Please Help Me!!!
What are the products of the complete combustion of 1-propanol, C3H7OH?

carbon and oxygen
carbon monoxide and water
carbon dioxide and water
carbon and hydrogen

Answers

Answer 1

Answer:

The products are carbon dioxide and water

Explanation:

Step 1: Data given

Combustion = a reaction in which a substance reacts with oxygen gas, releasing energy in the form of light and heat. Combustion reactions must involve  O2  as one reactant.

Step 2: The complete combustion of C3H7OH:

For the combustion of 1-propanol, we need O2.

The products of this combustion are CO2 and H2O.

C3H7OH + O2→ CO2 + H2O

On the left side we have 3x C (in c3H7OH), on the right side we have 1x C (in CO2). To balance the amount of C, we have to multiply CO2 on the right side by 3

C3H7OH + O2→ 3CO2 + H2O

On the left side we have 8x H (in C3H7OH) and 2x on the right side (in H2O). To balance the amount of H, we have to multiply H2O, on the right side by 4.

C3H7OH + O2→ 3CO2 + 4H2O

On the left side we have 3x O (1x in C3H7OH and 2x in O2), on the right side we have 10x O (6x in CO2 and 4x in H2O).

To balance the amount of O on both sides, we have to multiply C3H7OH by 2, multiply O2 by 9. Then we have to multiply 3CO2 by 2 and 4H2O by 2. Now the equation is balanced.

2C3H7OH + 9O2→ 6CO2 + 8H2O

For 2 moles propanol, we need 9 moles of O2 to produce 6 moles of CO2 and 8 moles Of H2O

The products are carbon dioxide and water

Answer 2

Answer:

Carbon dioxide and water

Explanation:


Related Questions

In a reaction vessel, 17.6 g of solid chromium(III) oxide, Cr2O3, was allowed to react with excess carbon tetrachloride in the following reaction.
Cr2O3(s) + 3 CCl4(l) → 2 CrCl3(s) + 3 COCl2(aq)
Determine the percent yield of the reaction, given that the actual yield of chromium chloride, CrCl3, was 26.6 g. (The molar mass of Cr2O3 is 152.00 g/mol and the molar mass of CrCl3 is 158.35 g/mol.)

Answers

Answer:

72.53% is the yield of CrCl3

Explanation:

Given

Reaction:

Cr2O3(s) + 3 CCl4(l) → 2 CrCl3(s) + 3 COCl2(aq)

CCl4 is in excess and 17.6g  Cr2O3 present

The reaction yields 26.6g of CrCl3

To Find:

% yields of the reaction

Also given

Molar mass of CrCl3 = 158.35g/mol

Molar mass of Cr2O3 = 152.00 g/mol

By the stoichiometry of the reaction

1 mole of Cr2O3 gives  2 moles of CrCl3

0r

1 x1 52 g of Cr2O3 gives 2x 158.35 g of CrCl3

= 1 52 g of Cr2O3 gives 316.70 g of CrCl3

    17.6 g of Cr2O3 gives  (17.6÷152) × 316.70 g CrCl3

= 36.67 g CrCl3

but actual yield is only 26.6g

so % yield is (26.6 ÷÷ 36.67) × 100

= 72.53% is the yield of CrCl3

Final answer:

To calculate the percent yield, the number of moles of chromium(III) oxide used was first determined, which was then used to find the theoretical yield of chromium chloride. The actual yield of chromium chloride is compared to this theoretical yield to find that the percent yield of the reaction is approximately 72.48%.

Explanation:

The student asked to calculate the percent yield of a chemical reaction involving chromium(III) oxide (Cr2O3) and carbon tetrachloride (CCl4). To find the percent yield, we need to compare the actual yield to the theoretical yield. First, we calculate the number of moles of Cr2O3 that react. With a molar mass of 152.00 g/mol, 17.6 g of Cr2O3 is equivalent to 0.1158 moles. According to the stoichiometry of the balanced equation, 1 mole of Cr2O3 produces 2 moles of CrCl3, which suggests that 0.1158 moles of Cr2O3 would yield 0.2316 moles of CrCl3. Using the molar mass of CrCl3 (158.35 g/mol), the theoretical yield of CrCl3 can be found as 0.2316 moles × 158.35 g/mol = 36.7 g.

Now, we calculate the percent yield using the actual yield (26.6 g) and the theoretical yield (36.7 g).

Percent Yield = (Actual Yield / Theoretical Yield) × 100 = (26.6 g / 36.7 g) × 100 ≈ 72.48%

Therefore, the percent yield of chromium chloride in the reaction is approximately 72.48%.

Which of the following statements is true? Choose one: Na+ is the most plentiful positively charged ion outside the cell, while K+ is the most plentiful inside. K+ and Na+ are both excluded from cells. K+ and Na+ are present in the same concentration on both sides of the plasma membrane. K+ and Na+ are both maintained at high concentrations inside the cell compared to out. K+ is the most plentiful positively charged ion outside the cell, while Na+ is the most plentiful inside.

Answers

Answer:

Na+ is the most plentiful positively charged ion outside the cell, while K+ is the most plentiful inside.

Explanation:

Sodium ion and potassium ion play an important role in cellular metabolism. Na+ ion present in extracellular fluid while K+ ion is present in intracellular fluid.

Sodium ions are necessary for:

generation of nerve impulse

Heart activities

electrolyte balance

High or low concentration of sodium affects health.

Potassium ions are necessary for:

fluid and electrolyte balance

Na+ ion present in extracellular fluid while K+ ion is present in intracellular fluid.

Therefore, Na+ ion present in extracellular fluid while K+ ion is present in intracellular fluid.

Final answer:

The correct statement is that Na+ is the most plentiful positively charged ion outside the cell, while K+ is more plentiful inside, due to the function of the sodium-potassium pump in the plasma membrane of cells.

Explanation:

The statement that is true among the given options is: Na+ is the most plentiful positively charged ion outside the cell, while K+ is the most plentiful inside. This arrangement is made possible through a process called the sodium-potassium pump, which is part of the plasma membrane of cells. The pump uses ATP to move 3 Na+ out of the cell and 2 K+ into the cell, which helps maintain the cell's resting potential. Therefore, outside of the cells, there is a higher concentration of Na+ ions, while inside the cells, K+ ions are more plentiful.

Learn more about Sodium-Potassium Pump here:

https://brainly.com/question/37832010

#SPJ3

1) When elements combine to form compounds:

A) their properties are an average of all elements in the compound.
B) their properties change completely.
C) their properties do not change.
D) their properties are completely random.
E) none of the above

Answers

Answer:

B

Explanation:

when elements reacts to form a compound the elements properties changes completely. This happens due to the fact that a chemical reaction has taken place. In a chemical change new substances are formed and the properties of the products differ entirely from that of the reactant.

for example if hydrogen combines with oxygen to form water, the property of hydrogen differs from oxygen and also both differs chemically when compared to water.

Final answer:

When elements combine to form compounds, their properties change completely.

Explanation:

When elements combine to form compounds, their properties change completely.

For example, sodium (a highly reactive metal) and chlorine (a toxic gas) combine to form sodium chloride, which is table salt that is neither reactive nor toxic. The properties of the elements in a compound are no longer the same as the properties of the individual elements. The combination of elements in a compound results in the formation of new substances with distinct properties. Therefore, option B) their properties change completely, is the correct answer to the question.

Learn more about properties of compounds here:

https://brainly.com/question/11838894

#SPJ6

A chemical reaction in which two elements or radicals change places with two other elements or radicals is a _______ reaction. A. combination B. double replacement C. substitution D. decomposition

Answers

Answer: B

Double replacement reaction

Explanation:

What is the intensity in W/m2 of a laser beam used to burn away cancerous tissue that, when 91.0% absorbed, puts 540 J of energy into a circular spot 2.60 mm in diameter in 4.00 s?

Answers

Answer:

2.3x10⁷ W/m²

Explanation:

The intensity (I) of a laser is its potency (P) divided by the area (A) that it is affected. The potency is the energy applied (or absorbed) in a period, thus id 91.0% of the energy is absorbed, so:

E = 0.91*540 = 491.4 J

And,

P = E/t, where t is the time in seconds

P = 491.4/4.00

P = 122.85 J/s

P = 122.85 W

The are of a circular spot is:

A = (π/4)*d²

Where d is the diameter. Thus, with d = 2.60 mm = 0.0026 m

A = (π/4)*(0.0026)²

A = 5.31x10⁻⁶ m²

I = P/A

I = 122.85/5.31x10⁻⁶

I = 2.3x10⁷ W/m²

after charcoal is added, the solution is filtered by hot gravity filtration. Why does the solution need to remain hot during the filtration to remove charcoal?

Answers

Answer:

The solution needs to remain hot during filtration in order to remove impurities and charcoal that are insoluble in the crystallization solvent, also to prevent crystals form prematurely on the paper filter or on the funnel stem.

The following substances dissolve when added to water. Classify the substances according to the strongest solute-solvent interaction that will occur between the given substances and water during dissolution.

1.ion-ion forces

2.dipole dipole forces

3.ion dipole forces

4.london dispersion forces



A. HF

B.CH3OH

C.CaCl2

D. FeBr3

Answers

Final answer:

HF and CH3OH exhibit dipole-dipole forces when dissolved in water because they both can form hydrogen bonds. CaCl2 and FeBr3 display ion-dipole forces in water because they are ionic compounds.

Explanation:

When these substances are added to water, they exhibit different solute-solvent interactions due to their different properties.

HF (Hydrofluoric Acid): It exhibits dipole-dipole forces. HF can form hydrogen bonds, which is a type of dipole-dipole interaction, with water. CH3OH (Methanol): Similar to HF, methanol will also exhibit dipole-dipole forces when dissolved in water due to its ability to form hydrogen bonds. CaCl2 (Calcium Chloride): The interaction here are ion-dipole forces. Calcium chloride is an ionic compound and when added to water, it dissociates into ions which have strong ion-dipole interaction with water. FeBr3 (Iron (III) Bromide): This is an ionic compound and will also exhibit ion-dipole forces when dissolved in water.

Learn more about Solvents and solutes here:

https://brainly.com/question/31827211

#SPJ3

I’m having trouble with questions 1, 3, and 5.

Answers

Answer:

sorry i cant read sideways

Explanation:

The infrared spectrum above represents the absorption of certain wavelengths of radiation by molecules of CO2. Which of the following best explains what occurs at the molecular level as the CO2 molecules absorb photons of the infrared radiation?

Answers

Answer:

Carbon Dioxide is an Infrared Radiation Absorber. The (CO2) molecules also emits the absorbed infrared (IR) radiation energy. The photon energy from the infrared radiation causes the CO2 molecule to vibrate. Only some of its vibrational modes absorb infrared radiation

Explanation:

Its linear structure is considered when working with the formula to calculate the number of molecular vibrational modes. It has 3n - 4 vibrational modes, where n is the number of atoms in a compound of CO2

With 3 atoms, CO2 has

3n−5=4 types or patterns of vibration

1. The symmetric stretch

2. The asymmetric stretch

3. The bend

The symmetric stretch vibrational mode is ir-inactive.

The asymmetric stretch is ir-active as it results in changes in dipole moment

The bend is ir-active as well as it results in a change in dipole moment too.

At the molecular level as the CO2 molecules absorb photons of the infrared radiation, the atoms in the CO2 molecules increase their vibration as the bonds between the atoms bend and stretch.

The question is incomplete, the complete question is;

The infrared spectrum above represents the absorption of certain wavelengths of radiation by molecules of CO2. Which of the following best explains what occurs at the molecular level as the CO2 molecules absorb photons of the infrared radiation?

The atoms in the CO2 molecules increase their vibration as the bonds between the atoms bend and stretch. The molecules of CO2 increase the energy of their rotational motions. The electrons in the valence shells of the atoms in the CO2 molecules are promoted to higher electronic energy levels. The bonds between the atoms in the CO2 molecules are continuously broken and then re-form.

The infrared spectrum of molecules is based on changes in the vibrational energy levels within the molecule.

Infrared radiation causes bonds to vibrate. The nature of the vibration may be stretching or bending.

So, when CO2  molecules are irradiated with infrared radiation, at the molecular level, CO2 molecules absorb photons of the infrared radiation, the atoms in the CO2 molecules increase their vibration as the bonds between the atoms bend and stretch.

Learn more: https://brainly.com/question/4348492

Calculate the atomic mass of gallium if gallium has 2 naturally occurring isotopes with the following masses and natural abundances: Ga-69 68.9256 amu 60.11% Ga-71 70.9247 amu 39.89%?

Answers

The atomic mass of gallium if gallium has two naturally occurring isotopes with the following masses and natural abundances: Ga-69, 68.9256 amu 60.1%, and Ga-71, 70.9247 amu 39.9%, is 69.7376073 amu. Hence, option d is the correct answer.

Given the isotopes and their masses and abundances:

Ga-69 with a mass of 68.9256 amu and an abundance of 60.1%.

Ga-71 with a mass of 70.9247 amu and an abundance of 39.9%.

Atomic mass ([tex]M_a_t_o_m_i_c[/tex]) using the formula.

[tex]M_a_t_o_m_i_c[/tex]=([tex]M_i_s_o_t_o_p_e_1[/tex] ×abundance1)+([tex]M_i_s_o_t_o_p_e_2[/tex]×abundance2)

[tex]M_a_t_o_m_i_c[/tex]=(68.9256amu×0.601)+(70.9247amu×0.399)

[tex]M_a_t_o_m_i_c[/tex]=41.413512amu+28.3240953amu

[tex]M_a_t_o_m_i_c[/tex]=69.7376073amu

Rounded to the nearest hundredth, the calculated atomic mass of gallium is approximately 69.73 amu. The closest option is "d that is 69.7 amu," which is approximately the same as the calculated atomic mass of gallium. Hence, option d is the correct answer.

Learn more about the atomic mass of gallium here.

https://brainly.com/question/23822720

#SPJ12

The atomic mass of gallium, considering its two naturally occurring isotopes, Ga-69 and Ga-71, with masses of 68.9256 amu and 70.9247 amu at abundances of 60.11% and 39.89% respectively, is approximately 69.7171 amu.

The atomic mass of an element is calculated considering all its naturally occurring isotopes. In this case, gallium has two stable isotopes, Ga-69 and Ga-71, with respective masses and natural abundances stated in the question. Here are the steps to calculate the atomic mass of gallium:

Firstly, we multiply the mass of each isotope by its natural abundance:

For Ga-69:

68.9256 amu * 60.11 / 100 = 41.4292 amu

For Ga-71:

70.9247 amu * 39.89 / 100 = 28.2879 amu

Then, we add the results to get the atomic mass:

41.4292 amu + 28.2879 amu = 69.7171 amu

So, the atomic mass of gallium is approximately 69.7171 amu.

For more such question on  atomic mass visit:

https://brainly.com/question/30390726

#SPJ3

Consider two 5 L chambers. In one, there are 5.00 g O₂, and in the other there are 5.00 g He. Which has the higher pressure at room temperature?
A) O₂
B) Не
C) They have equal pressures
D) Not enough info

Answers

Answer:

He have higher pressure at room temperature.

Explanation:

It is given that both the gases are kept in 5 L chambers.

Therefore, volume is constant.

Also, they both are at room temperature, so temperature is also constant.

Now, number of moles of [tex]O_2[/tex] = [tex]\dfrac{Given\ mass}{Molecular \ mass}=\dfrac{5}{32}=0.16\ mol.[/tex]

Also, number of moles of He =[tex]\dfrac{Given\ mass}{Molecular \ mass}=\dfrac{5}{4}=1.25\ mol.[/tex]

Now, according to GAS LAW,

[tex]PV=nRT[/tex]  ( all terms have their usual meaning).

In this case, V, R and T are constant.

So, pressure is directly proportional to n i.e number of moles.

So, moles of He is more than moles of [tex]O_2[/tex].

Therefore, He have higher pressure at room temperature.

Hence , this is the required solution.

The gas that has a higher pressure is He.

Number of moles of oxygen gas = 5.00 g /32 g/mol = 0.156 moles

From PV = nRT

P = ?

V = 5 L

n =  0.156 moles

T = 25 + 273 = 298 K

R = 0.082 atmLK-1mol-1

P = nRT/V

P =  0.156 moles × 0.082 atmLK-1mol-1 × 298 K/5 L

P = 0.76 atm

Number of moles of He = 5/4 g/mol = 1.25 moles

P = ?

V = 5 L

n = 1.25 moles

T = 25 + 273 = 298 K

R = 0.082 atmLK-1mol-1

P = nRT/V

P =1.25 moles × 0.082 atmLK-1mol-1 × 298 K/5 L

P = 6.11 atm

The gas that has a higher pressure is He.

Learn more: https://brainly.com/question/2510654

The process in which an atom or molecule loses one or more electrons to another atom or molecule is known as ________ .

Answers

Answer:

Oxidation process

Explanation:

Oxidation is the transfer of electrons from an atom, molecule, or ion to another atom, molecule, or ion in a chemical reaction.

Oxidation is said to have taken place when the oxidation status of a atom, molecule, or ion is increases.

Oxidation process is said to include

Addition of oxygen atom or Electronegative atoms to another atom, molecule, or ion

Loss of one or more electrons by a atom, molecule, or ion

Increase in the oxidation number of a atom, molecule, or ion

Loss of a hydrogen or Electropositive atoms

Which of the following substances is basic? a.Lemon juice b.Vinegar c.Baking Soda (sodium bicarbonate) d.Substance with a pH of 7

Answers

Answer:

c.Baking Soda (sodium bicarbonate)

Explanation:

The Arrhenius theory was introduced introduced by Swedish scientist named Svante Arrhenius in 1887.

According to the theory, acids are the substances which dissociate in the aqueous medium to produce electrically charged atoms ( may be molecule). Out of these species furnished, one must be a proton or the hydrogen ion, [tex]H^+[/tex].

Base are the substances which dissociate in the aqueous medium to produce electrically charged atoms ( may be molecule). Out of these species furnished, one must be a hydroxide ion, [tex]OH^-[/tex].

a. Lemon juice contains citric acid which is an acid.

b. Vinegar contains acetic acid which is an acid.

c. Baking Soda contains sodium bicarbonate and is a base.

Thus, c is the answer.

pH is defined as the negative logarithm of the concentration of hydrogen ions.

Thus,  

pH = - log [H⁺]

pH scale generally runs from 1 to 14 where pH = 7 represents neutral medium, pH < 7 represents acidic medium and pH > 7 represents basic medium.

d. Substance with pH 7 represents neutral solution.

The radioactive decay of 99mTc to 99Tc MUST occur with the emission of:_______.
a) the combination of a beta particle and a gamma ray.
b) a gamma ray alone.
c) an alpha particle alone.
d) two beta particles.

Answers

Answer:

The answer is (B) A gamma ray alone

Explanation:

Technetium-99m decays through a process called isomeric transition involving the decay of 99mTc to 99TC via the release of gamma rays and low energy electron

How many grams of aluminum metal can be produced when 50.0 grams of aluminum chloride decompose? 2AlCl3 → 2Al + 3Cl2

Answers

Answer:

10.1 g of Al are formed

Explanation:

The reaction is:

2AlCl3 --> 2Al + 3Cl2

So 2 moles of aluminun chloride decompose into 2 moles of Al and 3 moles of chlorine.

Ratio is 2:2.

Let's convert the mass of salt into moles (mass / molar mass)

50 g / 133.34 g/mol = 0.374 moles.

As the ratio is 2: 2, if I have 0.374 moles of salt, I would produce the same amount of Al, just 0.374.

Let's convert the moles to mass

(Mol . molar mass)

0.374 mol . 26.98 g / mol = 10.1 g of Al are formed

Ξ

28.99 grams of aluminium metal can be produced when 50.0 grams of aluminium chloride decompose.

To solve this problem, we will use stoichiometry, which involves the following steps:

1. Write down the balanced chemical equation:

[tex]\[ 2\text{AlCl}_3 \rightarrow 2\text{Al} + 3\text{Cl}_2 \][/tex]

2. Calculate the molar mass of aluminium chloride (AlCl3) and aluminium (Al):

- The molar mass of Al is approximately 26.98 g/mol.

- The molar mass of AlCl3 is calculated as follows:

[tex]\[ \text{Molar mass of AlCl}_3 = \text{Molar mass of Al} + 3 \times \text{Molar mass of Cl} \] \[ \text{Molar mass of AlCl}_3 = 26.98 \text{ g/mol} + 3 \times 35.45 \text{ g/mol} \] \[ \text{Molar mass of AlCl}_3 = 26.98 \text{ g/mol} + 106.35 \text{ g/mol} \] \[ \text{Molar mass of AlCl}_3 = 133.33 \text{ g/mol} \][/tex]

3. Convert the mass of AlCl3 to moles:

[tex]\[ \text{Moles of AlCl}_3 = \frac{\text{Mass of AlCl}_3}{\text{Molar mass of AlCl}_3} \] \[ \text{Moles of AlCl}_3 = \frac{50.0 \text{ g}}{133.33 \text{ g/mol}} \] \[ \text{Moles of AlCl}_3 \approx 0.375 \text{ mol} \][/tex]

4. Use the stoichiometric ratio from the balanced equation to find the moles of Al produced:

The balanced equation shows that 2 moles of AlCl3 produce 2 moles of Al. Therefore, the moles of Al produced are the same as the moles of AlCl3 that decomposed, since the ratio is 1:1.

5. Convert the moles of Al to grams:

[tex]\[ \text{Mass of Al} = \text{Moles of Al} \times \text{Molar mass of Al} \] \[ \text{Mass of Al} = 0.375 \text{ mol} \times 26.98 \text{ g/mol} \] \[ \text{Mass of Al} \approx 9.969 \text{ g} \][/tex]

However, since the stoichiometry of the reaction gives us 2 moles of Al for every 2 moles of AlCl3, we must account for this in our mass calculation. Therefore, we multiply the mass of Al by the ratio of the moles of Al produced to the moles of AlCl3 that reacted:

[tex]\[ \text{Mass of Al} = 9.969 \text{ g} \times \frac{2 \text{ mol Al}}{2 \text{ mol AlCl}_3} \] \[ \text{Mass of Al} = 9.969 \text{ g} \times 1 \] \[ \text{Mass of Al} \approx 9.969 \text{ g} \][/tex]

Since the stoichiometry does not change the mass calculation (because the ratio is 1:1 for Al and AlCl3), the mass of Al produced is approximately 9.969 grams. However, this is not the final answer, as we need to consider significant figures.

6. Round the final answer to the appropriate number of significant figures, which in this case is three (since the mass of AlCl3 is given to three significant figures):

[tex]\[ \text{Mass of Al} \approx 10.0 \text{ g} \][/tex]

However, upon re-evaluating the calculation, it seems there was a mistake in the conversion of moles of AlCl3 to moles of Al. Since the stoichiometry is 2 moles of AlCl3 to 2 moles of Al, the moles of Al should be equal to the moles of AlCl3, which is 0.375 moles. Therefore, the correct mass of Al is calculated as follows:

[tex]\[ \text{Mass of Al} = 0.375 \text{ mol} \times 26.98 \text{ g/mol} \] \[ \text{Mass of Al} = 28.985 \text{ g} \][/tex]

Rounding to three significant figures, we get:

[tex]\[ \text{Mass of Al} \approx 28.99 \text{ g} \][/tex]

Ammonia can be prepared by the reaction of magnesium nitride with water. The products are ammonia and magnesium hydroxide. When the equation is written and balanced, the coefficient of water is

1. 3
2. 2.
3. 6.
4. 1.

Answers

Answer:

Mg₃N₂ + 6H₂O  →  2NH₃  +  3Mg(OH)₂

Coefficient of water is 6 (option 3)

Explanation:

The reaction is:

Mg₃N₂ + H₂O  →  NH₃  +  Mg(OH)₂

Let's balance the reaction.

In reactant side we have 3 Mg, therefore in product side, we add 3 Mg to the hydroxide.

This change, modified the hydroxide, so now we have 6 O and 6 H, but we have in total 9 H (6 from the hydroxide + 3 from the ammonia)

As we have 2N, in reactant side, we must add 2 N to the ammonia, so now

we have 12 H in product side . We must complete with 6, the water so the H are ballanced.

In reactant side we have 6 O, therefore in product we must have 6 O (two O, in the OH but we have 3 moles, so in total we have 6 O) - BALANCED

The balance reaction is:

Mg₃N₂ + 6H₂O  →  2NH₃  +  3Mg(OH)₂

Final answer:

The chemical reaction of magnesium nitride with water to form ammonia and magnesium hydroxide has a coefficient of 6 for water in the balanced equation.

Explanation:

Preparing ammonia through the reaction of magnesium nitride with water yields ammonia and magnesium hydroxide. The balanced chemical equation for this reaction is: Mg3N2 + 6H2O → 3NH3 + 3Mg(OH)2. Thus, the coefficient of water in the balanced chemical equation is 6, which corresponds to option number 3 in your question.

Learn more about Chemical Reactions here:

https://brainly.com/question/34137415

#SPJ3

Given the different molecular weights, dipole moments, and molecular shapes, why are their molar volumes nearly the same?

Answers

Answer:

Explanation:

Because most of the volume occupied by the substance is empty space.


6. Barium sulfate and and sodium sulfate react in a double displacement reaction. If the
reaction starts with 10.25 grams of barium sulfate what are the products and how many moles
of each product is produced?
7. Calculate the moles of Li2SO4that would be needed to produce 385 g of LiOH.

8. Silver nitrate reacts with copper in a single displacement reaction. To produce copper (1)
nitrate and silver. If 3.50 g of silver nitrate are reacted with excess copper. How many mole of
silver would be produced?
9. (Use the chemical equation from above) How many moles of copper (1) nitrate ]can be
produced with and 0.89 grams of copper metal?

Answers

Answer:

6) For 0.04392 moles BaSO4 we need 0.02196 moles Na2SO4

To produce 0.02196 moles Ba2SO4 and 0.04392 moles Na2SO4

7)  For 16.08 moles LiOH we'll have 8.04 moles H2SO4 produced.

We need 8.04 moles Li2SO4 and 8.04 moles H2O

8) For 0.0206 moles silvernitrate we'll hace 0.0206 moles silver

9) For 0.014 moles of Cu we'll have 0.014 moles Cu(NO3)2

Explanation:

6. Barium sulfate and and sodium sulfate react in a double displacement reaction. If the  reaction starts with 10.25 grams of barium sulfate what are the products and how many moles  of each product is produced?

Step 1: Data given

Mass of BaSO4 = 10.25 grams

Molar mass = 233.38 g/mol

Step 2: The balanced equation

2BaSO4 + Na2SO4 → Ba2SO4 + 2NaSO4

Step 3: Calcuate moles BaSO4

Moles BaSO4 = 10.25 grams / 233.38 g/mol

Moles BaSO4 = 0.04392 moles BaSO4

Step 4: Calculate moles

For 2 moles BaSO4 we need 1 mol Na2SO4 to produce 1 mol Ba2SO4 and 2 moles NaSO4

For 0.04392 moles BaSO4 we need 0.04392/2 = 0.02196 moles Na2SO4

To produce 0.02196 moles Ba2SO4 and 0.04392 moles Na2SO4

7. Calculate the moles of Li2SO4that would be needed to produce 385 g of LiOH.

Step 1: Data given

Mass of LiOH = 385 grams

Molar mass of LiOH = 23.95 g/mol

Step 2: The balanced equation

Li2SO4 + 2H2O → 2LiOH + H2SO4

Step 3: Calculate moles LiOH

Moles LiOH = 385.0 grams / 23.95 g/mol

Moles LiOH = 16.08 moles LiOH

Step 4: Calculate moles

For 1 mol Li2SO4 we need 2 moles H2O to produce 2 moles LiOH and 1 mol H2SO4

For 16.08 moles LiOH we'll have 8.04 moles H2SO4 produced.

We need 8.04 moles Li2SO4 and 8.04 moles H2O

8. Silver nitrate reacts with copper in a single displacement reaction. To produce copper (1) nitrate and silver. If 3.50 g of silver nitrate are reacted with excess copper. How many mole of  silver would be produced?

Step 1: Data given

Mass of AgNO3 = 3.50 grams

Molar mass of AgNO3 = 169.87 g/mol

Step 2: The balanced equation

Cu + 2AgNO3 → Cu(NO3)2 + 2Ag

Step 3: Calculate moles AgNO3

Moles AgNO3 = 3.50 grams / 169.87 g/mol

Moles AgNO3 = 0.0206 moles

Step 4: Calculate moles of Ag

For 1 mol copper, we need 2 moles of silvernitrate to produce 1 mol of coppernitrate and 2 moles of silver

For 0.0206 moles silvernitrate we'll hace 0.0206 moles silver

9. (Use the chemical equation from above) How many moles of copper (1) nitrate ]can be  produced with and 0.89 grams of copper metal?

Step 1: Data given

Mass of Cu = 0.89 grams

Molar mass of Cu = 63.55 g/mol

Step 2: The balanced equation

Cu + 2AgNO3 → Cu(NO3)2 + 2Ag

Step 3: Calculate moles Cu

Moles Cu =0.89 grams / 63.55 g/mol

Moles Cu = 0.014 moles

Step 4: Calculate moles of Coppernitrate

For 1 mol copper, we need 2 moles of silvernitrate to produce 1 mol of coppernitrate and 2 moles of silver

For 0.014 moles of Cu we'll have 0.014 moles Cu(NO3)2

I just want to know the steps for how to solve this... literally have an exam tomorrow and I cannot stress enough how much I need to know this, ten points offered

Answers

Answer: 2,625.3 g AlCl3

Explanation: solution attached:

First balance the chemical equation then do basic stoichiometry.

A 6.00 L vessel contains 20.0 g of PCl3 and 3.15 g of O2 at 15.0 ∘C. The vessel is heated to 210 ∘C, and the contents react to give POCl3. What is the final pressure in the vessel, assuming that the reaction goes to completion and that all reactants and products are in the gas phase?

Answers

Answer: The final pressure in the vessel will be 0.965 atm

Explanation:

To calculate the number of moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]      .....(1)

For phosphorus trichloride:

Given mass of phosphorus trichloride = 20.0 g

Molar mass of phosphorus trichloride = 137.3 g/mol

Putting values in equation 1, we get:

[tex]\text{Moles of phosphorus trichloride}=\frac{20.0g}{137.3g/mol}=0.146mol[/tex]

For oxygen gas:

Given mass of oxygen gas = 3.15 g

Molar mass of oxygen gas = 32 g/mol

Putting values in equation 1, we get:

[tex]\text{Moles of oxygen gas}=\frac{3.15g}{32g/mol}=0.098mol[/tex]

The chemical equation for the reaction of phosphorus trichloride and oxygen gas follows:

[tex]2PCl_3+O_2\rightarrow 2POCl_3[/tex]

By Stoichiometry of the reaction:

2 moles of phosphorus trichloride reacts with 1 mole of oxygen gas

So, 0.146 moles of phosphorus trichloride will react with = [tex]\frac{1}{2}\times 0.146=0.073mol[/tex] of oxygen gas

As, given amount of oxygen gas is more than the required amount. So, it is considered as an excess reagent.

Thus, phosphorus trichloride is considered as a limiting reagent because it limits the formation of product.

By Stoichiometry of the reaction:

2 moles of phosphorus trichloride produces 2 moles of [tex]POCl_3[/tex]

So, 0.146 moles of phosphorus trichloride will produce = [tex]\frac{2}{2}\times 0.146=0.146mol[/tex] of [tex]POCl_3[/tex]

To calculate the pressure of the vessel, we use the equation given by ideal gas follows:

[tex]PV=nRT[/tex]

where,

P = pressure of the vessel = ?

V = Volume of the vessel = 6.00 L

T = Temperature of the vessel = [tex]210^oC=[210+273]K=483K[/tex]

R = Gas constant = [tex]0.0821\text{ L. atm }mol^{-1}K^{-1}[/tex]

n = number of moles = 0.146 moles

Putting values in above equation, we get:

[tex]P\times 6.00L=0.146mol\times 0.0821\text{ L atm }mol^{-1}K^{-1}\times 483K\\\\P=\frac{0.146\times 0.0821\times 483}{6.00}=0.965atm[/tex]

Hence, the final pressure in the vessel will be 0.965 atm

Answer:

The final pressure in the vessel is 1.13 atm

Explanation:

Step 1: Data given

Volume of the vessel = 6.00 L

Mass of PCl3 = 20.0 grams

Mass of O2 = 3.15 grams

Temperature = 15.0 °C

The vessel is heated to 210°C

Molar mass of PCl3 = 137.33 g/mol

Step 2: The balanced equation

2PCl3 + O2 → 2POCl3

Step 3: Calculate moles PCl3

MolesPCl3 = mass PCl3 / molar mass PCl3

Moles PCl3 = 20.0 grams / 137.33 g/mol

Moles PCl3 =0.146 moles PCl3

Step 4: Calculate moles O2

Moles O2 = 3.15 grams/ 32.0 g/mol

Moles O2 = 0.0984 moles O2

Step 5: Calculate the limiting reactant

PCl3 is the limiting reactant. It will completely be consumed(0.146 moles). So at completion there is no PCl3 remaining.

O2 is in excess. There will react 0.146/2 = 0.073 moles. There will remain 0.0984 - 0.073 = 0.0254 moles O2

Step 6: Calculate moles POCl3

For 2 moles PCl3 we need 1 mol O2 to produce 2 moles POCl3

For 0.146 moles PCl3 we'll have 0.146 moles POCl3

Step 7: Calculate final pressure

p*V = n*R*T

p = (n*R*T)/V

⇒ with n = the number of moles = 0.146 moles of POCl3 produced + 0.0254 moles O2 remaining = 0.1714 moles gas

⇒ with R = the gas constant = 0.08206 L*atm/mol*K

⇒with T = the temperature = 210 +273 = 483 Kelvin

⇒ with V = the volume = 6.00 L

p = (0.1714 *0.08206 * 483) / 6.00

p = 1.13 atm

The final pressure in the vessel is 1.13 atm

-----40 points-----

Magnesium is able to ____ copper, and copper is able to ____ magnesium.

Zinc is able to ____ magnesium, and magnesium is able to ____ zinc.

Copper is able to ____ zinc, and zinc is able to ____ copper.


In every blank, the options are "oxidize" and "reduce"

Answers

Answer:

1. Reduce

2. Oxidize

3. Oxidize

4. Reduce

5. Oxidize

6. Reduce

Explanation:

Answer:

1. Reduce, Oxidize

2.Oxidize, reduce

3.Reduce, Oxidize

Explanation:

Dihydrogen dioxide decomposes into water and oxygen gas. Calculate the amounts requested if 1.34 moles of dihydrogen dioxide react according to the equation.

You must show all units.

a. Moles of oxygen formed

b. Moles of water formed

c. Mass of water formed

d. Mass of oxygen formed

Answers

Answer:

a) 0.67 moles of O2

b) 1.34 moles H2O

c) 24.15 grams of H2O

d) 21.44 grams O2

Explanation:

Step 1: Data given

Dihydrogen dioxide = H2O2

oxygen gas = O2

Moles H2O2 = 1.34 moles

Molar mass of H2O2 = 34.01 g/mol

Step 2: The balanced equation

2H2O2 → 2H2O + O2

Step 3: Calculate moles of H2O formed

For 2 moles H2O2 we'll have 2 moles H2O produced

For 1.34 moles H2O2 we have 1.34 moles H2O produced

This is 1.34 moles * 18.02 g/mol = 24.15 grams of H2O

Step 4: Calculate moles of O2 formed

For 2 moles H2O2 we'll have 1 mol O2 produced

For 1.34 moles H2O2 we'll have 1.34 /2 = 0.67 moles of O2 produced

This is 0.67 moles * 32.00 g/mol = 21.44 grams O2

Balance the following redox equation in acidic solution using the smallest integers possible and select the correct coefficient for the H+(aq) ion.Cr2O72–(aq) + Sn2+(aq) → Cr3+(aq) + Sn4+(aq)(A) 1 (no coefficient written)(B) 2(C) 3(D) 4(E) More than 4

Answers

Answer:

The balanced redox is:

14 H⁺ + Cr₂O₇²⁻ + 3Sn²⁺ → 3Sn4⁺  + 2Cr³⁺  + 7H₂O

So the coefficient for the H⁺ is greater than 4 (option E)

Explanation:

This is the redox reaction:

Cr₂O₇²⁻ (aq) + Sn²⁺ (aq)  →  Cr³⁺ (aq) + Sn⁴⁺(aq)

First of all, we must determine the half reactions:

In dycromate, Cr acts with +6 in the oxidation state → Cr cation has +3 in product side - Oxidation state, has decreased so this is the reduction.

In reactant side Sn cation acts with +2 → In product side Sn acts with +4

The oxidation state has increased, so this is the oxidation.

Cr₂O₇²⁻  → Cr³⁺

We have to add 2, to Cr in reactant side, and as we are in adicid medium we add water in the opposite side of oxygen. The same amount of oxgen, that we have.

Cr₂O₇²⁻  → 2Cr³⁺ + 7H₂O

Finally, as we have 14 H in product side, we must add 14 H⁺ to the reactant side. Cr+⁶ in dycromate to change to Cr³⁺, gained 3 e⁻, but we have 2 Cr, so in total the Cr gained 6e⁻. The balanced half reaction is:

14 H⁺ + Cr₂O₇²⁻ + 6e⁻ → 2Cr³⁺  + 7H₂O

Sn²⁺ to change the oxidation state, to +4 had to release electrons:

Sn²⁺ →  Sn4⁺  + 2e⁻

The electrons are unbalanced, so we must to multiply the half reactions:

(14 H⁺ + Cr₂O₇²⁻ + 6e⁻ → 2Cr³⁺  + 7H₂O) x1

(Sn²⁺ →  Sn4⁺  + 2e⁻ ) x3

And we sum both:

14 H⁺ + Cr₂O₇²⁻ + 6e⁻ + 3Sn²⁺ → 3Sn4⁺  + 6e⁻  + 2Cr³⁺  + 7H₂O

Final answer:

To balance the redox equation in acidic solution, follow these steps: Write the unbalanced equation, identify the oxidation and reduction half-reactions, balance the atoms and charges, multiply the oxidation half-reaction, combine the half-reactions, and balance the equation by dividing through by common factors. The correct coefficient for the H+ ion is 2.

Explanation:

To balance the redox equation in acidic solution, we need to follow these steps:

Write the given unbalanced equation: Cr2O72–(aq) + Sn2+(aq) → Cr3+(aq) + Sn4+(aq)Identify the oxidation and reduction half-reactions. In this case, Cr2O72–(aq) is reduced to Cr3+(aq) and Sn2+(aq) is oxidized to Sn4+(aq).Balance the atoms excluding O and H. Balance each half-reaction by adding water molecules (H2O) to the side that lacks oxygen and hydrogen ions (H+) to the side that lacks hydrogen.Balance the charges in each half-reaction by adding electrons (e-).Multiply the oxidation half-reaction by the necessary coefficient to equalize the number of electrons transferred.Add the two half-reactions together, canceling out common species on each side.Finally, balance the equation by inspecting the coefficients and make the smallest coefficients possible by dividing through by any common factors.

Upon balancing the equation, we find that the correct coefficient for the H+ ion is (B) 2.

Gastric juices have a pH of 1 or 2. This would indicate which of the following?-neutral fluids, perfect for decomposition reactions-numerous H+ ions and a low pH-numerous OH- ions and a high pH-numerous OH- ions and a low pH

Answers

Answer:

Gastric juices have a pH of 1 or 2. This would indicate numerous H+ ions and a low pH

Explanation:

Highers concentrations of [H⁺] means very low pH.

pH = - log [H⁺]

Imagine this two concentrations:

[H⁺]₁ = 0.2 M

[H⁺]₂ = 0.0006 M

[H⁺]₁ > [H⁺]₂

pH₁ = - log 0.2 → 0.70

pH₂ = - log 0.0006 → 3.22

Then pOH₁ = 14 - 0.70 = 13.30

pOH₂ = 14 - 3.22 = 10.78

[OH⁻]₁ = 10^-pOH = 5.01×10⁻¹⁴

[OH⁻]₂ = 10^-pOH = 1.66×10⁻¹¹

As pH is so low, [OH⁻] is more and more lower.

Explain why can two nonmetals bond together, but two metals cannot? A) Metals will only form covalent bonds. B) Nonmetals can share pairs of electrons and form ionic bonds. C) Nonmetals can share pairs of electrons and form covalent bonds. D) Metals will only share electrons and therefore cannot form ionic bonds.

Answers

Answer: C) Non-metals can share pairs of electrons and form covalent bonds

Explanation: The principal reason why it is non-metals that can form covalent bonds is because of their electronegativities. Electronegativity is the tendency of an atom to attract electrons towards itself.

The participating atoms in a covalent bond have to be able to hold the shared electron in place & it is this attraction towards the centre of each participating atom that holds the electrons in place. Metals aren't electronegative, they don't attract electrons towards each other, they'd rather even push the electrons away from themselves (electropositive) to be stable. The closest concept of metals to shared electrons is in metallic bonding, where metals push and donate their valence electrons to an electron cloud which is free to move around the bulk of the metallic structure. But this is nowhere near the type of bonding that exist in covalent bonds.

Answer:

C) Nonmetals can share pairs of electrons and form covalent bonds.

Explanation:

Write the balanced molecular equation for the reaction of hydrochloric acid with calcium hydroxide. What is the sum of the coefficients?

Answers

Answer:

Sum of the coefficients is 3, in both sides (reactant & product)

Explanation:

HCl and Ca(OH)₂ react in a neutralization reaction.

It is called neutralization because we can produce H₂O. It always occurs when you react an acid with a base.

The equation for this is:

2HCl + Ca(OH)₂  → CaCl₂ +  2H₂O

Sum of the coefficients is 3, in both sides (reactant & product)

Final answer:

The balanced molecular equation for the reaction between hydrochloric acid and calcium hydroxide is HCl(aq) + Ca(OH)2(aq) → CaCl2(aq) + 2 H2O(l), with a sum of coefficients equal to 5.

Explanation:

The balanced molecular equation for the reaction of hydrochloric acid (HCl) with calcium hydroxide (Ca(OH)2) is:

HCl(aq) + Ca(OH)2(aq) → CaCl2(aq) + 2 H2O(l)

To balance the equation, you must ensure that the number of atoms of each element on the reactant side is equal to the number of atoms of that element on the product side. In this reaction, two hydrochloric acid molecules are needed to react with one calcium hydroxide molecule to produce one molecule of calcium chloride and two molecules of water.

The sum of the coefficients in this balanced equation is 1 + 1 + 1 + 2 = 5.

Nuclear fusion is the process used to generate electricity in nuclear power plants. is the process in which a large nucleus spontaneously splits into two or more smaller nuclei. is the process in which two smaller nuclei combine to form a larger nucleus. is the process in which a large nucleus is bombarded with a neutron and then splits into two or more smaller nucleir.

Answers

Answer:

is the process in which two smaller nuclei combine to form a larger nucleus.

Explanation:

Nuclear fusion -

It is the type of reaction , where two or more lighter nuclei combines to form a larger nuclei , with large amount of energy released in the form of heat and light is referred to as a nuclear fusion .

The process of fusion is exactly opposite of the nuclear fission , where a single nucleus is broken down into many smaller nuclei , and is used in the nuclear power plants to generate energy.

In the nuclear fusion process , lighter nucleus like nickel - 62 and iron - 56 are used .

Answer:

Nuclear fusion can be defined asva reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles ( neutrons or protons). The difference in mass between the reactants and products is manifested as either the release or absorption of energy . This difference in mass arises due to the difference in atomic " binding energy " between the atomic nuclei before and after the reaction. Fusion is the process that powers active or " main sequence " stars , or other high magnitude stars.

A fusion process that produces nuclei lighter than iron-56 or nickel-62 will generally release energy. These elements have relatively small mass per nucleon and large binding energy per

nucleon . Fusion nuclei lighter than these releases energy (an exothermic process), while fusion of heavier nuclei results in energy retained by the product nucleons, and the resulting reaction is endothermic .

Nuclear fusion generates electricity (as a proposed form of power) by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. The devices designed to harness this energy are known as fusion reactors.

Balance the equation and identify the type of reaction for ? P4(s) + ? Ca(s) → ? Ca3P2(s). 1. 2; 6; 2 — decomposition 2. 2; 6; 2 — displacement 3. 1; 6; 2 — displacement 4. 1; 6; 2 — synthesis 5. 2; 6; 2 — synthesis 6. 1; 6; 2 — decomposition

Answers

Answer:

4. 1; 6; 2 — synthesis

Explanation:

Decomposition reaction is defined as the reaction in which a single large substance breaks down into two or more smaller substances.

[tex]AB\rightarrow A+B[/tex]

Single displacement reaction is defined as the reaction in which more reactive element displaces a less reactive element from its chemical reaction.

The reactivity of metal is determined by a series known as reactivity series. The metals lying above in the series are more reactive than the metals which lie below in the series.

[tex]A+BC\rightarrow AC+B[/tex]

Synthesis reaction is defined as the reaction in which smaller substances combine in their elemental state to form a larger substance.

[tex]A+B\rightarrow AB[/tex]

The unbalanced combustion reaction is shown below as:-

[tex]P_4+Ca\rightarrow Ca_3P_2[/tex]

On the left hand side,  

There are 4 phosphorus atoms and 1 calcium atom

On the right hand side,  

There are 2 phosphorus atoms and 3 calcium atoms

Thus,  

Right side, [tex]Ca_3P_2[/tex] must be multiplied by 2 to balance phosphorus.

Left side, [tex]Ca[/tex] is multiplied by 6 so to balance the whole reaction.

Thus, the balanced reaction is:-

[tex]P_4+6Ca\rightarrow 2Ca_3P_2[/tex]

Thus, answer:- 4. 1; 6; 2 — synthesis

Predict the shift in equilibrium position that will occur for each of the following reactions when the volume of the reaction container is increased.
A) 2COF2(g)⇌CO2(g)+CF4(g).
i) to the left.
ii) to the right.
iii) does not shift.
B) 2NO(g)+O2(g)⇌2NO2(g).
i) to the left.
ii) to the right.
iii) does not shift.
C) 2N2O5(s)⇌4NO2(g)+O2(g).
i) to the left.
ii) to the right.
iii) does not shift.
D) 2SO2(g)+O2(g)⇌2SO3(g).
i) to the left.
ii) to the right.
iii) does not shift.
E) PCl5(g)⇌PCl3(g)+Cl2(g).
i) to the left.
ii) to the right.
iii) does not shift.

Answers

Explanation:

Any change in the equilibrium is studied on the basis of Le-Chatelier's principle.

This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.

Increase the volume:

If the volume of the container is increased, the pressure will decrease according to Boyle's Law. Now, according to the Le-Chatlier's principle, the equilibrium will shift in the direction where increase in pressure is taking place. So, the equilibrium will shift in a direction where more number gaseous moles are present.

A) [tex]2COF_2(g)\rightleftharpoons CO_2(g)+CF_4(g)[/tex]

Number of gaseous moles on reactant side = 2

Number of gaseous moles on product side = 2

Equilibrium will not shift any direction as on both sides number of gaseous moles are same.

B) [tex]2NO(g)+O_2(g)\rightleftharpoons 2NO_2(g)[/tex]

Number of gaseous moles on reactant side = 3

Number of gaseous moles on product side = 2

Equilibrium will shift any left direction.

C) [tex]2N_2O_5(g)\rightleftharpoons 4NO_2(g)+O_2[/tex]

Number of gaseous moles on reactant side = 2

Number of gaseous moles on product side = 5

Equilibrium will shift any right direction.

D) [tex]2SO_2(g)+O_2(g)\rightleftharpoons 2SO_3(g)[/tex]

Number of gaseous moles on reactant side = 3

Number of gaseous moles on product side = 2

Equilibrium will shift any left direction.

E) [tex]PCl_5\rightleftharpoons PCl_3(g)+Cl_2(g)[/tex]

Number of gaseous moles on reactant side = 1

Number of gaseous moles on product side = 2

Equilibrium will shift any right direction.

Chlorofluorocarbons (CFCs) such as CF₂Cl₂ are refrigerants whose use has been phased out because of their destructive effect on Earth's ozone layer. The standard enthalpy of evaporation of CF₂Cl₂ is 17.4 kJ/mol, compared with ΔH°vap = 41 kJ/mol for liquid water.

Answers

From what we have below, we can see the complete and full question.

Chlorofluorocarbons (CFCs) such as CF2Cl2 are refrigerants whose use has been phased out because of their destructive effect on Earth's ozone layer. The standard enthalpy of evaporation of CF2Cl2 is 17.4 kJ/mol, compared with delta Hvaporization = 41 kJ/mol for liquid water. How many grams of liquid CF2Cl2 are needed to cool 122.1 g of water from 48.6 to 27.6 degrees Celsius? The specific heat of water is 4.184 J/(g x degrees Celsius).

Answer:

74.56 g

Explanation:

Given that;

The standard enthalpy of evaporation of CF₂Cl₂ = 17.4 kJ/mol

Δ [tex]H_{vapourization}[/tex] = 41kJ/mol (for liquid water)

grams of liquid CF₂Cl₂ (i.e Mass of CF₂Cl₂ required to absorb the heat from water) = ???

mass( in gram) of water = 122.1g

Temperature (T₁) = 48.6°C

Temperature (T₂) = 27.6°C

ΔT = (T₂ - T₁) = 27.6° - 48.6° = -21°C

Specific heat of water (C) = 4.18 J/g*deg*°C

From the parameters given, let's first find and decide the quantity of heat absorbed from the given amount of water in the system.

Q (quantity of heat) = mCΔT

= 122.1 g × 4.18 J/g*deg*°C × 27.6°C

= -10728.1944 J

= -10.73 kJ

-10.73 kJ is the amount of heat given to CF₂Cl₂ by the water.

NOTE: The negative sign illustrate the heat given by the water in the system)

Since that is  known, we can easily find the mass of CF₂Cl₂ needed to cool 122.1 g of water.

Since the molar mass of  CF₂Cl₂ = 120.91 g /mol

∴ Mass of CF₂Cl₂  needed to cool 122.1g of water = [tex]\frac{10.73kJ}{17.4kJ}*120.91g)

= 74.56g

Other Questions
How have chemicals placed your life or the lives of others in jeopardy? Paradigm Media is a company run by a group of new media professionals. The owners of the company do not have any personal liability and file taxes only on their individual tax returns. A recent survey reported that out of 50 teenagers, 9 said they get most of their news from a newspaper. At this rate, how many out of 300 teenagers would you expect to get their news from a newspaper? A republic can best be summarized as a system in which citizensA) vote on all the important decisions made by the governmentB) form political parties to represent their political goalsC) tell other people how to vote on important issuesD) elect leaders to represent them in government Sureepan borrows 40 000 Bhat to buy a new computer. The bank charges 7.5% interest compounded yearly. Sureepan agrees to pay a half of the amount still owing at the end of each year after the interest has been compounded. Determine how much Sureepan would have paid back at the end of 4 years. Hamiltons loose-construction view gave the federal government 7. A neutral aluminum rod is at rest on a foam insulating base. A negatively charged balloon is brought near one end of the rod but not in direct contact with it. In what way, if any, will the charges in the rod be affected? A stretched string is fixed at both ends, 77.7 cm apart. If the density of the string is 0.014 g/cm and its tension is 600 N, what is the wavelength of the first harmonic? What is the ratio of the electrical force to the gravitational force between an electron and a positron? How are Walton's and Frankenstein's stories alike?OA. Both are seeking to create life: Victor with a human and Waltonwith an animal.B. Both are hoping to find love: Victor loves Elizabeth, and Waltonloves MargaretOC. Both are seeking to make new discoveries: Victor with science andWalton with exploration.D. Both are recovering from loss: Victor lost his mother, and Waltonlost his crew . Which cross section is NOT possible when slicing a square prism with a plane?A. rectangleB. trianglec. hexagonD. octagon A wire carrying a 32.0 A current passes between the poles of a strong magnet such that the wire is perpendicular to the magnet's field, and there is a 2.15 N force on the 3.00 cm of wire in the field. What is the average field strength (in T) between the poles of the magnet? What role did F.W. de Klerk have in South Africa's apartheid era? A. He helped blacks secretly leave South Africa. B. He was the first black president of South Africa. C. He led protests against Nelson Mandela. D. He was the president who ended apartheid. PLZ HELP MEHWhich statement about the Dred Scott case is true?A.The Supreme Court ruled that Dred Scott was a free man because he had been transported into a state where slavery was illegal, which incensed pro-slavery activists.B.The Supreme Court ruled that Dred Scott was neither a citizen nor entitled to the rights of citizenship, which inflamed tensions that led to the Civil War.C.The Supreme Court ruled that even though Dred Scott was a citizen entitled to equal treatment, racial segregation was legal and constitutional.D.The Supreme Court ruled that the power of judicial review extended not only to state laws that it deemed unconstitutional, but also to acts of Congress. When two people voluntarily trade with each other:A. One person will be better off and the other person will be worse off.B. Whether they will be better off or worse off depends on how they negotiate with each other.C. Both of them will be worse off.D. Both of them will be better off. What is the answer? What is the probability of drawing 2 cards in succession (without replacement) from a standard deck and having them both be face cards? EXTRA POINTSPLEASE HELP ASAPPWhich type of figurative language is used in the quote below?"But the house on Mango Street is not the way they told it at all. It's small and red with tight steps in front and windows so small you'd think they were holding their breath. Bricks are crumbling in places, and the front door is so swollen you have to push hard to get in. There is no front yard, only four little elms the city planted by the curb. Out back is a small garage for the car we don't own yet and a small yard that looks smaller between the two buildings on either side."Select one:a. imagery b. hyperbole c. onomatopoeia The sculpted pinnacles in Bryce Canyon National Park are the result of _____. A. differential weathering B. frost wedging C. exfoliation D. unloading The Mendeleev and Moseley periodic charts hadgaps for undiscovered elements. Why do you think the chart used by Moseley was more accurate at predicting where new elements would be placed? Steam Workshop Downloader