Please use in-memory join to answer this question. Given any two Users (they are friend) as input, output the list of the names and the date of birth (mm/dd/yyyy) of their mutual friends. Note: use the userdata.txt to get the extra user information. Output format: UserA id, UserB id, list of [names: date of birth (mm/dd/yyyy)] of their mutual Friends.

Answers

Answer 1

Answer:

See the attached java files for code.

Explanation:

See the attached files.


Related Questions

The voltage and current at the terminals of the circuit element in Fig. 1.5 are zero fort < 0. Fort 2 0 they areV =75 ~75e-1000t V,l = 50e -IOOOt mAa) Fund the maximum value of the power delivered to the circuit.b) Find the total energy delivered to the element.

Answers

Final answer:

The maximum power delivered to the circuit is found to be 3.75W, occurring at the start (t = 0). Calculating the total energy requires integrating the power over time, involving exponentials reducing over time to approach a finite total energy delivered.

Explanation:

The question involves calculating the maximum power and the total energy delivered to a circuit element, where the voltage V and current I are given as time-dependent expressions.

Maximum Power Delivered

Power is calculated using P = IV. Inserting the given expressions for V and I,

P(t) = V(t) × I(t) = (75 - 75e^{-1000t}) × 50e^{-1000t} mA.

To find the maximum power, we would differentiate P(t) with respect to t and set the derivative equal to zero. However, because the setup includes exponential decay functions, their maximum product occurs at t = 0 for these specific functions.

Pmax = 75V × 50mA = 3.75W.

Total Energy Delivered

The total energy delivered can be found by integrating the power over time:

Energy = ∫ P(t) dt.

Considering the specific forms of V and I provided, this becomes an integral of the product of two exponentials, leading to an expression that evaluates the total energy consumed by the circuit over time.

Given the nature of exponential decay in V and I, the energy delivered approaches a finite value as t approaches infinity.

Consider a computer system with a 32-bit logical address and 4-KB page size. The system

supports up to 512 MB of physical memory. How many entries are there in each of the following?

a. A conventional single-level page table?

b. An inverted page table?

Answers

Answer:

Conventional single-level page table  [tex]2^{20}[/tex]  pages

Inverted page table are [tex]2^{17}[/tex] frame

Explanation:

given data

logical address = 32-bit = [tex]2^{32}[/tex]  Bytes

page size = 4-KB =   [tex]2^{12}[/tex] Bytes

physical memory = 512 MB  = [tex]2^{29}[/tex]  bytes

solution

we get here number of pages that will be

number of pages = [tex]\frac{logical\ address}{page\ size}[/tex]   ..............1

put here value

number of pages =   [tex]\frac{2^{32}}{2^{12}}[/tex]

number of pages = [tex]2^{20}[/tex]  pages

and

now we get number of frames  that is

number of frames  = [tex]\frac{physical\ memory}{page\ size}}[/tex]   ............2

number of frames  = [tex]\frac{2^{29}}{2^{12}}[/tex]

number of frames  = [tex]2^{17}[/tex] frame

so

Conventional single-level page table  [tex]2^{20}[/tex]  pages

and

Inverted page table are [tex]2^{17}[/tex] frame

Block A weighs 10 lb and block B weighs 3 lb. If B is moving downward with a velocity (vB)1 = 3 ft>s at t = 0, determine the velocity of A when t = 1 s. Assume that the horizontal plane is smooth. Neglect the mass of the pulleys and cords

Answers

Answer:

note:

solution is attached in word form due to error in mathematical equation. furthermore i also attach Screenshot of solution in word due to different version of MS Office please find the attachment

A piston–cylinder assembly contains propane, initially at 27°C, 1 bar, and a volume of 0.2 m3. The propane undergoes a process to a final pressure of 4 bar, during which the pressure–volume relationship is pV1.1 = constant. For the propane, evaluate the work and heat transfer, each in kJ. Kinetic and potential energy effects can be ignored.

Answers

Final answer:

The question involves applying thermodynamics to calculate work and heat transfer for propane in a piston-cylinder assembly undergoing a process with a specific pressure-volume relationship. It requires integrating over the process path for work and applying the first law of thermodynamics for heat transfer, considering the neglect of kinetic and potential energy effects.

Explanation:

A piston–cylinder assembly containing propane undergoes a process where the pressure-volume relationship is given as pV1.1 = constant. To evaluate the work and heat transfer for the propane, we apply the principles of thermodynamics, specifically the first law of thermodynamics, and the properties of processes adhering to specific equations of state. The work done in such processes can be calculated using the integral of p dV, considering the pressure-volume relationship provided. The heat transfer can then be inferred by applying the first law of thermodynamics, which equates the change in internal energy to the net heat added to the system minus the work done by the system.

The initial and final states of the propane provide the necessary boundary conditions to evaluate these quantities. However, without specific values for the molar mass or specific heat capacities of propane at constant pressure and volume, exact numerical answers cannot be provided. Generally, for processes described by a polytropic equation (pVn = constant), the work done is W = (p2V2 - p1V1)/(1-n) for an ideal gas, where p1, V1 are the initial pressure and volume, and p2, V2 are the final conditions. Heat transfer, Q, requires specific thermal properties of propane and can be approached via Q = ΔU + W, with ΔU denoting the change in internal energy of the gas.

For a precise evaluation, one would typically reference thermodynamic tables for propane or apply real gas equations of state considering the polytropic process specifics. It is essential to note that kinetic and potential energy changes are negligible, focusing the analysis solely on the thermodynamic work and heat transfer.

If the wire has a diameter of 0.5 inin., determine how much it stretches when a distributed load of 140 lb/ftlb/ft acts on the beam. The material remains elastic. Express your answer to three significant figures and include appropriate units.

Answers

Answer:

δ_AB = 0.0333 in

Explanation:

Given:

- The complete question is as follows:

" The rigid beam is supported by a pin at C and an A−36

steel guy wire AB. If the wire has a diameter of 0.5 in.

determine how much it stretches when a distributed load of

w=140 lb / ft acts on the beam. The material remains elastic."

- Properties for A-36 steel guy wire:

       Young's Modulus E = 29,000 ksi

       Yield strength σ_y = 250 MPa

- The diameter of the wire d = 0.5 in

- The distributed load w = 140 lb/ft

Find:

Determine how much it stretches under distributed load

Solution:

- Compute the surface cross section area A of wire:

                            A = π*d^2 / 4

                            A = π*0.5^2 / 4

                            A = π / 16 in^2

- Apply equilibrium conditions on the rigid beam ( See Attachment ). Calculate the axial force in the steel guy wire F_AB

                            Sum of moments about point C = 0

                            -w*L*L/2 + F_AB*10*sin ( 30 ) = 0

                             F_AB = w*L*L/10*2*sin(30)

                             F_AB = 140*10*10/10*2*sin(30)

                             F_AB = 1400 lb

- The normal stress in wire σ_AB is given by:

                            σ_AB = F_AB / A

                            σ_AB = 1400*16 / 1000*π

                            σ_AB = 7.13014 ksi

- Assuming only elastic deformations the strain in wire ε_AB would be:

                            ε_AB = σ_AB / E

                            ε_AB = 7.13014 / (29*10^3)

                            ε_AB = 0.00024

- The change in length of the wire δ_AB can be determined from extension formula:

                            δ_AB = ε_AB*L_AB

                            δ_AB = 0.00024*120 / cos(30)

                            δ_AB = 0.0333 in

Consider the general form of the Reynolds transport theorem (RTT) given by dBsys dt = d dt ∫CV rhob dV + ∫CS rhobV› r·n › dA where V › r is the velocity of the fluid relative to the control surface. Let Bsys be the mass m of a closed system of fluid particles. We know that for a system, dm/dt = 0 since no mass can enter or leave the system by definition. Use the given equation to derive the equation of conservation of mass for a control volume.

Answers

Answer:

Explanation:

note:

solution is attached due to error in mathematical equation. please find the attachment

g For this project you are required to perform Matrix operations (Addition, Subtraction and Multiplication). For each of the operations mentioned above you have to make a function in addition to two other functions for ‘Inputting’ and ‘Displaying’ the Matrices in Row Order (rows are populated left to right, in sequence). In total there will be 5 functions: 3 for the operations and 2 functions for inputting and displaying the data.

Answers

Answer:

C++ code is explained below

Explanation:

#include<iostream>

using namespace std;

//Function Declarations

void add();

void sub();

void mul();

//Main Code Displays Menu And Take User Input

int main()

{

  int choice;

  cout << "\nMenu";

  cout << "\nChoice 1:addition";

  cout << "\nChoice 2:subtraction";

  cout << "\nChoice 3:multiplication";

  cout << "\nChoice 0:exit";

 

  cout << "\n\nEnter your choice: ";

 

  cin >> choice;

 

  cout << "\n";

 

  switch(choice)

  {

      case 1: add();

              break;

             

      case 2: sub();

              break;

             

      case 3: mul();

              break;

     

      case 0: cout << "Exited";

              exit(1);

     

      default: cout << "Invalid";      

  }

  main();  

}

//Addition Of Matrix

void add()

{

  int rows1,cols1,i,j,rows2,cols2;

 

  cout << "\nmatrix1 # of rows: ";

  cin >> rows1;

 

  cout << "\nmatrix1 # of columns: ";

  cin >> cols1;

 

   int m1[rows1][cols1];

 

  //Taking First Matrix

  for(i=0;i<rows1;i++)

      for(j=0;j<cols1;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m1[i][j];

          cout << "\n";

      }

  //Printing 1st Matrix

  for(i=0;i<rows1;i++)

  {

      for(j=0;j<cols1;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

     

  cout << "\nmatrix2 # of rows: ";

  cin >> rows2;

 

  cout << "\nmatrix2 # of columns: ";

  cin >> cols2;

 

  int m2[rows2][cols2];

  //Taking Second Matrix

  for(i=0;i<rows2;i++)

      for(j=0;j<cols2;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m2[i][j];

          cout << "\n";

      }

  //Displaying second Matrix

  cout << "\n";

  for(i=0;i<rows2;i++)

  {

      for(j=0;j<cols2;j++)

          cout << m2[i][j] << " ";

      cout << "\n";

  }

  //Displaying Sum of m1 & m2

  if(rows1 == rows2 && cols1 == cols2)

  {

      cout << "\n";

      for(i=0;i<rows1;i++)

      {

          for(j=0;j<cols1;j++)

              cout << m1[i][j]+m2[i][j] << " ";

          cout << "\n";  

      }

  }

  else

      cout << "operation is not supported";

     

  main();

 

}

void sub()

{

  int rows1,cols1,i,j,k,rows2,cols2;

  cout << "\nmatrix1 # of rows: ";

  cin >> rows1;

 

  cout << "\nmatrix1 # of columns: ";

  cin >> cols1;

 

   int m1[rows1][cols1];

 

  for(i=0;i<rows1;i++)

      for(j=0;j<cols1;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m1[i][j];

          cout << "\n";

      }

 

  for(i=0;i<rows1;i++)

  {

      for(j=0;j<cols1;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

     

  cout << "\nmatrix2 # of rows: ";

  cin >> rows2;

 

  cout << "\nmatrix2 # of columns: ";

  cin >> cols2;

 

  int m2[rows2][cols2];

 

  for(i=0;i<rows2;i++)

      for(j=0;j<cols2;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m2[i][j];

          cout << "\n";

      }

 

  for(i=0;i<rows2;i++)

  {

      for(j=0;j<cols2;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

  cout << "\n";

  //Displaying Subtraction of m1 & m2

  if(rows1 == rows2 && cols1 == cols2)

  {

      for(i=0;i<rows1;i++)

      {

          for(j=0;j<cols1;j++)

              cout << m1[i][j]-m2[i][j] << " ";

          cout << "\n";  

      }

  }

  else

      cout << "operation is not supported";

     

  main();

 

}

void mul()

{

  int rows1,cols1,i,j,k,rows2,cols2,mul[10][10];

  cout << "\nmatrix1 # of rows: ";

  cin >> rows1;

 

  cout << "\nmatrix1 # of columns: ";

  cin >> cols1;

 

   int m1[rows1][cols1];

 

  for(i=0;i<rows1;i++)

      for(j=0;j<cols1;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m1[i][j];

          cout << "\n";

      }

  cout << "\n";

  for(i=0;i<rows1;i++)

  {

      for(j=0;j<cols1;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

     

  cout << "\nmatrix2 # of rows: ";

  cin >> rows2;

 

  cout << "\nmatrix2 # of columns: ";

  cin >> cols2;

 

  int m2[rows2][cols2];

 

  for(i=0;i<rows2;i++)

      for(j=0;j<cols2;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m2[i][j];

          cout << "\n";

      }

  cout << "\n";

  //Displaying Matrix 2

  for(i=0;i<rows2;i++)

  {

      for(j=0;j<cols2;j++)

          cout << m2[i][j] << " ";

      cout << "\n";

  }

     

  if(cols1!=rows2)

      cout << "operation is not supported";

  else

  {

      //Initializing results as 0

      for(i = 0; i < rows1; ++i)

  for(j = 0; j < cols2; ++j)

  mul[i][j]=0;

// Multiplying matrix m1 and m2 and storing in array mul.

  for(i = 0; i < rows1; i++)

  for(j = 0; j < cols2; j++)

  for(k = 0; k < cols1; k++)

  mul[i][j] += m1[i][k] * m2[k][j];

// Displaying the result.

  cout << "\n";

  for(i = 0; i < rows1; ++i)

      for(j = 0; j < cols2; ++j)

      {

      cout << " " << mul[i][j];

      if(j == cols2-1)

      cout << endl;

      }

      }  

  main();

 }

Determine the average and rms values for the function, y(t)=25+10sino it over the time periods (a) 0 to 0.1 sec and (b) 0 to 1/3 sec. Discuss which case represents the long-term behavior of the signal (Hint, consider the period of the signal).

Answers

Answer:

Explanation:

AVERAGE: the average value is given as

[tex]\frac{1}{0.1} \int\limits^\frac{1}{10} _0 {25+10sint} \, dt = \frac{1}{0.1} [ 25t- 10cos\ t]_0^{0.1}[/tex]

=[tex]\frac{1}{0.1} ([2.5-10]-10)=-175[/tex]

RMS= [tex]\sqrt{\int\limits^\frac{1}{3} _0 {y(t)^2} \, dt }[/tex]

[tex]y(t)^2 = (25 + 10sin \ t)^2 = 625 +500sin \ t + 10000sin^2 \ t[/tex]

[tex]\frac{1}{\frac{1}{3} } \int\limits^\frac{1}{3} _0 {y(t)^2} \, dt =3[ 625t -500cos \ t + 10000(\frac{t}{2} - \frac{sin2t}{4} )]_0^{\frac{1}{3} }[/tex]

=[tex]3[[\frac{625}{3} - 500 + 10000(\frac{1}{6} - 0.002908)] + 500] = 2845.92\\[/tex]

therefore, RMS = [tex]\sqrt{2845.92} = 53.3[/tex]

Assume that a phase winding of the synchronous machine of Problem 4.11 consists of one 5-turn, full-pitch coil per pole pair, with the coils connected in series to form the phase winding. If the machine is operating at rated speed and under the operating conditions of Problem 4.11, calculate the rms generated voltage per phase.

Answers

Answer:

The solution and complete explanation for the above question and mentioned conditions is given below in the attached document.i hope my explanation will help you in understanding this particular question.

Explanation:

The radiator of a steam heating system has a volume of 20 L and is filled with superheated water vapor at 200 kPa and 200°C. At this moment both the inlet and the exit valves to the radiator are closed. After a while it is observed that the temperature of the steam drops to 80°C as a result of heat transfer to the room air, which is at 21°C. Assuming the surroundings to be at 0°C, determine (a) the amount of heat transfer to the room and (b) the maximum amount of heat that can be 462 EXERGY supplied to the room if this heat from the radiator is supplied to a heat engine that is driving a heat pump. Assume the heat engine operates between the radiator and the surroundings.

Answers

Answer:

a = 30.1 kj

b = 115 kj

Explanation:

To determine the mass we use the formula m = V/v1

v1 =1.08m3/kg, and V = 20L

m = 20/1000 × 1.08 = 0.0185kg

Next we determine the initial specific internal energy, u1.

Using softwares and appropriate values of T1 and p1, we get

u1 = 2650kj/kg.

After this we determine the final specific internal energy, u2 using the formula u2 = uf + x2 × ufg

Therefore we need to find x2 first.

x2 = u2 - uf/ug - uf

x2 = 1.08 - 0.001029/3.4053 -0.001029

x2 = 0.3180

But u2 = uf + x2× uf=334.97 + 0.3180×2146.6 = 1017.59 kj/kg

Now heat transfer Q= DU

Q = m x (u1 - u2)

Q = 0.0185(2650-1017.59

Q = 30.1 kj

Calculating the b part of the question we use the formula

W = m( u1-u2) - m. To. (s1 - s2)

Where s1 = 7.510kj/kgk

And s2 = 3.150 kj/kgk

We need to convert To and Ta to k values by adding 273 to 0 and 21 respectively.

Putting the values into the formula, we get W = 30.1 - 0.0185 × 273 (7.510-3.150)

W = 8.179kj

Finally maximum heat transfer

Qm = W/1 - to/ta

Qm = 8.179/1 - 273/294

Qm = 115kj

A load P is applied horizontally while the other end is fixed to a structure. where P = 185 N You have already examined the axial stresses inside the plates. In this problem, the bolted connections will be analyzed. Failure means that the pieces come apart because the bolts cannot hold the force. If two bolts are connecting the two plates, how much transverse force V must each bolt resist at each sheare joint?

Answers

Answer:

Explanation:

The bolt is under double shear because it connects 3 plates.

Now the shear force resisted by each shear joint(V):

V=P/(No. of shear area)=185/2=92.5N.

Use the writeln() method of the document object to display the user agent in a

tag in the webpage. Hint: The userAgent property of the window.navigator object contains the user agent.

Answers

Answer:

Note that writeln() add a new line after each statement

var txt = "<p>User-agent header: " + navigator.userAgent + "</p>";

$("#agent").writeln(txt);

Then Anywhere in the body tag of the html file

create a div tag and include an id="agent"

Two technicians are discussing hand tool use. Technician A says that a 6-point wrench is easier to use in tight places than a 12-point. Technician B says that a ratchet is used to loosen fasteners that are very tight. Who is correct?

Answers

Answer:

Technician B says that a ratchet is used to loosen fasteners that are very tight.

Explanation:

A ratchet is a common wrench device with a fastener component. A ratchet wrench is an essential tool that is used to fasten or loosen nuts and bolts.

Answer:

A ratchet wrench is usually used to loosen and tighten parts like steering linkages, tie rod end clamps and muffler clamps. Basically when nut is used on long thread a ratchet wrench is being used.

hence the technician B (option b) is correct.

Explanation:

A worker is asked to move 30 boxes from a desk onto a shelf within 3 minutes (assume there is enough space and no other lifting work within 8 hours). The shelf height is 55 inches, and the desk height is 30 inches. The initial horizontal distance from the box to the body is 7 inches. Assume that all the boxes are in the same size (8 inches edge, cube), each weigh 20 lb., and have well designed handles. Is there any lifting risk according NIOSH lifting guide

Answers

Answer:

LI = Lifting Index = 0.71

No lifting risk is involved

Explanation:

NIOSH Lifting Index

LI = Load Weight / Recommended Weight Limit

LI = L / RWL                                                     ............. Eq (A)    

NIOSH Recommended Weight Limit equation is following,

RWL = LC * HM * VM * DM * AM * FM * CM   ........... Eq (B)

Where,

 LC = Load constant

 HM = Horizontal multiplier

 VM = Vertical multiplier

 DM = Distance multiplier

 AM = Asymmetric multiplier

 FM = Frequency multiplier

 CM = Coupling multiplier

Given data

V = 30 + (8/2) = 34 in

H = 7 in

D = 55 - 30 = 25 in

A = 0

F = 10 boxes/min

C = 1 = Good coupling

According to NIOSH lifting guide

 LC = 51 lb

 HM = 10/H

 VM = 1 - {0.0075*(v-30)}

 DM = 0.82 + (1.8/D)

 AM = 1 - (0.0032*A)

 FM = 0.45         (Table 5 from NIOSH lifting guide)

 CM = 1               (Table 7 from NIOSH lifting guide)

 

Solution:

RWL = 51 * (10/7) * [1-{0.0075(34-30)}] * (0.82+ 1.8/25) * (1-0.0032*0) * 0.45 * 1

RWL = 51 * (10/7) * 0.97 * 0.892 * 1 * 0.45 * 1

RWL = 28.37 lb

Using equation A

LI = L / RWL

LI = 20 / 28.37

LI = 0.71

According to NIOSH lifting guide LI <= 1

So No lifting risk is involved

 

Determine if each of the following statements is true or false:

1. Larger atoms are better nucleophiles due to polarizability.
2. The identity of the nucleophile affects the rate of an SN1 reaction.
3. SN2 reactions proceed via frontside attack.
4. Bimolecular reactions tend to be stereoselective.
5. SN2 reactions invert all stereocenters in a haloalkane.
6. Cl-, OH-, and H- are good all leaving groups.
7. Good bases tend to be good nucleophiles
8. Branching adjacent to a reacting carbon slows SN2 reactions due to steric hindrance.
9. SN1 reactions are slowed by hyperconjugation of the carbocation intermediate.
10. The rate determining step for SN1 reactions is the same as the rate determining step for E1 reactions.

Answers

Answer:

Explanation:

1) true ( reason is due to polarizability given in statement)

2)false ( nucleophile does not involve in rate determining step)

3)false ( it is an inverse attack , attacks from backside)

4) true

5) false ( it inverts stereo centres which are being attacked)

6) false (not H-)

7) true ( strong bases are good nucleophiles)

8) true ( because of steric hindrance)

9)false ( ther are stabilized by hyper conjugation)

10) false

Answer:

1) True

2) False

3) False

4)

5)

6) True

7)True

8) True

9) False

10) True

Explanation:

1) Generally, polarization increases down the column of the periodic table.

A road has a crest curve, where the PVI station is a 71 35. The road transitions from a 2.1% grade to a -3.4% grade. The highest point of the curve is at station 74 10. What are the PVC and PVT stations

Answers

Answer:

Stat PVC = Stat(82+98.5)

Stat PVT = Stat(59+71.5)

Explanation

PVI = 71 + 35

Let G1 = Grade 1; G2 = Grade 2

G1 = +2.1% ; G2 = -3.4%

Highest point of curve at station = 74 + 10

General equation of a curve:

[tex]y = ax^{2} +bx+c\\dy/dx=2ax+b\\[/tex]

At highest point of the curve [tex]dy/dx=o[/tex]

[tex]2ax+b=0\\x=-b/2a\\x=G1L/(G2-G1)\\x=L/2 +(stat 74+10)-(stat 71+35)\\x=L/2 + 275[/tex]

[tex]-G1L/(G2-G1) = (L/2 + 275)/100\\L = -2327 ft\\Station PVC = Stat(71+35)+(-2327/2)\\\\Stat PVC = 7135-1163.5\\Stat PVC = Stat(82+98.5)\\[/tex]

Station PVT

[tex]Station PVT = Stat PVI + (L/2)\\Station PVT = Stat(71+35)+(-2327/2)\\Station PVT = 7135-1163.5\\Stat PVT = Stat(59+71.5)[/tex]

An air conditioner using refrigerant-134a as the working fluid and operating on the ideal vapor-compression refrigeration cycle is to maintain a space at 22°C while operating its condenser at 1000 kPa. Determine the COP of the system when a temperature difference of 2°C is allowed for the transfer of heat in the evaporator.

Answers

Answer:

note:

solution is attached due to error in mathematical equation. please find the attachment

Answer:

COP = 13.31

Explanation:

We have an allowed temperature difference of 2°C, thus, let's make use of temperature of 20°C in the evaporator.

Now, looking at table A-11 i have attached and looking at temperature of 20°C, we will see that the enthalpy(h1) = 261.59 Kj/Kg

While the enthropy(s1) = 0.92234 Kj/KgK

Now, the enthalpy at the second state will be gotten from the given condenser pressure under the condition s2 = s1.

Thus, looking at table A-13 which i have attached, direct 20°C is not there, so when we interpolate between the enthalpy values at 15.71°C and 21.55°C, we get an enthalpy of  273.18 Kj/Kg.

Now, the enthalpy at the third and fourth states is again obtained from interpolation between values at temperatures of 18.73 and 21.55 of the saturated liquid value in table A-12 i have attached.

Thus, h3=h4 = 107.34 Kj/kg

Formula for COP = QL/w = (h1- h4) / (h2 - h1)

COP = (261.59 - 107.34)/( 273.18 - 261.59) = 13.31

Calculate the magnitude of the force FB in the back muscles that is needed to support the upper body plus the box and compare this with his weight. The mass of the upper body is 55.0 kg and the mass of the box is 30.0 kg.

Answers

Answer:

807.5N

Explanation:

The combined mass (m) on the back muscle is 55kg + 30kg = 85kg

Acceleration due to gravity (g) = 9.8m/s²

Therefore the force FB = ma = 85*9.8

FB= 807.5N

Your application must generate: - an array of thirteen random integers from 1-99, - then prompt the user to select a sorting option (Bubble Sort, Insertion Sort, Shell Sort, Merge Sort, or Quick Sort)

Answers

Answer:

The code is given which can be pasted in the Javascript file

Explanation:

The code is given as below

package Sorters;

public class javasort

{

private int[] arr=new int[13];

public void bubbleSort(int[] a){

int c,d,temp;

for (c = 0; c < ( 13 - 1 ); c++) {

for (d = 0; d < 13- c - 1; d++) {

if (a[d] > a[d+1]) /* For descending order use < */

{

temp = a[d];

a[d] = a[d+1];

a[d+1] = temp;

}

}

 

System.out.print("\n[");

for (int i = 0; i < 13; i++){

  System.out.print(a[i]+" ");

}

System.out.print("]");

}

System.out.println("\nSorted list of numbers");

System.out.print("[");

for (int i = 0; i < 13; i++){

  System.out.print(a[i]+" ");

}

System.out.print("]");

}

public void insertionSort(int[] a){

int temp;

for (int i = 1; i < 13; i++) {

for(int j = i ; j > 0 ; j--){

if(a[j] < a[j-1]){

temp = a[j];

a[j] = a[j-1];

a[j-1] = temp;

}

}

System.out.print("\n[");

for (int c = 0; c < 13; c++){

  System.out.print(a[c]+" ");

}

System.out.print("]");

}

System.out.println("\nSorted list of numbers");

System.out.print("[");

for (int i = 0; i < 13; i++){

  System.out.print(a[i]+" ");

}

System.out.print("]");

}

public void shellSort(int[] a){

int increment = a.length / 2;

while (increment > 0)

{

for (int i = increment; i < a.length; i++)

{

int j = i;

int temp = a[i];

while (j >= increment && a[j - increment] > temp)

{

a[j] = a[j - increment];

j = j - increment;

}

a[j] = temp;

}

if (increment == 2)

increment = 1;

else

increment *= (5.0 / 11);

System.out.print("\n[");

for (int c = 0; c < 13; c++){

  System.out.print(a[c]+" ");

}

System.out.print("]");

}

System.out.println("\nSorted list of numbers");

System.out.print("[");

for (int i = 0; i < 13; i++){

  System.out.print(a[i]+" ");

}

System.out.print("]");

}

public void MergeSort(int[] a, int low, int high){

int N = high - low;  

if (N <= 1)

return;

int mid = low + N/2;

// recursively sort

MergeSort(a, low, mid);

MergeSort(a, mid, high);

// merge two sorted subarrays

int[] temp = new int[N];

int i = low, j = mid;

for (int k = 0; k < N; k++)

{

if (i == mid)

temp[k] = a[j++];

else if (j == high)

temp[k] = a[i++];

else if (a[j]<a[i])

temp[k] = a[j++];

else

temp[k] = a[i++];

}

for (int k = 0; k < N; k++)

a[low + k] = temp[k];

System.out.print("\n[");

for (int c = 0; c < 13; c++){

  System.out.print(a[c]+" ");

}

System.out.print("]");

printM(a);

}

public void quickSort(int[] a,int low,int high){

  System.out.print("\n[");

  for (int c = 0; c < 13; c++){

      System.out.print(a[c]+" ");

  }

  System.out.print("]");

int i =low, j = high;

int temp;

int pivot = a[(low + high) / 2];

/** partition **/

while (i <= j)

{

while (a[i] < pivot)

i++;

while (a[j] > pivot)

j--;

if (i <= j)

{

/** swap **/

temp = a[i];

a[i] = a[j];

a[j] = temp;

i++;

j--;

}

}

/** recursively sort lower half **/

if (low < j)

quickSort(a, low, j);

/** recursively sort upper half **/

if (i < high)

quickSort(a, i, high);

printM(a);

}

public void printM(int[] a){

arr=a;

}

public void fPrint(){

  System.out.println("\nSorted list:");

  System.out.print("\n[");

  for (int c = 0; c < 13; c++){

      System.out.print(arr[c]+" ");

  }

  System.out.print("]");

}

}

package mani;

import java.util.Random;

import java.util.Scanner;

public class javasorttest

{

 

public static void main(String[] args){

int[] a=new int[13];

Random r=new Random();

for(int i=0;i<13;i++){

a[i]=r.nextInt(99)+1;

}

System.out.print("[");

for (int c = 0; c < 13; c++){

  System.out.print(a[c]+" ");

}

System.out.print("]");

javasort j=new javasort();

System.out.println("\nSelect the sorting algo.\n1.bubbleSort\n2.insertionSort\n3.shellSort\n4.MergeSort\n5.QuickSort.");

Scanner s=new Scanner(System.in);

int opt=s.nextInt();

switch(opt){

case 1:

j.bubbleSort(a);

break;

case 2:

j.insertionSort(a);

 

break;

case 3:

j.shellSort(a);

break;

case 4:

j.MergeSort(a, 0, 13);

j.fPrint();

break;

case 5:

j.quickSort(a ,0, 12);

j.fPrint();

break;

}

}

}

) You are using a load cell to measure the applied load to a test in the Civil Engineering Structures Lab. What should you do if the measured load does not return to zero? How should you troubleshoot this to determine if this is a load cell or a mechanical problem?

Answers

Answer:

Insulation Resistance Tests

Explanation:

An insulation resistance test is carried out when there are unstable readings and random changes in the zero balance point of the load cell. It is done by measuring the resistance between the load cell body and all its connected wires, as follows:

First, disconnect the load cell from the summing box and indicator panel.

Connect all the input, output and sense (if equipped) wires together.

Measure the insulator resistance between the connected wires and the load cell body with a mega-ohmmeter.

Measure the insulation resistance between the connected wires and the cable shield.

Measure the insulation resistance between the load cell body and the cable shield.

The insulation resistance should match the value in the product’s load cell datasheet. A lower value shows an electrical leakage caused by moisture; this causes short circuits, giving unstable load cell outputs.

The velocity field of a flow is given by where x and y are in feet. Determine the fluid speed at points along the x axis; along the y axis. What is the angle between the velocity vector and the x axis at points 15, 52, and 10, 52

Answers

There is a part of the question missing and it says;

The velocity field of a flow is given by V = [20y/(x² + y²)^(1/2)]î − [20x/(x² + y²)^(1/2)] ĵ ft/s, where x and y are in feet.

Answer:

A) At (1,5),angle is -11.31°

B) At (5,2),angle is -68.2°

C) At (1,0), angle is -90°

Explanation:

From the question ;

V = [20y/(x² + y²)^(1/2)]î − [20x/(x² + y²)^(1/2)] ĵ ft/s

Let us assume that u and v are the flow velocities in x and y directions respectively.

Thus we have the expression;

u = [20y/(x² + y²)^(1/2)]

and v = - [20x/(x² + y²)^(1/2)]

Thus, V = √(u² + v²)

V = √[20y/(x² + y²)^(1/2)]² + [-20x/(x² + y²)^(1/2)]²

V = √[400y²/(x²+y²)] +[400x²/(x²+y²)

V = √(400x² + 400y²)/(x²+y²)

Now for the angle;

tan θ = opposite/adjacent

And thus, in this question ;

tan θ = v/u

tan θ = [-20x/(x² + y²)^(1/2)]/ [20y/(x² + y²)^(1/2)]

Simplifying this, we have;

tan θ = - 20x/20y = - x/y

so the angle is ;

θ = tan^(-1)(-x/y)

So let's now find the angle at the various coordinates.

At, 1,5

θ = tan^(-1)(-1/5) = tan^(-1)(-0.2)

θ = -11.31°

At, 5,2;

θ = tan^(-1)(-5/2) = tan^(-1)(-2.5)

θ = -68.2°

At, 1,0;

θ = tan^(-1)(-1/0) = tan^(-1)(-∞)

θ = -90°

At,

A vertical piston-cylinder device contains water and is being heated on top of a range. During the process, 10 kJ of heat is transferred to the water, and heat losses from the side walls amount to 80 J. The piston rises as a result of evaporation, and 2 J of work is done by the vapor. Determine the change in the energy of the water for this process.

Answers

Answer: 9.9KJ

Explanation: Q = U + W + losses

Q is heat transfered to the water

U is the change in energy of the system

W is work done by the system = 2J

Losses = 80J

Heat into system is 10kJ = 10000KJ

Therefore

U = Q - W - losses

U = 10000 - 2 - 80 = 9990J

= 9.9kJ

Pin, Password, Passphrases, Tokens, smart cards, and biometric devices are all items that can be
used for Authentication. When one of these item listed above in conjunction with a second factor to validate authentication, it provides robust authentication of the individual by practicing which of the following?
A. Multi-party authentication
B. Two-factor authentication
C. Mandatory authentication
D. Discretionary authentication

Answers

Answer:

B. Two-factor authentication

Explanation:

As far as identity as been established, authentication must be carried out. There are various technologies and ways of implementing authentication, although most method falls under the same category.

The three major types of authentication.

a. Authentication through knowledge, what someone knows.

b. Authentication through possessions, what someone has.

c. Authentication by characteristic features, who a person is.

Logical controls that are in relations to these types of authentication are known as factors.

Two factor authentication has to do with the combination of 2 out of the 3 factors of authentication.

The general term used when more than one factor is adopted is Multi-party authentication

Write a program with two inputs, current price and last month's price (both integers). Then, output a summary listing the price, the change since last month, and the estimated monthly mortgage computed as (currentPrice * 0.045) / 12. in coral

Answers

Complete Question

Sites like Zillow get input about house prices from a database and provide nice summaries for readers. Write a program with two inputs, current price and last month's price (both integers). Then, output a summary listing the price, the change since last month, and the estimated monthly mortgage computed as (currentPrice * 0.045) / 12. Ex: If the input is 200000 210000, the output is: This house is $200000. The change is $-10000 since last month. The estimated monthly mortgage is $750.

Use Coral Programming Language

Answer:

// Program is written in Coral Programming Language

// Comments are used for explanatory purpose

// Program starts here

// Variable declaration

int currentprice

int prevprice

int change

float mortgage

Put "Enter current price to output" to output

currentprice = Get next input

Put "Enter last month price to output" to output

prevprice = Get next input

// Calculate Change since last month

change = currentprice - prevprice

// Calculate Monthly Mortgage

mortgage = currentprice * 0.045 / 12

// Print Results

Put "This house is $" to output

Put currentprice to output

Put "\n" to output

Put "This change is $" to output

Put change to output

Put "\n" to output

Put "This house is $" to output

Put currentprice to output

Put "since last month\n" to output

Put "This estimated monthly mortgage is $" to output

Put mortgage to output

// End of Program

- Draw the internal representation for the following lisp list(s). • (cons '( (Blue) (Yellow () Red) () Orange) '() ) • (cons '(Red (Yellow Blue)) '(() Yellow Orange) ) • (cons '(()(Green Blue)) '(Red (Yellow ()) Blue) )

Answers

Answer:

Explanation: see attachment

9.43 An ideal air-standard Brayton cycle operates at steady state with compressor inlet conditions of 300 K and 100 kPa and a fixed turbine inlet temperature of 1700 K. For the cycle, (a) determine the net work developed per unit mass flowing, in kJ/kg, and the thermal efficiency for a compressor pressure ratio of 8. (b) plot the net work developed per unit mass flowing, in kJ/kg, and the thermal efficiency, each versus compressor pressure ratio ranging from 2 to 50.

Answers

Answer:

The net work output from the cycle = 520.67 [tex]\frac{KJ}{kg}[/tex]

The efficiency of Brayton cycle = 0.448

Explanation:

Compressor inlet temperature [tex]T_{1}[/tex] = 300 K

Turbine inlet temperature [tex]T_{3}[/tex] = 1700 K

Pressure ratio [tex]r_{p}[/tex] = 8

For the compressor the temperature - pressure relation is given by the formula,

⇒ [tex]\frac{T_{2} }{T_{1} }[/tex] = [tex]r_{p}^{\frac{\gamma - 1}{\gamma} }[/tex]

⇒ [tex]\frac{T_{2} }{300} = 8^{\frac{1.4 - 1}{1.4} }[/tex]

[tex]T_{2}[/tex] = 543.42 K

This is the temperature at compressor outlet.

Same relation for turbine we can write this as,

⇒ [tex]\frac{T_{3} }{T_{4} }[/tex] = [tex]r_{p}^{\frac{\gamma - 1}{\gamma} }[/tex]

⇒[tex]\frac{1700 }{T_{4} }[/tex] = [tex]8^{0.2857}[/tex]

[tex]T_{4}[/tex] = 938.5 K

This is the temperature at turbine outlet.

Now the work output from the turbine [tex]W_{T}[/tex] = [tex]m C_{p} (T_{3} - T_{4} )[/tex]

Put all the values in above formula we get,

[tex]W_{T}[/tex] = 1 × 1.005 × ( 1700 - 938.5 )

    [tex]W_{T} = 765.3 \frac{KJ}{kg}[/tex]

This is the work output from the turbine.

Now the work input to the compressor is [tex]W_{C}[/tex] = [tex]m C_{p} (T_{2} - T_{1} )[/tex]

Put all the values in above formula we get,

[tex]W_{C}[/tex] = 1 × 1.005 × ( 543.42 - 300 )

[tex]W_{C}[/tex] = 244.63 [tex]\frac{KJ}{kg}[/tex]

This is the work input to the compressor.

Net work output from the cycle [tex]W_{net} = W_{T} - W_{C}[/tex]

[tex]W_{net}[/tex] = 765.3 - 244.63

   [tex]W_{net} = 520.67\frac{KJ}{kg}[/tex]

This is the net work output from the cycle.

The thermal efficiency is given by

[tex]E_{cycle} =1 - \frac{1}{r_{p}^{\frac{\gamma - 1}{\gamma} } }[/tex]

[tex]E_{cycle} =1 - \frac{1}{8^{\frac{1.4 - 1}{1.4} } }[/tex]

[tex]E_{cycle} = 0.448[/tex]

This is the efficiency of Brayton cycle.

(b). the graph between plot the net work developed per unit mass flowing and the thermal efficiency, each versus compressor pressure ratio ranging from 2 to 50 is shown in the image below.

A one-dimensional plane wall of thickness 2L=100mm experiences uniform thermal energy generation of q dot=1000 W/m^3 and is convectively cooled at x=+-50mm by an ambient fluid characterized by T infinity=20degreesC. If the steady-state temperature distribution within the wall is T(x)=a(L^2-x^2)+b where a=10 degrees C/m^2 and b=30 degrees C, what is the thermal conductivity of the wall? What is the value of the convection heat transfer coefficient, h?

Answers

Answer:

note:

solution is attached in word form due to error in mathematical equation. furthermore i also attach Screenshot of solution in word due to different version of MS Office please find the attachment

Answer:

A) Thermal conductivity of wall = 50 W/m.c

B) value of the convection heat transfer coefficient, h = 5 W/m².C

Explanation:

I've attached all explanations

A sewage lagoon that has a surface area of 100,000 m2 (10 ha) and a depth of 1 m is receiving 8,640 m3/d of sewage containing 100 mg/L of biodegradable contaminant. At steady state, the effluent from the lagoon must not exceed 20 mg/L of biodegradable contaminant. Assuming the lagoon is well mixed and that there are no losses or gains of water in the lagoon other than the sewage input, what biodegradation reaction rate coefficient (d-1) must be achieved?

Answers

Final answer:

To achieve an effluent concentration of 20 mg/L in a sewage lagoon receiving sewage with 100 mg/L of a contaminant, a precise biodegradation reaction rate coefficient, determined by the mass balance equation under steady-state conditions, must be achieved.

Explanation:

Calculating the Biodegradation Reaction Rate Coefficient

The question involves determining the biodegradation reaction rate coefficient necessary to reduce the concentration of a contaminant in a sewage lagoon, illustrating principles of environmental engineering. Given a lagoon with a surface area of 100,000 m2 and a depth of 1 m, receiving 8,640 m3/d of sewage that contains 100 mg/L of biodegradable contaminant, the goal is to lower the effluent concentration to no more than 20 mg/L.

To find the required biodegradation reaction rate coefficient (d-1), we must apply the mass balance concept in a steady-state condition, assuming the lagoon is well mixed. The mass balance equation for a contaminant undergoing a first-order degradation reaction can be expressed as: Input = Output + Decay. By substituting the given values and solving for the decay rate, we can find the coefficient that ensures the specified effluent concentration.

The calculation involves deriving relationships between the influent and effluent concentrations, the volume of the lagoon, and the decay process characterized by the reaction rate coefficient. For the lagoon described, achieving an effluent concentration of 20 mg/L from an influent concentration of 100 mg/L through biodegradation requires precise control of the treatment process and understanding of the kinetics of contaminant degradation.

A freshwater jet boat takes in water through side vents and ejects it through a nozzle of diameter D = 75 mm; the jet speed is Vj. The drag on the boat is given by Fdrag =kV2, where V is the boat speed. Find an expression for the steady speed, V, in terms of water density rho, flow rate through the system of Q, constant k, and jet speed Vj. A jet speed Vj = 15 m=s produces a boat speed of V = 10 m=s. (a) Under these conditions, what is the new flow rate Q? (b) Find the value of the constant k. (c) What speed V will be produced if the jet speed is increased to Vj = 25 m=s? (d) What will be the new flow rate?

Answers

Final answer:

To find an expression for the jet boat's steady speed, equate the water jet force (ρQVj) with the drag force (kV^2). Solve for V to get the equation for speed in terms of ρ, Q, k, and Vj. Then use known values for Vj and V to find Q and k and repeat the process for a different Vj to get new V and Q values.

Explanation:

To find an expression for the steady speed V of a freshwater jet boat in terms of the water density ρ, flow rate Q, constant k, and jet speed Vj, we can apply Newton's second law, assuming that the force provided by the water jet equals the drag force on the boat when at steady speed. The water jet force can be expressed as the rate of change of momentum of the water, which is ρQVj (since Q is the mass flow rate ρQ is the momentum flow rate), and the drag force is given as kV^2. Equating these two forces gives us:

ρQVj = kV^2

Solving for V will give us the steady speed expression we are looking for:

V = √(ρQVj / k)

To calculate the new flow rate Q given Vj = 15 m/s and V = 10 m/s, we plug these values into the expression obtained from above:

Q = kV^2 / (ρVj)

With given values, we would have:

Q = k * 10^2 / (ρ * 15)

The constant k can be determined using the known conditions and solving for k.

k = ρQVj / V^2

For (c) and (d), the same equations can be applied with the jet speed Vj changed to 25 m/s to find the new boat speed and flow rate.

The tangent function is defined as tan(theta) = sin(theta)/cos(theta). This expression can be evaluated to solve for the tangent as long as the magnitude of cos(theta) is no too near to 0. Assume that theta is given in degrees, and write the MATLAB statements to evaluate tan(theta) as long as the magnitude of cos(theta) is greater than or equal to 10e-2. If the magnitude of cos(theta) is less than 10e-2, write out an error message instead.

Answers

Answer:

The code is as attached here.

Explanation:

The code is as given below

theta = input(' Enter the value of theta?');

y = sin(theta*pi()/180);

z = cos(theta*pi()/180);

if z < 0.01

fprintf('The value of theta is very low')

else

t=round(y/z,2);

disp(['The value of tangent theta is ',num2str(t)]);

end

In MATLAB, evaluate tangent of theta if the magnitude of cosine is

[tex]> = 10[/tex]⁻²; otherwise, display an error message.

Here are the MATLAB statements to evaluate [tex]\( \tan(\theta) \)[/tex] as long as the magnitude of [tex]\( \cos(\theta) \)[/tex] is greater than or equal to [tex]\( 10^{-2} \)[/tex], and display an error message if the magnitude of [tex]\( \cos(\theta) \)[/tex] is less than [tex]\( 10^{-2} \)[/tex]:

```matlab

% Define theta in degrees

theta_deg = input('Enter the value of theta in degrees: ');

% Convert theta to radians

theta_rad = deg2rad(theta_deg);

% Calculate cosine of theta

cos_theta = cos(theta_rad);

% Check if the magnitude of cos(theta) is greater than or equal to 10^-2

if abs(cos_theta) >= 1e-2

   % Evaluate tangent of theta

   tan_theta = sin(theta_rad) / cos_theta;

   disp(['tan(theta) = ', num2str(tan_theta)]);

else

   % Display error message

   disp('Error: The magnitude of cos(theta) is too small. Cannot evaluate tan(theta).');

end

```

This script prompts the user to enter the value of [tex]\( \theta \)[/tex] in degrees. It then converts [tex]\( \theta \)[/tex] to radians and calculates [tex]\( \cos(\theta) \)[/tex]. If the magnitude of [tex]\( \cos(\theta) \)[/tex] is greater than or equal to [tex]\( 10^{-2} \)[/tex], it evaluates [tex]\( \tan(\theta) \)[/tex] using the given formula and displays the result. Otherwise, it displays an error message indicating that the magnitude of [tex]\( \cos(\theta) \)[/tex] is too small to evaluate [tex]\( \tan(\theta) \).[/tex]

Other Questions
The price of a bike went down by $150. The new price is $475. Which expression shows the price of the bike before the sale? The managerial accountant at XYZ Company told her friend that the company expects to announce a major recall in a few weeks. The friend promptly sells all her stock in XYZ. The accountant violated which IMA Statement of Ethical Professional Practice standards? Matthew is reading an empirical journal article and wants to know whether the authors used the Big Five Inventory (BFI-44) or the NEO-PI to measure extraversion. In which section would he find this information What does the word ethics most closely mean as it is used in paragraph 6?Aan understanding between right and wrongBability to commit violent actsCdishonestyDa sense of cruelty or hatred You are camping with Joe and Karl. Since all three of you like your privacy, you dont pitch your tents close together. Joes tent is 21.0 m from yours, in the direction 23.0 south of east. Karls tent is 32.0 m from yours, in the direction 37.0 north of east. What is the distance between Karls tent and Joes tent? In ABC, if AB = 14 and BC = 9, AC may be equal to Which has the capability to produce the most work in a closed system; 1 kg of steam at 800 kPa and 180C or 1 kg of R134a at 800 kPa and 180C? Take T0 = 25C and P0 = 100 kPa. Matthew is writing a report about life during the Great Depression. He is collecting information about Americans lives during the Great Depression from many different sources.One will be an interview with his great-grandmother, who was a child during the Depression.Which question would Matthew's great-grandmother most likely be helpful in answering?A)What percentage of Americans was out of work during the Depression?B)How many points did the stock market fall during the Great Depression?C)What types of things did most people have to go without during the Depression?D)What laws were instrumental in setting up the Great Depression? The Jackson Company incorrectly omitted $100,000 of merchandise from its 20X1 ending inventory. In addition, a merchandise purchase of $40,000 was incorrectly recorded as a $4,000 debit to the purchases account. As a result of these errors, 20X1 before-tax income is:___________.1. Overstated by $136,0002. Understated by $136,0003. Overstated by $640004. Undersated by $64000 3 less than the quotient of a p and 7 A.P/7 - 3B.7P-3C.3- 7PD.3- P/7plz help! if correct you will get brainly What is the author's purpose in this text?A to prove that genocide continues to be a seriousproblem today, one in need of people's attentionB to inform the readers about the accomplishments of Raphael Lemkin and direct them to where they can learn moreC to criticize the United Nations for not acknowledging the term "genocide" or making ita punishable crime soonerD to show how things could have been different if the world had listened to Raphael Lemkin sooner Given b(x) = [X+41, what is b(-10)? 10-6614 A beam of protons is accelerated through a potential difference of 0.750 kVkV and then enters a uniform magnetic field traveling perpendicular to the field. You may want to review (Pages 641 - 643) . For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of electron motion in a microwave oven. Part A What magnitude of field is needed to bend these protons in a circular arc of diameter 1.80 mm ? Express your answer in tesla to three significant figures. BpBp = nothing TT SubmitRequest Answer Part B What magnetic field would be needed to produce a path with the same diameter if the particles were electrons having the same speed as the protons? Express your answer in tesla to three significant figures. BeBe = nothing TT SubmitRequest Answer what is the function of the small intestine? Bowser bought mushroomsat the farmer's market. Hepaid $4.32 for 6 pounds ofmushrooms. At that rate,how much should he pay for5 pounds of mushrooms? Why did so many immigrants sign up and join the armies?A. Fighting would give them instant respect and equality.B. Army life paid much better than civilian life could.C. They knew they would not be allowed to enter the country otherwise.D. It gave them a job with a steady source of income. 1. Absolute ages are based on evidence froma. key beds.b. stratigraphyc. index fossils.d. radiometric dating. 100 word essay on life in a city On April 1, Moloney Meat Distributors sold merchandise on account to Fronkes Franks for $1,600 on Invoice 1001, terms 3/10, n/30. Payment was received in full from Fronkes Franks, less discount, on April 10. Required: Record the transactions on April 1 and April 10. Chocolate Chip Cookie Recipe: 1 cup of flour 100 chocolate chips 1 cup sugar 1/2 cup milk Yields 10 cookies You and your sister want to bake chocolate chip cookies. You go to the store and buy 5 cups of flour, three bags of chips, each containing 100 chocolate chips, 6 cups of sugar, and a half gallon of milk. You want to make as many cookies as possible. What is your limiting reactant, the ingredient that would run out first?