both top and bottom with 10 for every number after decimal point.

Here we found for  .4375  = [tex]\frac{4375}{10000}[/tex]

and .35 =   [tex]\frac{35}{100}[/tex]

Now we divide both the numbers as

= [tex]\frac{\frac{4375}{1000} }{\frac{35}{100} }[/tex]

= [tex]\frac{4375}{1000}[/tex] × [tex]\frac{100}{35}[/tex]

= [tex]\frac{125}{100}[/tex]

= 1.25

Quotient will be 1.25

Final answer:

The quotient of 0.4375 divided by 0.35 is 1.25, which rounded to the tenths place is 1.3.

Explanation:

The student is asking to find the quotient of two decimal numbers, which is a basic arithmetic operation involving division. The numbers are 0.4375 and 0.35. To find the quotient, simply divide 0.4375 by 0.35.

Using a calculator or performing the division manually, you would proceed as follows:

Adjust the decimals by multiplying both numbers by 100 to make them whole numbers, resulting in 43.75 divided by 35.

Perform the division to get the preliminary result: 43.75 / 35 = 1.25.

Since we need to round the final answer to the tenths place based on the least precise number given (35.5 g), round 1.25 to one decimal place, which is 1.3 (1.25 rounds up because the next digit, 5, is equal to or greater than 5).

Therefore, the quotient of 0.4375 divided by 0.35, rounded to the tenths place, is 1.3.

Hello!! i’m not sure how to do this question, if you could explain your work that’d b great!!

Answers

[tex]\bf \sqrt{xy}=y\implies \left( xy \right)^{\frac{1}{2}}=y\implies \stackrel{\textit{chain rule~\hfill }}{\cfrac{1}{2}(xy)^{-\frac{1}{2}}\stackrel{\textit{product rule}}{\left(y+x\cfrac{dy}{dx} \right)}}=\cfrac{dy}{dx} \\\\\\ \cfrac{1}{2\sqrt{xy}}\left(y+x\cfrac{dy}{dx} \right)=\cfrac{dy}{dx}\implies \cfrac{y}{2\sqrt{xy}}+\cfrac{x}{2\sqrt{xy}}\cdot \cfrac{dy}{dx}=\cfrac{dy}{dx}[/tex]

[tex]\bf \cfrac{x}{2\sqrt{xy}}\cdot \cfrac{dy}{dx}=\cfrac{dy}{dx}-\cfrac{y}{2\sqrt{xy}} \implies \cfrac{x}{2\sqrt{xy}}\cdot \cfrac{dy}{dx}-\cfrac{dy}{dx}=-\cfrac{y}{2\sqrt{xy}} \\\\\\ \stackrel{\textit{common factor}}{\cfrac{dy}{dx}\left( \cfrac{x}{2\sqrt{xy}}-1 \right)}=-\cfrac{y}{2\sqrt{xy}} \implies \cfrac{dy}{dx}=-\cfrac{y}{\left( \frac{x}{2\sqrt{xy}}-1 \right)2\sqrt{xy}} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \cfrac{dy}{dx}=-\cfrac{y}{x-2\sqrt{xy}}~\hfill[/tex]

The weights of broilers (commercially raised chickens) are approximately normally distributed with mean 1387 grams and standard deviation 161 grams. What is the probability that a randomly selected broiler weighs more than 1,425 grams?

Answers

Answer:  0.3936

Step-by-step explanation:

Given: Mean : [tex]\mu =1387 \text{ grams}[/tex]

Standard deviation : [tex]\sigma = 161 \text{ grams}[/tex]

The formula to calculate z is given by :-

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x= 1,425 grams

[tex]z=\dfrac{1425-1387}{161}=0.23602484472\approx0.27[/tex]

The P Value =[tex]P(X>1425)=P(z>0.27)=1-0.6064198=0.3935802\approx0.3936[/tex]

Hence, the  probability that a randomly selected broiler weighs more than 1,425 grams =0.3936

Final Answer:

There is approximately a 40.66% chance that a randomly selected broiler weighs more than 1,425 grams.

Explanation:

To solve this problem, you will need to apply the properties of the normal distribution. We want to find out the probability that a broiler weighs more than 1,425 grams.
Given:
- Mean (μ) = 1387 grams
- Standard deviation (σ) = 161 grams
- X = 1425 grams (the value we're interested in)

Step 1: First, we compute the z-score for the weight of 1425 grams. The z-score is a measure of how many standard deviations an element is from the mean. It can be calculated using the formula:

[tex]\[ z = \frac{(X - \mu)}{\sigma} \][/tex]

where X is the value for which we're finding the probability, μ is the mean, and σ is the standard deviation.

Step 2: Insert the values into the formula to compute the z-score for 1425 grams:

[tex]\[ z = \frac{(1425 - 1387)}{161} \\\\\[ z = \frac{38}{161} \\\\\[ z \approx 0.236 \][/tex]
Step 3: Once we have the z-score, we can use the z-table (a standard normal distribution table) to find out the probability of a z-score being less than 0.236. However, since we want the probability that the broiler weighs more than 1425 grams, we are interested in the probability of a z-score being greater than 0.236.

Step 4: Look up the corresponding probability for z = 0.236 on the z-table. The z-table gives us the area under the normal curve to the left of the z-score.

Let's assume the z-table gives us a probability of P(Z < 0.236). The value would typically be around 0.5934, which means there is a 59.34% chance that a random broiler will weigh less than 1425 grams.

Step 5: To find the probability that a broiler weighs more than 1425 grams, we subtract the value found in the z-table from 1 because the total area under the curve equals 1 (which corresponds to the probability of all possible outcomes).

[tex]\[ P(Z > 0.236) = 1 - P(Z < 0.236) \\\\\[ P(Z > 0.236) = 1 - 0.5934 \\\\\[ P(Z > 0.236) \approx 0.4066 \][/tex]

At a Shop on Times Square three "" I LOVE NY"" T- Shirts Sell every 10 minutes for $ 19.95 each . Every 45 minutes one Yankee's Hat sells for $ 24.95 . The Shop is Open from 9 Am to 9 Pm Every day .So,the Question is How Many T-Shirts Are Sold in a Week ??? ​

Answers

$19.95×6
=$119.7x12
=$1436.4x7
=$ 10054.8
Final answer:

The shop sells 216 "I LOVE NY" T-shirts each day. Therefore, over the course of one week, the shop sells 1512 T-shirts.

Explanation:

The shop in Times Square is open from 9 am to 9 pm, which means the shop operates for 12 hours. Since there are 60 minutes in an hour, this shop is open for a total of 720 minutes each day.

Three "I LOVE NY" T-shirts are sold every 10 minutes. So, in 720 minutes, the number of T-shirts sold would be 720 ÷ 10 = 72 sets of three T-shirts. Therefore, 72 sets x 3 shirts = 216 T-shirts are sold per day.

Finally, to calculate the weekly total, it is necessary to multiply the daily total by 7 (the number of days in a week). So, 216 T-shirts x 7 days = 1512 T-shirts sold in one week.

Learn more about Weekly Sales here:

https://brainly.com/question/32042123

#SPJ2

Compute the face value of a 90-day promissory note dated October 22, 2018 that has a maturity value of $76,386.99 and an interest rate of 7.5% p.a.

Answers

Answer:

The face value would be $75,000

Step-by-step explanation:

Maturity value = $76,386.99

Time = 90 days

Rate of interest = 7.5%

Let face value be 'x'

By using the formula [tex]A=P(1+\frac{RT}{100})[/tex]

                      $76,386.99 = [tex]x(1+\frac{7.5\times \frac{90}{365}}{100})[/tex]

Time in years = [tex]\frac{90}{365}[/tex]

⇒ $76,386.99 = x( 1 + 0.01849315 )

⇒ x = [tex]\frac{76,386.99}{1.01849315}[/tex]

x = $75,000

The face value would be $75,000

Choose the property used to rewrite the expression. log base 4, 7 + log base 4, 2 = log base 4, 14

Answers

Answer:

[tex] log_{a}(x) + log_{a}(y) = log_{a}(xy) [/tex]

In this high school level mathematics problem, the Product Rule of Logarithms is applied to rewrite the given expression using the appropriate property.

The property used to rewrite the expression is the Product Rule of Logarithms. According to this property, when adding two logarithms with the same base, it is equivalent to multiplying the values inside the logarithms.

So, log base 4 of 7 + log base 4 of 2 can be rewritten as log base 4 of (7*2), which simplifies to log base 4 of 14.

Do more Republicans (group A) than Democrats (group B) favor a bill to make it easier for someone to own a firearm? Two hundred Republicans and two hundred Democrats were asked if they favored a bill that made it easier for someone to own a firearm. How would we write the alternative hypothesis?

Answers

Final answer:

The alternative hypothesis would state that the proportion of Republicans who favor a bill to make gun ownership easier is not equal to the proportion of Democrats who favor the same.

Explanation:

The question was regarding how to construct an alternative hypothesis for a study on political beliefs and opinions on firearm ownership. In this case, the alternative hypothesis statement goes against the null hypothesis. The null hypothesis would be that there's no significant difference between the proportions of Republicans and Democrats that favor a bill making gun ownership easier. So, the alternative hypothesis can be written as: 'The proportion of Republicans (Group A) who favor a bill making it easier for someone to own a firearm is not equal to the proportion of Democrats (Group B) who favor the same.'

Learn more about Alternative Hypothesis here:

https://brainly.com/question/30899146

#SPJ12

Final answer:

The alternative hypothesis can be written as: H_A: The proportion of Republicans who favor a bill to make it easier for someone to own a firearm differs from the proportion of Democrats who favor the same.

Explanation:

The alternative hypothesis can be written as:

HA: The proportion of Republicans who favor a bill to make it easier for someone to own a firearm differs from the proportion of Democrats who favor the same.

Alternatively, it can be written as:

HA: pA ≠ pB

where pA is the proportion of Republicans who favor the bill and pB is the proportion of Democrats who favor the bill.

Learn more about Alternative Hypothesis here:

https://brainly.com/question/30899146

#SPJ11

15, Evaluate 6 choose 4.

Answers

Answer:  The required result is 15.

Step-by-step explanation:  We are given to evaluate the following :

"6 choose 4".

Since we are to choose 4 from 6, so we have to use the combination of 6 different things chosen 4 at a time.

We know that

the formula for the combination of n different things chosen r at a time is given by

[tex]^nC_r=\dfrac{n!}{r!(n-r)!}.[/tex]

For the given situation, n = 6  and  r = 4.

Therefore, we get

[tex]^6C_4=\dfrac{6!}{4!(6-4)!}=\dfrac{6!}{4!2!}=\dfrac{6\times5\times4!}{4!\times2\times1}=15.[/tex]

Thus, the required result is 15.

In terms of x, find an expression that represents the area of the shaded region. The outer square has side lengths of (x+5) and the inner square has side lengths of (x-2), as shown.

Answers

Answer:

= (x+5)² = x² + 10x + 25

= (x-2)² = x² - 4x + 4

= (x² + 10x + 25) - (x² - 4x + 4)

 = x² + 10x + 25 - x² + 4x - 4

 = 14x + 21  square units

Final answer:

The area of the shaded region is found by subtracting the area of the inner square, (x-2)², from the area of the outer square, (x+5)², resulting in the expression 14x + 21.

Explanation:

The area of the shaded region in this problem represents the difference between the area of the outer square and the inner square.

To find this, we calculate the area of each square individually and then subtract one from the other.

First, the area of the outer square is (x+5)² and the area of the inner square is (x-2)².

Now, we find the difference between these two areas to isolate the shaded region:

Area of shaded region = (x+5)² - (x-2)²

To expand this, we use the binomial expansion:

(x+5)² = x² + 10x + 25(x-2)² = x² - 4x + 4

Now we subtract the smaller area from the larger area:

Shaded region = (x² + 10x + 25) - (x² - 4x + 4)

Shaded region = x² + 10x + 25 - x² + 4x - 4

Shaded region = 14x + 21

This expression represents the area of the shaded region in terms of x.

If you drive 5 miles​ south, then make a left turn and drive 12 miles​ east, how far are​ you, in a straight​ line, from your starting​ point? Use the Pythagorean Theorem to solve the problem. Use a calculator to find square​ roots, rounding to the nearest tenth as needed.

Answers

Answer: Hence, the distance covered in a straight line from the starting point is 13 miles.

Step-by-step explanation:

Since we have given that

Distance between AB = 5 miles

Distance between BC = 12 miles

We need to find the distance covered from the starting point.

We will use "Pythagorean Theorem":

[tex]H^2=P^2+B^2\\\\AC^2=AB^2+BC^2\\\\AC^2=5^2+12^2\\\\AC^2=25+144\\\\AC^2=169\\\\AC=\sqrt{169}\\\\AC=13\ miles[/tex]

Hence, the distance covered in a straight line from the starting point is 13 miles.

A rectangular aquarium has length (x+ 10), width (x + 4), and height (t + 6). Determine a simplified function that represents the volume of the aquarium. [2 Marks)

Answers

Answer:

V = x³ + 20x² + 124x + 240

Step-by-step explanation:

Volume of a rectangular prism is width times length times height.

V = wlh

Given w = x+4, l = x+10, and h = x + 6:

V = (x + 4)(x + 10)(x + 6)

V = (x + 4)(x² + 16x + 60)

V = x²(x + 4) + 16x(x + 4) + 60(x + 4)

V = x³ + 4x² + 16x² + 64x + 60x + 240

V = x³ + 20x² + 124x + 240

Final answer:

The volume of the rectangular aquarium is given by the function V = x²t + 6x² + 14xt + 84x + 40t + 240, representing the product of its length, width, and height with given dimensions.

Explanation:

To determine a simplified function that represents the volume of the aquarium with given dimensions, we need to use the formula for the volume of a rectangular prism, which is length × width × height. The problem provides expressions for these dimensions: length is (x + 10), width is (x + 4), and height is (t + 6).

Therefore, the volume V of the aquarium can be calculated as follows:

V = (x + 10) × (x + 4) × (t + 6)

To simplify this, we multiply the expressions:

V = (x² + 14x + 40)(t + 6)

Expanding this, we get:

V = x²t + 6x² + 14xt + 84x + 40t + 240

This is the simplified function for the volume of the aquarium in terms of x and t.

How many mL of 75% alcohol should be mixed with 10% of 1000 cc alcohol to prepare 30% of 500 mL alcohol solution? a. 346.16 mL b. 234.43 mL c. 153.84 mL d. 121.12 mL e.

Answers

Answer:

C. 153.84 mL

Step-by-step explanation:

Let's say x is the volume of 75% solution and y is the volume of 10% solution.

Sum of the volumes:

x + y = 500

Sum of the alcohol amounts:

0.75x + 0.10y = 0.30(500)

0.75x + 0.10y = 150

Solve the system of equations using either substitution or elimination.  I'll use substitution.

y = 500 - x

0.75x + 0.10 (500 - x) = 150

0.75x + 50 - 0.10x = 150

0.65x = 100

x = 153.84

You need 153.84 mL of 75% solution.

"153.84 mL" of 75% alcohol should be added. A further explanation is provided below.

Let,

75% alcohol used be "x".10% alcohol used be "y".

then,

→ [tex]x+y = 500[/tex]

         [tex]y = (500-x)[/tex]

now,

→ [tex]75(x)+10(500-x) = 500\times 30[/tex]

                [tex]65x+5000=15000[/tex]

                           [tex]65x=15000-5000[/tex]

                           [tex]65x=10000[/tex]

                               [tex]x = \frac{10000}{65}[/tex]

                                  [tex]= \frac{2000}{13}[/tex]

                                  [tex]= 153.84 \ mL[/tex]

Thus the above response i.e., "option c" is correct.

Learn more:

https://brainly.com/question/12925084

Find the geometric means in the following sequence.

Answers

Answer:

Choice A

Step-by-step explanation:

a=-6           (1st term)

ar=             (2nd term)

ar^2=         (3rd term)

ar^3           (4th term)

ar^4=         (5th term)

ar^5=-1458 (6th term)

a=-6 so -6r^5=-1458

divide both sides by -6 giving r^5=243 so to obtain r you do the fifth root of 243 which is 3.

The common ratio is 3.

so ar=6(-3)=-18 (2nd term)

Only choice A fits this.

Find the angle 0 between the vectors. u=(1, 1, 1, 0), v = (4, 4, 4, 4).

Answers

Answer:

30 degrees

Step-by-step explanation:

u dot v=1*4+1*4+1*4+0*4=4+4+4+0=12

|u|=sqrt(1^2+1^2+1^2+0^2)=sqrt(3)

|v|=sqrt(4^2+4^2+4^2+4^2)=sqrt(4*4^2)=2*4=8

cos(theta)=u dot v/(|u||v|)

cos(theta)=12/(sqrt(3)*8)

cos(theta)=3/(sqrt(3)*2)

cos(theta)=sqrt(3)/2

theta=30 degrees

In 1987, the General Social Survey asked, "Have you ever been active in a veteran's group? " For this question, 52 people said that they did out of 98 randomly selected people. The General Social survey randomly selects adults living in the US. Someone wanted to compute a 95% confidence interval for p. What is parameter?

Answers

Final answer:

The parameter in this question refers to the population proportion. To compute a 95% confidence interval for the proportion, you can use the formula: p ± z × √(p × (1-p) / n). The sample proportion is 0.53 and the sample size is 98. By plugging these values into the formula, you can calculate the confidence interval.

Explanation:

The parameter in this question refers to the population proportion. In statistics, a parameter is a measure that describes a characteristic of a population. In this case, the parameter is the proportion of all adults living in the US who have been active in a veteran's group. To compute a 95% confidence interval for this proportion, you can use the formula:  p ± z × √(p × (1-p) / n), where p is the sample proportion, z is the z-score corresponding to the desired confidence level, and n is the sample size.

Using the provided information, the sample proportion is 52/98 = 0.53. To find the z-score for a 95% confidence level, you can use a standard normal distribution table or a calculator with the function invNorm(0.975). The z-score for a 95% confidence level is approximately 1.96. The sample size is 98. Plugging these values into the formula, you can calculate the confidence interval for the population proportion.

Confidence interval = 0.53 ± 1.96 × √(0.53 × (1-0.53) / 98) = 0.53 ± 0.0907

The parameter p is the true proportion of adults in the US who have ever been active in a veteran's group, and the 95% confidence interval for this parameter is (0.4317, 0.6295).

The formula for a 95% confidence interval for a proportion is given by:

[tex]\[ \hat{p} \pm z \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \][/tex]

where z is the z-score corresponding to the desired confidence level. For a 95% confidence interval, the z-score is approximately 1.96.

Let's calculate the confidence interval:

 1. Calculate the sample proportion [tex]\( \hat{p} \)[/tex]:

[tex]\[ \hat{p} = \frac{52}{98} \approx 0.5306 \][/tex]

2. Calculate the standard error of the proportion:

[tex]\[ SE = \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} = \sqrt{\frac{0.5306(1 - 0.5306)}{98}} \approx \sqrt{\frac{0.2503}{98}} \approx \sqrt{0.002554} \approx 0.0505 \][/tex]

3. Find the z-score for a 95% confidence interval, which is approximately 1.96.

4. Calculate the margin of error:

[tex]\[ ME = z \times SE \approx 1.96 \times 0.0505 \approx 0.0989 \][/tex]

5. Calculate the confidence interval:

[tex]\[ \text{Lower bound} = \hat{p} - ME \approx 0.5306 - 0.0989 \approx 0.4317 \] \[ \text{Upper bound} = \hat{p} + ME \approx 0.5306 + 0.0989 \approx 0.6295 \][/tex]

Therefore, the 95% confidence interval for the proportion p of all adults living in the US who have ever been active in a veteran's group is approximately (0.4317, 0.6295).

Other Questions
Find the length of each side of the polygon for the given perimeter What are Canadas major boundaries? NEED THIS DONE ASAP PLEASE 50 POINTSRead the excerpt below and answer the question.A deserted, waiting, empty street, and the courtroom was packed with people. A steaming summer night was no different from a winter morning.In the excerpt above, Scout is evoking _____.a.the burning of Miss Maudie's houseb.the filling of the tree with cementc.the shooting of the rabid dogd.the death of a mockingbird A square sign has an area of approximately 158 feet .What is the approximate length of one side of the sign? A grid shows the positions of a subway stop and your house. The subway stop is located at (7, -7) and your house is located at (-3, 3). What is the distance, to the nearest unit, between your house and the subway stop? answersa-24b-19c-11d-14 Durante un bautizo hay ____________ llena de agua. Question 7 options: un velorio una vela una pila un atad Which is a correct first step in solving 5- 2x < 8x - 3? Which area pictured below represents the largest reservoir of water on Earth? A. Area 1 ( I think that its this answer, but I want to make sure its correct)B. Area 2C Area 3 D. Area 4 Eons are the broadest category of geologic time, and we live in the Phanerozoic eon. The Phanerozoic eon is further divided into eras. What divides the three eras of the Phanerozoic eon? A. The appearance of carbon on Earth and the appearance of atmospheric oxygen separate the three eras from each other. B. The development of insects and the development of flying insects separate the three eras from each other. C. The first life on Earth and the first multicellular life on Earth separate the three eras from each other. D. Mass extinction events separate the three eras from each other. Choose the Domain & Range of the Relation shown in the graph:Domain: -1, 0, 1, 2, 3Range: -3, -1, 0, 3Domain: -3, -1, 0, 3Range: -3, -1, 0, 3Domain: -3, -1, 0, 3Range: -1, 0, 1, 2, 3Domain: 3, 1, 0, 3Range: -1, 0, 1, 2, 3 find missing term w+9/6=12 A 1.7cm diameter pipe widens to 4.7cm. Liquid flows through the first segment at a speed of 4.7m/s. What is the speed of the liquid in the second segment? What role did division between European Protestant and Catholics play in Elizabeth reign as a queen of England Please answer the question from the picture above:) three of the 15 people in the Latin club are chosen at random to wear togas to school to promote the club. What is the probability that Joseph, Heldi, and Katy are chosen What brought an end to Islams Golden Age? Match the region to the statement that describes it.1.politicalkings and queens rule this type of region.2.physicalCuba is an island nation.3.economicTrade agreements are typical.4.culturalMost of the people here speak French.5.climateA long growing season improves crop growth. briefly explain what is net neutrality and why is it important today I really need help with this problem Find the missing factor. Write your answer in exponential form. 8^-1 = _ 8^-2