Place the butane lighter in the sink or tub and let it rest there until needed. why do we soak the lighter in the water bath?

Answers

Answer 1

Answer:

To regulate the gas pressure in the lighter tank and avoid build-up of pressure.  

Explanation:

First, you need to understand the properties of this organic molecule. Butane. C₄H₁₀ is a colorless, odorless, but HIGHLY FLAMMABLE liquefied gas. The liquid is flammable at 25⁰C whilst the vapor is flammable at 15⁰C. As you can see, this is an extremely flammable gas. It has a high vapor pressure (tendency by liquids to escape as gas molecules)  Any external heat source induces a pressure build up that might cause the gas to explode when there is an open flame. Combining the two points above, a thermo-regulated water bath that has a lower temperature (below 15⁰C) will be need to prevent the pressure build up and ensure that any leakage will not have a high vapor pressure.
Answer 2

We soak the lighter in the water bath to achieve uniform heating and reduce the fire hazard inherent in direct heating methods, ensuring a safer laboratory environment.

We soak the lighter in the water bath to ensure uniform heating of the reaction mixture with less fire hazard. Direct heating on a Bunsen burner or hot plate can cause uneven temperatures and increased risks of fire or overheating. A water bath is especially beneficial when a chemical reaction must be heated for a certain time to occur. It provides a stable and consistent heat source, which is safer and can prevent accidents in the lab. By using a water bath, we also prevent the lighter from getting excessively hot, which could cause it to malfunction or pose a safety risk.


Related Questions

One isotope of carbon (C) has exactly the same mass number and atomic mass since it was used as the definition of the atomic mass unit (amu). Which isotope is it and what is its atomic mass?

Answers

Answer:The isotope is Carbon-12 and its atomic mass is 12.

Explanation:

Mass number is the total number of protons and neutrons in a nucleus.

Atomic number is the number of protons in the nucleus of an atom.

An isotope of a chemical element is an atom that has a different mass number but the same atomic number as the element. The difference in mass number is from the number of neutrons (that is, a greater or lesser atomic mass) than the standard for that element.

Carbon-12 is an isotope of carbon it has 6 neutrons and 6 protons, giving it a mass number of 12 and atomic number of 6. Carbon-12 is a stable isotope of carbon, it has the same mass number and atomic number as carbon.

The isotope of carbon that has exactly the same mass and atomic number as used in the definition of the atomic mass unit is;

Isotope Carbon-12.

In chemistry, we know that;

Mass number is defined as the sum of the protons and the neutrons present in the nucleus of an atom.

Meanwhile, Atomic number is defined  the number of protons in the nucleus or number of electrons around the nucleus of an atom.

While an isotope is defined as an atom of an element  that has the same atomic number but different mass number.  

The isotope Carbon-12 is an isotope of carbon that has 6 protons and 6 neutrons.This means from the definition of mass number; Carbon-12 will have a mass number = 6 + 6 = 12

Number of protons = number of electrons. Thus, number of electrons = 6 and therefore, atomic number = 6.

From periodic table, the element Carbon has the same mass number and atomic number as its' isotope carbon-12.

Read more at; https://brainly.com/question/15610741

Describe a sigma bond.a. orbital overlapping with the side of a p orbitalb. overlap of two d orbitalsend to end overlap of p orbitalc. sp orbital overlapping with an f orbitald. side by side overlap of d orbitals

Answers

A sigma bond b. overlap of two d orbitals end-to-end overlap of p orbital.

What is a sigma bond?

A sigma bond is a strong bond that is made up of overlapping orbitals. In fact, these bonds are the strongest known bonds in chemical reactions. The overlapping orbitals are in the form of covalent bonding and this gives us the idea that sigma bonds are strong in nature.

In addition, sigma bonds are mostly common with diatomic elements and compounds. There are three orbitals where the sigma bond can be found and they are the p-p, s-p, and the s-s orbitals. These are known for forming symmetry groups.

Learn more about Sigma bonds here:

https://brainly.com/question/31377841
#SPJ6

The volume of a gas is reduced from 4 L to 0.5 L while the temperature is held constant. How does the gas pressure change?

It increases by a factor of two.
It increases by a factor of eight.
It decreases by a factor of eight.
It increases by a factor of four. ​

Answers

Answer:

It increases by a factor of eight

Explanation:

When temperature is held constant, gas pressure changes according the volume, in undirectly proportion.

Volume increases →  Pressure decreases

Volume decreases → Pressure increases

As volume gas, was reducted from 4L to 0.5L, it was reduced by 1/8, so the pressure gas was increased by a factor of eight.

Answer:

It increases by a factor of eight.

Explanation:

Air is 78.1% nitrogen, 20.9% oxygen, and 0.934% argon by moles. What is the density of air at 22 °C and 760 torr? Assume ideal behavior.

Answers

Answer:

The density of air at 22 °C and 760 torr is 1.195 KG/m³

Explanation:

The solution to the above  question is arrived t by considering the given variables and calculating the number of moles in a 1 m³ sample of air by plugging values into the universal gas equation  from which the number of moles of the constituent gases can be calculated by Dalton's law of partial pressure, then their masses and lastly the density of air is calculated using the formula, Density = mass/volume

The given variables are

Percentage Nitrogen = 78.1% by volume

Percentage oxygen = 20.9% by volume

Percentage argon = 0.934% by volume

The molar mass of nitrogen = 14.006g/mol

The molar mass of oxygen = 15.999g/mol

The molar mass of argon = 39.948 g/mol hence Considering a unit volume of air of one cubic meter (1m^3) we have

0.781 m³ of nitrogen, 0.209 m³ of oxygen and 0.00934 m³ of argon

The number of moles in 1 m³ of gas at 22 °C and 760 torr is given by

PV = nRT or n = [tex]\frac{PV}{RT}[/tex] = where 760 torr = 101325Pa we have n = [tex]\frac{(101325)(0.001)}{(8.314)(295.15)}[/tex] = 0.00413 mols per liter or 41.29 moles/m³

thus we have number of moles of nitrogen = 42.129 × 78.1% = 32.25 moles and the mass of nitrogen = 32.25×28.02 = 903.6 g

number of moles of oxygen= 42.129 × 20.1% = 8.63 moles and the mass of nitrogen = 8.63×32 = 276.16 g

number of moles of argon= 42.129 × 0.934% = 0.386 moles and the mass of nitrogen = 0.386×40 = 15.43 g

Therefore, mass of one cubic meter of air (1 m³), has a mass of

903.6 g + 276.16 g + 15.43 g = 1195.2 g or 1.195 KG Hence the density of air

is given by Density = [tex]\frac{mass}{volume}[/tex] =[tex]\frac{1.195 KG}{1 m^{3} }[/tex]  = 1.195 KG/m³

The density of air at 22 °C and 760 Torr is 1.19 g/L.

Air is 78.1% nitrogen, 20.9% oxygen, and 0.934% argon by moles. We will calculate the average molar mass of the air (M) as a weighted average of the molar masses of its constituents.

[tex]M = 78.1\% \times M(N_2) + 20.9\% \times M(O_2) + 0.934\% \times M(Ar)\\\\M = 78.1\% \times 28.00g/mol + 20.9\% \times 32.00g/mol + 0.934\% \times 39.95 g/mol = 28.93 g/mol[/tex]

Then, we will convert 22 °C to Kelvin using the following expression.

[tex]K = \° C + 273.15 = 22\° C + 273.15 = 295 K[/tex]

Assuming ideal behavior, we can calculate the density (ρ) of the air at 295 K (T) and 760 Torr (P) using the following expression.

[tex]\rho = \frac{P \times M }{R \times T} = \frac{760 Torr \times 28.93g/mol }{(62.4mmHg.L/mol.K) \times 295K} = 1.19 g/L[/tex]

where,

R: ideal gas constant

The density of air at 22 °C and 760 Torr is 1.19 g/L.

Learn more: https://brainly.com/question/19265446

In aerobic cellular respiration, if four molecules of pyruvic acid enter steps two, the formation of acetyl CoA and three, the Krebs cycle, how many molecules of ATP, NADH, and FADH2 will be formed?

Answers

Answer:

The aerobic cellular respiration of the glucose where glucose is converted to energy via four steps as follows

1. Glycolysis (glucose break down to pyruvic acid)

2. Link reaction

3. Krebs cycle

4. Electron transport chain, or ETC

The four pyruvic acid produces Four ATP, twenty NADH, and four [tex]FADH_{2}[/tex] molecules

Explanation:

When four pyruvic acid enters step two of the aerobic cellular respiration, they are converted by Oxidative decarboxylation into acetyl-CoA, four molecules of NADH and four molecule of CO2 are formed. This process is otherwise called the link reaction or transition  step, because it connects or links the Krebs cycle and glycolysis.

From the chemical reactions involved in cellular respiration of one glucose molecule, from two pyruvic acid molecules we have 2 ATP molecules, 10 NADH molecules, and 2 FADH2 molecules

Hence from four pyruvic acid molecules we have that the acetyl-CoA produced from the four pyruvic acid enters the the Krebs cycle and forms four ATP molecules, twenty NADH molecules, and four [tex]FADH_{2}[/tex] molecules.

Final answer:

In aerobic cellular respiration, four molecules of pyruvic acid will generate a total of four molecules of ATP, sixteen molecules of NADH (four from the conversion to Acetyl CoA, and twelve from the Krebs cycle) and four molecules of FADH2

Explanation:

In aerobic cellular respiration, pyruvic acid is converted into acetyl CoA. One molecule of pyruvic acid generates one molecule of NADH during this conversion so four molecules of pyruvic acid will yield four molecules of NADH. Acetyl CoA then enters the Krebs cycle, for each molecule of Acetyl CoA that goes through the Krebs cycle, three molecules of NADH, one molecule of FADH2, and one molecule of ATP is formed. Therefore, the four molecules of pyruvic acid would end up generating four molecules of ATP, twelve molecules of NADH and four molecules of FADH2 during the Krebs cycle (not including the NADH generated during the conversion to Acetyl CoA).

Learn more about aerobic cellular respiration here:

https://brainly.com/question/33444823

#SPJ3

Some prokaryotes, such as the blue-green ____________ , are photosynthetic and contain ____________ where chlorophyll and other pigments absorb energy from the sun to produce carbohydrates via photosynthesis.

Answers

Final answer:

Blue-green algae are prokaryotes that carry out photosynthesis in chloroplasts, converting light energy into carbohydrates by using chlorophyll as a pigment for energy absorption.

Explanation:

Some prokaryotes, such as blue-green algae, are photosynthetic and contain chloroplasts where chlorophyll and other pigments absorb energy from the sun to produce carbohydrates via photosynthesis. The algae, specifically, are among the groups of prokaryotes that are capable of photosynthesis, much like plants. The chloroplasts in these cells function as the site where light energy captured by chlorophyll is converted into chemical energy, which is then used to create carbohydrates from carbon dioxide and water.

Learn more about Photosynthetic Prokaryotes here:

https://brainly.com/question/35402931

#SPJ3

es the molecule defective leading to sickle cell anemia. Predict whether the following hypothetical change would or would not have a major effect at position 6.

Answers

Full Question:

In hemoglobin, a single amino acid change at position 6 from Glu to Val has major consequences on hemoglobin structure that makes the molecule defective leading to sickle cell anemia. Predict whether the following hypothetical change would or would not have a major effect at position 6. Briefly explain (1-2 sentences). Glu to Leu Hint: Look at the structures of the R groups and consider their chemical properties

Answer:

The structure of the haemoglobin, hence the RBC won't be same as normal.

Explanation:

Both the leucine and glutamic acid are alpha amino acids which have an alpha carboxylic acid group and an alpha amino group. The variable in case of glutamic acid is propyl acid while the variable in case of leucine is isobutyl.

The glutamic acid is the normal amino acid of the 6th position of Beta chain of hemoglobin. Its an acid group, so can form bonds with another base inside the haemoglobin, or can form other hydrogen bonds. But the isobutyl group is an alkyl group. So it doesn't have that much effect in the recovering the structure, and sickle cell anemia prevails.

A hot metal plate at 150°C has been placed in air at room temperature. Which event would most likely take place over the next few minutes?
A. Molecules in both the metal and the surrounding air will start moving at lower speeds.
B. Molecules in both the metal and the surrounding air will start moving at higher speeds.
C. The air molecules that are surrounding the metal will slow down, and the molecules in the metal will speed up.
D. The air molecules that are surrounding the metal will speed up, and the molecules in the metal will s

Answers

Answer:

The air molecules that are surrounding the metal will speed up, and the molecules in the metal will slow down.

Explanation:

The hot metal at 150 °C loses heat energy by conduction to the surrounding air molecukes and as such cools down, the cooler metal consists of lesser enery to power the movement of the molecules of the metal hence the metal molecules slows down in their movement as seen in the equation of heat and temperature

ΔH = m×C×ΔT where ΔH is the change in heat energy (heat loss of the metal, C is the heat capacity and ΔT is the temperature change

For the surrounding air that experiences increase in temperature the same process follows leading to increase in the kinetic energy of the air molecules and decrease in kinetic energy of the metal molecules as shown in the formula

K = [tex]\frac{3}{2}[/tex]×[tex]\frac{R}{N_{A} }[/tex]×T where K = Kinetic Energy, R = gas constant (8.314J/mol×K) and [tex]N_{A}[/tex] = Avogadros number (6.022×[tex]10^{23}[/tex] atoms/mol)

Answer:

d

Explanation:

A compound's molecular formula must always be different than the compound's empirical formula. TRUE FALSE

Answers

Answer: False

Explanation:

Molecular formula is the chemical formula which depicts the actual number of atoms of each element present in the compound.  

Empirical formula is the simplest chemical formula which depicts the whole number of atoms of each element present in the compound.

Example: [tex]CH_4[/tex] has similar molecular formula and empirical formula as the elements are already present in simplest of the ratios.

[tex]C_2H_2[/tex] has molecular formula of [tex]C_2H_2[/tex] but [tex]CH[/tex] as the empirical formula.

We expect the enthalpy of cumbustion of two isomers to be _________. The molecular formulas of two molecules are _____, so the balanced chemical equation for the two combustion reactions are________, in calculation of combustion enthalpy from _____ of products and reactants, the difference will be in the ______of the two_____

Different, Isomers, standard enthalpies of formation, combustion products, standard enthalpies of combustion, the same, very similar

The rod-shaped n-pentane has ________ possible________ than the almost________ neopentane

Tetrahedral, less, vibrational and rotational motions, more, translational motion, spherical

Answers

Final answer:

The enthalpy of combustion of two isomers with the same molecular formula will be different due to their different structural arrangements. The rod-shaped n-pentane has less possible vibrational and rotational motions compared to the almost spherical neopentane.

Explanation:

The enthalpy of combustion of two isomers with the same molecular formula will be different. Isomers are compounds that have the same molecular formula but different structural arrangements. For example, the isomers of C4H10 are n-butane and isobutane. The balanced chemical equations for their combustion reactions are:

n-Butane: C4H10 + 6.5O2 → 4CO2 + 5H2O

Isobutane: C4H10 + 6.5O2 → 4CO2 + 5H2O

When calculating the combustion enthalpy from the standard enthalpies of formation of products and reactants, the difference in enthalpy will be due to the different standard enthalpies of combustion of the two isomers.

The rod-shaped n-pentane has less possible vibrational and rotational motions than the almost spherical neopentane. This is because neopentane is a more compact, three-dimensional molecule, while n-pentane is a linear molecule. Linear molecules have fewer degrees of freedom and therefore have fewer potential vibrational and rotational motions compared to more complex, three-dimensional molecules like neopentane.

The enthalpies of combustion for isomers are different due to structural variations. N-pentane has more vibrational and rotational motions compared to neopentane.

'We expect the enthalpy of combustion of two isomers to be different. The molecular formulas of two molecules are isomers, so the balanced chemical equations for the two combustion reactions are very similar. In calculation of combustion enthalpy from standard enthalpies of formation of products and reactants, the difference will be in the standard enthalpies of combustion of the two molecules.'

The rod-shaped n-pentane has more possible vibrational and rotational motions than the almost spherical neopentane.

Determine the percent composition of CH2O.

Answers

Answer:

The given chemical compound has 2 atoms of hydrogen and one atom of oxygen for each atom of carbon. The mass of CH2O is 12 + 2*1 + 16 = 30. The molecular weight of the compound is 180.18 which is approximately 180. This gives the molecular formula of the chemical compound as C6H12O6.

Explanation:

Final answer:

To calculate the percent composition of CH2O, determine the molar mass of each element and the total molar mass of the compound. The percent composition is approximately 40.0% Carbon, 6.7% Hydrogen, and 53.3% Oxygen.

Explanation:

To calculate the percent composition of CH2O, we will need to determine the molar mass of each element in the compound and the total molar mass of the compound. The molar masses from the periodic table are approximately 12.01 g/mol for Carbon (C), 1.01 g/mol for Hydrogen (H), and 16.00 g/mol for Oxygen (O).

First, let's calculate the total molar mass of CH2O: (1 × 12.01) + (2 × 1.01) + (1 × 16.00) = 12.01 + 2.02 + 16.00 = 30.03 g/mol.

Now, let's find the percent composition for each element:

Carbon: (12.01 g/mol ÷ 30.03 g/mol) × 100% = 40.0%Hydrogen: (2.02 g/mol ÷ 30.03 g/mol) × 100% = 6.7%Oxygen: (16.00 g/mol ÷ 30.03 g/mol) × 100% = 53.3%

The percent composition of CH2O is therefore approximately 40.0% Carbon, 6.7% Hydrogen, and 53.3% Oxygen.

Which of the following statements about acids/bases is correct: Group of answer choices

1. molecule with a pH of 9 has a higherA concentration of H than water
2. A molecule with a pH of 10 has a higher concentration of OH- than water
3. A molecule with a pH of 12 has a lower concentration of OH- than water
4. A molecule with a pH of 4 has a higher concentration of OH- than water

Answers

Answer:

2

Explanation:

To answer this correctly, we need to make a reference to the pH scale. Here we know that pH 1-6 stands for acidity where the smaller the value, the higher the concentration of H3O+ and the higher the acidity. Also, pH 7 stands for neutral, there is an interpreted balance here, where the concentrations are averagely equal. Also , we have pH 8 to 14 where we have the alkalinity, the higher the value the higher the concentration of OH-.

Now let’s solve the question at hand.

1 is wrong

Water is termed neutral with an average balance of the two ions. pH 9 means higher OH- which stipulates lesser H+ than water.

2 is correct

The pH is termed alkaline and has more hydroxide concentration than water.

3 is wrong

It should have a higher concentration of OH- than water

4 is wrong

It should have a higher acidity and lesser alkalinity. This translates to higher H+ and lower OH- relative to water

Mathematically combine the three given reactions so that they sum to give a balanced chemical equation describing the production of propane C3H8(g), from its elements, C(s.graphite) and H2lg). Show your intermediate steps. For example, if you must reverse reaction (c), enter the reverse in the appropriate answer box; if you multiply reaction (a) by 2, enter the updated equation in the corresponding answer box. Make sure to enter the overall balanced equation at the bottom (a) C3Hg(g)+502C2+H2O0) (b) C(s)+02(g)> CO2(g) (c) H2(«)+ 7o(Hod)

Answers

Answer and Explanation

The final reaction is the production of propane from Carbon and Hydrogen.

3C (s) + 4H2 (g) ---> C3H8 (g)

So, reverse eq. A,

3CO2 (g) + 4H20 (l) ---> C3H8 (g) + 502 (g)

Add 3 × eq. B,

3C (s) + 3O2 (g) ----> 3CO2 (g)

Add 4 × eq. C,

4H2 (g) + 2O2 (g) ---> 4H20 (l)

Writing them together,

3CO2 (g) + 4H20 (l) ---> C3H8 (g) + 502 (g)

+ 3C (s) + 3O2 (g) ----> 3CO2 (g)

+ 4H2 (g) + 2O2 (g) ---> 4H20 (l)

------------------------------------------------------------

3CO2 (g) + 4H20 (l) + 3C (s) + 3O2 (g) + 4H2 (g) + 2O2 (g) ---> C3H8 (g) + 502 (g) + 3CO2 (g) + 4H20 (l)

The compounds that exist on both sides cancel out and we're left with

3C (s) + 4H2 (g) ---> C3H8 (g)

So, mathematically, the final reaction can be written as:

(-eq. A + 3(eq. B) + 4(eq. C))

-A+3B+4C = 3C (s) + 4H2 (g) ---> C3H8 (g)

QED!

[tex]\[{3\text{C(s, graphite)} + 4\text{H2(g)} \rightarrow \text{C3H8(g)} + 5\text{O2(g)}} \][/tex]

This balanced equation shows the production of propane (C3H8) from its elements carbon and hydrogen gas.

To combine the given reactions to form the balanced chemical equation describing the production of propane (C3H8) from its elements carbon (C, as graphite) and hydrogen (H2), let's follow these steps:

Given reactions:

(a) [tex]\( \text{C3H8(g)} + 5\text{O2(g)} \rightarrow 3\text{CO2(g)} + 4\text{H2O(g)} \)[/tex]

(b) [tex]\( \text{C(s, graphite)} + \text{O2(g)} \rightarrow \text{CO2(g)} \)[/tex]

(c) [tex]\( \text{H2(g)} + \frac{1}{2}\text{O2(g)} \rightarrow \text{H2O(g)} \)[/tex]

We need to manipulate these reactions to combine them into one overall balanced equation that shows the formation of propane (C3H8) from carbon and hydrogen.

Step-by-Step Combination:

1. Reverse Reaction (a):

[tex]\( 3\text{CO2(g)} + 4\text{H2O(g)} \rightarrow \text{C3H8(g)} + 5\text{O2(g)} \)[/tex]

This is the reverse of reaction (a), which is necessary to show the formation of propane.

2. Multiply Reaction (b) by 3:

[tex]\( 3\text{C(s, graphite)} + 3\text{O2(g)} \rightarrow 3\text{CO2(g)} \)[/tex]

Multiply reaction (b) by 3 to balance the carbon atoms with the propane formation reaction.

3. Multiply Reaction (c) by 4:

[tex]\( 4\text{H2(g)} + 2\text{O2(g)} \rightarrow 4\text{H2O(g)} \)[/tex]

Multiply reaction (c) by 4 to balance the hydrogen atoms with the propane formation reaction.

4. Combine the Reactions:

Now, add the balanced reactions (reverse of (a), multiplied (b), and multiplied (c)) to get the overall balanced equation for the formation of propane:

[tex]\( 3\text{C(s, graphite)} + 3\text{O2(g)} + 4\text{H2(g)} + 2\text{O2(g)} \rightarrow 3\text{CO2(g)} + 4\text{H2O(g)} + 5\text{O2(g)} \)[/tex]

5. Simplify the Equation:

Combine like terms (oxygen on both sides):

[tex]\( 3\text{C(s, graphite)} + 3\text{O2(g)} + 4\text{H2(g)} \rightarrow 3\text{CO2(g)} + 4\text{H2O(g)} + 5\text{O2(g)} \)[/tex]

During an experiment, 575 mL of neon gas at 101 kPa were compressed in a cylinder to a volume of 144 mL.

What was the new pressure of the gas, if the temperature remained constant?

Answers

Answer:

403.3 kPa is the new pressure

Explanation:

This problem is solved by this formula:

P₁ . V₁ = P₂ . V₂

101kPa . 575 mL = P₂ . 144mL

(101kPa . 575 mL) / 144 mL = P₂

403.3 kPa = P₂

Final answer:

Using Boyle's Law, the new pressure of neon gas compressed from 575 mL at 101 kPa to 144 mL, with temperature held constant, is found to be 403.125 kPa.

Explanation:

The student asked for the new pressure of neon gas that was compressed from 575 mL at 101 kPa to a volume of 144 mL, given that the temperature remained constant. This type of problem involves ideal gas behavior and can be solved using Boyle's Law, which states that for a given mass of gas at constant temperature, the volume of the gas is inversely proportional to its pressure (P₁V₁ = P₂V₂).

Starting with the initial conditions:

Initial volume (V₁) = 575 mL

Initial pressure (P₁) = 101 kPa

And the final condition:

Final volume (V₂) = 144 mL

Since temperature remains constant, we can calculate the final pressure (P₂) using the formula:

P₂ = (P₁* V₁) /V₂

Substitute the given values into the equation:

P₂ = (101 kPa* 575 mL) \/ 144 mL = 403.125 kPa

Hence, the new pressure of the neon gas after compression is 403.125 kPa.

what events and experiences lead bruno to gradually give up some of his innocence and see things differently

Answers

Answer:

The events of Bruno seeing the young boy in the concentration camp, slowly seeing his father’s evil side come out, and having his sister explain to him what was really happening; all lead Bruno to gradually see what was really going on.

Explanation:


The density of water at 3.98°C is 1.00000 g/mL. What is the mass in pounds of 16.743 L of water?

Answers

Answer:

The answer to your question is  36.9 pounds

Explanation:

Data

density = 1 g/ml

mass = ?

volume = 16.743 L

- To solve this problem use the formula of density.

density = mass / volume

- Solve for mass

Mass = density x volume

- Convert volume to ml

                    1000 ml --------------- 1 L

                      x          ---------------- 16.743 L

                      x = (16.743 x 1000) / 1

                      x = 16743 ml

- Substitution

Mass = (1 g/ml)(16743 ml)

Simplification and result

Mass = 16743 g

- Convert mass to pounds

               1 pound ------------------ 453.58 g

                x            ------------------ 16743 g

                x = (16743 x 1) / 453.58

                x = 36.9 pounds

Final answer:

The mass of 16.743 L of water in pounds can be calculated as approximately 36.904 pounds.

Explanation:

To calculate the mass of water in pounds, we first determine the mass in grams using the given water volume and density.

Since the density of water is 1.00000 g/mL, and we know that 1 L is equal to 1000 mL, we multiply the volume in liters by the density in g/mL and by 1000 to get mass in grams.

This gives us 16.743 L * 1.00000 g/mL * 1000 = 16743 grams.

Converting grams to pounds, we know 1 pound is approximately 453.592 grams

So, the mass of water is then 16743 g / 453.592 g/lbs = 36.904 lbs. Therefore, the mass of 16.743 L of water is approximately 36.904 pounds.

Learn more about Mass of Water here:

https://brainly.com/question/36385722

#SPJ11

During a period of discharge of a lead-acid battery, 405 g of Pb from the anode is converted into PbSO4 (s).

What mass of PbO2 (s) is reduced at the cathode during this same period?
and
How many coulombs of electrical charge are transferred from Pb to PbO2?

Answers

Answer:

The answers to the question are as follows

First part

The mass of PbO2 (s) reduced at the cathode during the period is = 467.55_g

Second part

The electrical charge are transferred from Pb to PbO2 is 377186.86_C or 3.909 F  

Explanation:

To solve this, we write the equation for the discharge of the lead acid battery as

H₂SO₄ → H⁺ + HSO₄⁻

Pb (s) + HSO⁻₄ → PbSO₄ + H⁺ + 2e⁻

at the cathode we have

PbO₂ + 3H⁺ + HSO⁻₄ + 2e⁻ → PbSO₄ + 2H₂O

Summing the two equation or the total equation for discharge is

Pb (s) + PbO₂ + 2H₂SO₄ → 2PbSO₄ + 2H₂O

From the above one mole of lead and one mole of PbO₂  are consumed simultaneously hence

Number of moles of lead contained in 405 g of Pb with molar mass  = 207.2 g/mole = (405 g)/ (207.2 g/mole) = 1.95 mole of Pb

Hence number of moles of  PbO₂ reduced at the cathode = 1.95 mole

mass of  PbO₂ reduced at the cathode = (number of moles)×(molar mass)

= 1.95 mole × 239.2 g/mol = 467.55 g of Lead (IV) Oxide is reduced at the cathode

Part B

Each mole of Pb transfers 2e⁻ or 2 electrons, therefore 1.95 moles of Pb will transfer 2 × 1.95 = 3.909 moles of electrons transferred

Each electron carries a charge equal to -1.602 × 10⁻¹⁹ C or one mole of electrons carry a charge equal to 96,485.33 coulombs

hence 3.909 moles carries a charge = 3.909 × 96,485.33 coulombs =377186.86 Coulombs of electrical charge

or transferred electrical charge = 377186.86 C or 3.909 Faraday

Answer:

Mass of [tex]PbO_2[/tex] reduced = [tex]467g[/tex][tex]3.75*10^5C[/tex] of electrical charge is needed

Explanation:

A) Moles Pb = [tex]\frac{405 g}{207.2 g/mol}[/tex]

[tex]= 1.95[/tex]

Moles Pb = moles [tex]PbO_2[/tex] reduced

Molar mass [tex]PbO_2 = 239.19 g/mol[/tex]

Grams [tex]PbO_2 = 1.95 mol * 239.19 g/mol[/tex]

[tex]= 466.42g[/tex]

B) 1 mol [tex]PbO_2[/tex] -------------------> 2 F electricity

1 .95 mol [tex]PbO_2[/tex] --------------> 2 * 1.95 F electricity = [tex]3.9F[/tex]

number of coulombs = [tex]3.9 * 96485C[/tex]

[tex]= 3.76*10^5C[/tex]

For more information on this visit

https://brainly.com/question/23379286

Doc Inmaking is thinking about the density of liquid water (d = 0.99823 g/mL at 20 °C) compared to the density of ice (0.9168 g/mL at 0 °C). His favorite water bottle has a total volume of 300 mL. He fills it with exactly 288 mL of water at 20 °C. He tightens the lid and puts the bottle in the freezer. What mass of water did Doc placed in the bottle? (Three significant digits, unit of g.)

Answers

Answer:

The mass of water did Doc placed in the bottle is 288 grams.

Explanation:

Mass of water filled in water bottle = M

Volume of the water filled in water bottle = V = 288 mL

Density of the water at 20°C , d= 0.99823 g/ml

[tex]D=\frac{M}{V}[/tex]

[tex]M=D\times V=0.99823 g/ml\times 288 mL=287.49024 g\approx 288 g[/tex]

The mass of water did Doc placed in the bottle is 288 grams.

Final answer:

The mass of water at 20 °C with a density of 0.99823 g/mL that Doc placed in the bottle is 287 g when rounded to three significant digits.

Explanation:

The mass of water Doc placed in the bottle can be calculated using the density of liquid water at 20 °C, which is 0.99823 g/mL. Given he filled it with exactly 288 mL of water, the mass of the water is calculated by multiplying the volume by the density: The mass of water at 20 °C with a density of 0.99823 g/mL that Doc placed in the bottle is 287 g when rounded to three significant digits.

Mass = volume × density

Mass = 288 mL × 0.99823 g/mL

Mass = 287.63064 g

Since we are asked to provide the mass to three significant digits, the mass of water Doc placed in the bottle is 287 g.

A 36.2 g object has a heat capacity of 12.5 J/ oC. How much energy (in J) is required to raise the temperature by 5.73 oC?

Answers

Answer:

[tex]\Delta H=2592.825\ J[/tex]

Explanation:

The expression for the calculation of the enthalpy change of a process is shown below as:-

[tex]\Delta H=m\times C\times \Delta T[/tex]

Where,  

[tex]\Delta H[/tex]  is the enthalpy change

m is the mass

C is the specific heat capacity

[tex]\Delta T[/tex]  is the temperature change

Thus, given that:-

Mass of object = 36.2 g

Specific heat = 12.5 J/g°C

[tex]\Delta T=5.73\ ^0C[/tex]

So,  

[tex]\Delta H=36.2\times 12.5\times 5.73\ J=2592.825\ J[/tex]

[tex]\Delta H=2592.825\ J[/tex]

Answer:71.625J

Explanation:Energy(Q)=mCpT

But recall that they said heat capacity (C), not specific heat capacity(cp)....Heat capacity=Mass *cp,but the heat capacity was clearly given so the mass is irrelevant in this case.

Energy (Q)=Heat capacity*Temperature change

Energy=12.5*5.73=71.625J

At -18.6 °C, a common temperature for household freezers, what is the maximum mass of sucralose (C₁₂H₁₉Cl₃O₈) in grams you can add to 2.00 kg of pure water and still have the solution freeze?
Assume that sucralose is a molecular solid and does not ionize when it dissolves in water.
[tex]K_f[/tex] = 1.86 °C/m.

Answers

Answer : The maximum mass of sucralose is, 7952.8 grams.

Explanation :  Given,

Molal-freezing-point-depression constant [tex](K_f)[/tex] for water = [tex]1.86^oC/m[/tex]

Mass of water (solvent) = 2.00 kg

Molar mass of sucralose = 397.64 g/mole

Formula used :  

[tex]\Delta T_f=i\times K_f\times m\\\\T^o-T_s=i\times K_f\times\frac{\text{Mass of sucralose}}{\text{Molar mass of sucralose}\times \text{Mass of water in Kg}}[/tex]

where,

[tex]\Delta T_f[/tex] = change in freezing point

[tex]\Delta T_s[/tex] = freezing point of solution = [tex]-18.6^oC[/tex]

[tex]\Delta T^o[/tex] = freezing point of water = [tex]0^oC[/tex]

i = Van't Hoff factor = 1 (for sucralose non-electrolyte)

[tex]K_f[/tex] = freezing point constant for water = [tex]1.86^oC/m[/tex]

m = molality

Now put all the given values in this formula, we get

[tex](0-(-18.6)^oC)=1\times (1.86^oC/m)\times \frac{\text{Mass of sucralose}}{397.64g/mol\times 2.00kg}[/tex]

[tex]\text{Mass of sucralose}=7952.8g[/tex]

Therefore, the maximum mass of sucralose is, 7952.8 grams.

Classify these substances? More than one answer may apply in each case.
N 2 solution heterogeneous mixture homogeneous mixture element compound pure substance
O 2 pure substance homogeneous mixture solution heterogeneous mixture element compound
N 2 O compound heterogeneous mixture element homogeneous mixture solution pure substance Air
(mostly N 2 and O 2 )
homogeneous mixture heterogeneous mixture solution pure substance element compound

Answers

Answer:

N2 element, pure substance

O2 element, pure substance

N2O Compound, pure substance

Air  (mostly N2 and O2 ) homogeneous mixture

Explanation:

N2, Nitrogen is known as the chemical element that is characterized by having atomic number 7 and that is symbolized by the letter N, in its molecular version, it is recognized as N2.

O2, Oxygen is the chemical element of atomic number 8, this molecular form is composed of two atoms of this element.

A chemical element is a type of matter, consisting of atoms of the same class.

N2O, Nitrous oxide is formed by the union of two molecules of nitrogen and one of oxygen, which is considered a chemical compound since it is a substance formed by the chemical combination of two different elements of the periodic table.

A pure substance is one that cannot change state or divide into other substances, except for a chemical reaction.

Air (mostly N2 and O2 ),  it is a homogeneous mixture of gases that constitutes the earth's atmosphere. A homogeneous mixture is a type of mixture in which its components are not distinguished and in which the composition is uniform and each part of the solution has the same properties.

Final answer:

Substances can be classified based on their composition and uniformity: N2 and O2 are elements and pure substances, N2O is a compound and a pure substance, and air is a homogeneous mixture or solution.

Explanation:

When classifying substances, we take into account their composition and uniformity. Here are the classifications for the mentioned substances:

N2 (Nitrogen) is an element and a pure substance since it is composed of only one type of atom.

O2 (Oxygen) is also an element and a pure substance, with two oxygen atoms bonded together.

N2O (Nitrous Oxide) is a compound as it is made up of two different elements, nitrogen and oxygen, in a fixed ratio and a pure substance due to its uniform composition.

Air, which is mostly made up of Nitrogen (N2) and Oxygen (O2), is a homogeneous mixture or solution because the composition is uniform throughout, and it is a mixture of multiple gases.

Learn more about Substance Classification here:

https://brainly.com/question/28508111

#SPJ6

Manganese sulfate forms a pale pink hydrate with the formula MnSO 4 ⋅ n H 2 O ( s ) . If this hydrate is heated to a high enough temperature, H 2 O ( g ) can be driven off, leaving the grey‑white anhydrous salt MnSO 4 ( s ) . A 16.260 g sample of the hydrate was heated to 300 ∘ C . The resulting MnSO 4 ( s ) had a mass of 14.527 g . Calculate the value of n in MnSO 4 ⋅ n H 2 O ( s ) .

Answers

Answer:

Value of n in MnSO₄.nH₂O is one.

Explanation:

The n represents the number of moles of water attached to the formula unit manganese sulfate. These moles (n) can be determined by taking the ratio of the moles of anhydrous salt and the moles of water. The moles of water can be determined by taking the difference of final and initial mass of the salt. This difference is equal to the mass of the water, mathematically it can be represented as,

Mass of H₂O = initial mass of the salt (g) - final mass of the salt (g)

Mass of H₂O = 16.260 g - 14.527 g

Mass of H₂O = 1.733 g

moles of H₂O = (1.733 g) ÷ (18.015 g/mole)

moles of H₂O =  0.0962

For the moles of anhydrous salt:

moles of MnSO₄ = mass of MnSO₄ ÷ molar mass of MnSO₄

moles of MnSO₄ = 14.5277 ÷ 151.001

moles of MnSO₄= 0.0962

Now for n:

n = moles of water ÷ moles of MnSO₄

n = 0.0962 ÷ 0.0962

n = 1

The above calculations show that one mole of H₂O is attached to the  one formula unit of MnSO₄

Final answer:

To calculate the value of n in the hydrate formula MnSO₄ .nH₂O, the mass of water driven off by heating is found to be 1.733 g. This corresponds to 0.0962 mol of water. Since the ratio of water to MnSO₄is 1:1, n is determined to be 1.

Explanation:

To calculate the value of n in the hydrate formula MnSO₄ . H₂O, we need to find the number of moles of water lost upon heating. We subtract the mass of the anhydrous salt (14.527 g) from the original mass of the hydrate (16.260 g) to get the mass of water lost:

Mass of H₂O = 16.260 g - 14.527 g = 1.733 g

Next, we calculate the number of moles of water using its molar mass (18.015 g/mol):

Number of moles of H₂O = 1.733 g / 18.015 g/mol ≈ 0.0962 mol

To find the number of moles of MnSO₄ in the anhydrous sample, we need its molar mass, which is approximately 151.00 g/mol for MnSO₄. Using the mass of the anhydrous salt:

Number of moles of MnSO₄ = 14.527 g / 151.00 g/mol ≈ 0.0962 mol

This indicates that the mole ratio of H₂O to MnSO₄ is 1:1. Therefore, the value of n is 1, and the hydrate is MnSO₄.H₂O.

Suppose 0.410 kg of hexane are burned in air at a pressure of exactly 1 atm and a temperature of 13.0 °C. Calculate the volume of carbon dioxide gas that is produced.Round your answer to 3 significant digits.

Answers

Answer:

The answer is 671 litres of carbon dioxide is produced from 0.410 kg of hexane

Explanation:

We first write a balanced reaction for the complete combustion of hexane thus

The stoichiometry of the cumbustion of hexane in air is

2C6H14(g)+18O2(g)→12CO2(g)+14H2O(l) or

C6H14(g)+9O2(g)→6CO2(g)+7H2O(l)

From the above reaction it is observed that one mole of hexane burns completely in the presence of oxygen to produce 6 moles of carbon dioxide

Therefore we calculate the nuber of moles of hexane present in the sample thus

Mass hexane of sample = 0.41 kg

Molar nass of hexane = 86.18 g/mol

number of moles of hexane = (mass of hexane)/(molar mass of hexane) = (0.41×1000)/86.16 = 410/86.16 = 4.76 moles

As we have seen from the chemical reaction, 1 mole of H6H14 produces 6 moles of CO2 hence 4.76 moles of Hexane produces

4.76×6 moles of CO2 which is 28.55 moles of CO2

From the question we have the temperature and the pressure of the production of CO2 as

Temperature of reaction = 13° C converting to kelving gives= 13+273.15 = 286.15 K

and pressure = 1 atmosphere or 101325 Pa

13.0∘C=13.0∘C+273.15=286.15 K

The volume of the produced CO2 can be calculated using the combined ideal gas equation given by

P×V=n×R×T where

Here

P = Gas pressure (of CO2 )

V = Volume (of the CO2)

n = number of moles of gas (CO2) present

R = universal gas constant, equal to 0.0821 atm× L/(mol× K )

T = absolute temperature in Kelvin

Thus we have

1×V = 28.55×0.0821×286.15  or V  = 670.76L

Rounding up the answer to 3 significant digits we have

670.76L ≅ 671L

671 litres of carbon dioxide is produced from 0.410 kg of hexane

A railroad diesel engine weighs four times as much as a freight car. The diesel engine coasts at 5 km/h into a freight car that is initially at rest. Use the conservation of momentum to show that after they couple together, the engine + car coast at 4 km/h.

Please show work!!!! step by step

Answers

Explanation:

Conservation of momentum :

[tex]m_1u_1+m_2u_2=m_1v_1+m_1v_2[/tex]

Where :

[tex]m_1, m_2[/tex] = masses of object collided

[tex]u_1,u_2[/tex] = initial velocity before collision

[tex]v_1,v_2[/tex] = final velocity after collision

We have :

Mass of an engine = [tex]m_1=4M[/tex]

Mass of an car= [tex]m_2=M[/tex]

Initial velocity of railroad engine [tex]m_1=u_1=5 km/h[/tex]

Initial velocity of car [tex]m_2=u_2=0 km/h[/tex] (rest)

Final velocity of  railroad engine [tex]m_1=v_1=v[/tex] (same direction )

Final velocity of car [tex]m_2=v_2=v[/tex] (same direction)

[tex]4M\times 5km/h+M(0 km/h)=4Mv+Mv[/tex]

[tex]4\times 5 km/h=5M[/tex]

v = 4 km/h

The speed of the engine and car after they coupled together is 4 km/h.

Final answer:

Using the principle of conservation of momentum, it's shown that the diesel engine and freight car will coast together at 4 km/h after coupling. This is calculated by equating the initial and final momentums of the system.

Explanation:

The conservation of momentum can be used to solve this problem. The principle states that the total linear momentum of a closed system remains constant, regardless of any internal changes. Here, the system consists of the diesel engine and the freight car.

Let's denote the weight of the freight car as 'm'. Given that the diesel engine weighs four times as much as a freight car, the weight of the engine would be '4m'.

If the diesel engine is coasting at 5 km/hr, the initial momentum of the system is the momentum of the engine, because the freight car is at rest. Therefore, the initial momentum (Pi) is the weight of the engine times its velocity, which is 4m*5 km/hr = 20m km/hr.

After they couple together, there's no external force, so the total momentum should remain the same (the conservation of momentum principle). Let's denote the final velocity of the engine + car (now moving together) as 'v'. The final momentum (Pf) = (m + 4m) * v = 20m km/hr.

Therefore, we can establish the equation: Pi = Pf, meaning 20m km/hr = 5m * v. Solving for v, we find that v = 4 km/h. Therefore, the engine + car coast together at 4 km/h after coupling, demonstrating the conservation of momentum.

Learn more about conservation of momentum here:

https://brainly.com/question/32309314

#SPJ3

Liquid 1 reacts with Liquid 2, producing a solid and a gas. Using this scenario, which supports the law of conse
mass?
mass of Liquid 1 + mass of solid = mass of Liquid 2 + mass of gas
mass of Liquid 1 - mass of solid = mass of Liquid 2-mass of gas
mass of Liquid 1 - mass of Liquid 2 = mass of solid + mass of gas
mass of Liquid 1 + mass of Liquid 2 = mass of solid + mass of gas

Answers

Answer:

The answer to your question is the fourth one.

Explanation:

From the description, we know that the reactants are two liquids and the products are a solid and a gas.

The first option is incorrect because it mentions that the reactants are one liquid and solid.

The second option is also incorrect for the same reason as the first one and one of the products must be a solid.

The third option is incorrect besides there are two liquids in the reactants and  a solid and gas in the liquids there is a minus sign that is not possible.

The fourth option is the correct one.

Molecules can be described as
A) mixtures of two or more pure substances
B) mixtures of two or more elements that has a specific ratio between components
C) two or more atoms chemically joined together
D) heterogeneous mixtures
E) homogeneous mixtures

Answers

E) two or more atoms chemically joined together.

The following information should be considered:

A molecule refers to the smallest particle of a large compound that is created via the bonding of two or more atoms. The bonding should be between the atoms changes the physical and chemical properties of the particles.

Learn more: https://brainly.com/question/2289757?referrer=searchResults

Answer:

two or more atoms chemically joined together.

Explanation:

Select the statements that best describe the properties of an intramolecular sn2 reaction mechanism.

Answers

Final answer:

Intramolecular Sn2 reaction is a bimolecular, second-order, elementary reaction. It involves a single, concerted step in which a nucleophile attacks the substrate, leading to a transition state, and then to expulsion of a leaving group. The stereochemistry of the molecule is usually inverted at the reaction centre.

Explanation:

To best describe the properties of an intramolecular Sn2 reaction mechanism, we can say that it's a bimolecular reaction, which means it involves two reactant species. In this case, the reaction mechanism involves a single, concerted step where a nucleophile attacks the substrate, leading to a transition state and finally the expulsion of a leaving group. This makes Sn2 a type of elementary reaction.

In these reactions, the rate is dependent on the concentration of both reactants, leading to a second-order rate law. Further, the rate-determining step (the slowest in the mechanism) for an Sn2 reaction is the single concerted step itself. One important aspect to remember about Sn2 mechanisms is the stereochemical alteration that takes place, typically resulting in inversion of configuration at the reaction centre.

Learn more about Sn2 reaction here:

https://brainly.com/question/34676424

#SPJ11

The intramolecular SN2 reaction mechanism is a bimolecular and concerted process characterized by inversion of configuration at the reaction center, second-order kinetics, and sensitivity to steric hindrance.

The intramolecular SN2 reaction mechanism is characterized by several distinct properties. Firstly, it is a bimolecular reaction, meaning the rate of the reaction depends on the concentration of two reactants: the nucleophile and the electrophile. Secondly, the reaction proceeds via a concerted process where bond-forming and bond-breaking occur simultaneously, leading to an inversion of configuration at the carbon center where the substitution takes place.

Lastly, the SN2 mechanism exhibits second-order kinetics, as the reaction rate depends on the concentration of both the nucleophile and the electrophile. It is important to note that SN2 reactions are sensitive to steric hindrance; bulky groups near the reactive site can inhibit the reaction by limiting the nucleophile's access to the electrophile.

The interactions between water molecules and other non-water molecules through hydrogen bonding is known as ____________________________.

Answers

Answer: adhesion

Explanation:

Cohesion is the attraction between similar molecules. Example: Force of attraction between water molecules.

Thus hydrogen bond formed between the molecules of water due to the development of partial negative charge on oxygen and partial positive charge on hydrogen is cohesion.

Adhesion is the attraction between different molecules. Example: Force of attraction between HCl and water.

The hydrogen bond formed between H of HCl and O of water due to developments of partial positive and partial negative charge respectively is adhesion.

On a small farm, the weights of eggs that young hens lay are normally distributed with a mean weight of 51.3 grams and a standard deviation of 4.8 grams. Using the 68-95-99.7 rule, about what percent of eggs weigh between 46.5g and 65.7g.

Answers

Final answer:

Using the 68-95-99.7 rule, the percentage of eggs weighing between 46.5 grams and 65.7 grams, given a mean weight of 51.3 grams and a standard deviation of 4.8 grams, is estimated to be between 95% and 99%.

Explanation:

The question asks us to calculate the percentage of eggs that weigh between 46.5 grams and 65.7 grams, given that the weights are normally distributed with a mean of 51.3 grams and a standard deviation of 4.8 grams. Utilizing the 68-95-99.7 rule (also known as the Empirical Rule), we can determine percentages for different ranges from the mean in a normal distribution.

Firstly, to find the specific range that includes 46.5g to 65.7g from our mean of 51.3g, we calculate the number of standard deviations each value is from the mean. However, without doing the math, we see that 46.5g is less than one standard deviation away (since one standard deviation is 4.8g), and 65.7g is significantly more than two but less than three standard deviations away.

According to the 68-95-99.7 rule, 68% of data falls within one standard deviation, 95% within two, and 99.7% within three. Thus, intuitively, without precise calculation, we can say that the percentage of eggs weighing between 46.5g and 65.7g would be a bit less than 99.7%, as the upper limit is not yet reaching three standard deviations from the mean but is beyond the two-standard deviation mark that covers 95% of the distribution. Thus, it's reasonable to conclude that approximately 95-99% of eggs will fall within this weight range.

The gas in a 600. mL balloon has a pressure of 1.20 atm. If the temperature remains constant, what will be the pressure of the gas in the balloon when it is compressed to 400. mL?

Answers

Answer:

1.8 atm

Explanation:

As temperature and moles of a gas reamin both constant, we can say that:

Pressure₁ . Volume₁ = Pressure₂ . Volume₂

1.20 atm . 600 mL = Pressure₂ . 400 mL

(1.20 atm . 600 mL) / 400 mL = Pressure ₂ → 1.8 atm

Other Questions
Hector seems to get depressed each winter, when the days get shorter and the nights get long. When spring comes he generally rallies, noticing a substantial improvement in his mood. Although there are many possible explanations for Hectors behavior, he favors the controversial diagnosis of _______________ to account for his moods. Bonjour! Je besoin daide est-ce que tu rendre le mot moi en Adjectif qualificatif? What type of text structure would you use if you wanted to write a story about one polar bear's plight as the ice in his huntingground dwindles?a expositoryc persuasiveb. narratived descriptive Is a nucleus that absorbs at 4.13 more shielded or less shielded than a nucleus that absorbs at 11.45 ? Dimitri determined that he ordered pair (2,-2) is a solution to the system of linear equations 7x +9y=-4 and 5x -2y=6 as shown What was dimitri's mistake? A river flows due south with a speed of 2.0 m/s. You steer a motorboat across the river; your velocity relative to the water is 4.2 m/s due east. The river is 500 m wide. (a) What is your velocity (magnitude and direction) relative to the earth? (b) How much time is required to cross the river? (c) How far south of your starting point will you reach the opposite bank? Shane starts a new business this year and incorporates the business entity as SNB, Inc (taxed as a C corporation). Unfortunately, SNB, Inc. has a slower than expected start and loses $6,800. Assuming a 40% income tax rate, how much income tax will SNB, Inc. pay this year? Coronado Shoes Fool Inc. is involved in litigation regarding a faulty product sold in a prior year. The company has consulted with its attorney and determined that it is possible that they may lose the case. The attorneys estimated that there is a 40% chance of losing. If this is the case, their attorney estimated that the amount of any payment would be $800,000. What is the required journal entry as a result of this litigation? a. Debit Litigation Expense for $800,000 and credit Litigation liability for $800,000. b. No journal entry is required. c. Debit Litigation Expense for $320,000 and credit Litigation Liability for $320,000. d. Debit Litigation Expense for $480,000 and credit Litigation Liability for $480,000. Steve is buying a new car at the dealership. The price tag on the car reads $17,000.00. However, the salesman offers to sell him the car for 15% off the price tag. If sales tax is 8%, how much does the car cost after tax? A trader buys two July futures contracts on orange juice. Each contract is for the delivery of 15,000 pounds. The current futures price is 160 cents per pound, the initial margin is $6,000 per contract, and the maintenance margin is $4,500 per contract. What price change would lead to a margin call?Under what circumstance can $2000 be withdrawn from the account? A computer system uses passwords that are six characters and each character is one of the 26 letters (a-z) or 10 integers (0-9). Uppercase letters are not used. Let A denote the event that a password begins with a vowel (either a, e, i, o, u) and let B denote the event that a password ends with an even number (either 0, 2, 4, 6, or 8). Suppose a hacker selects a password at random. Determine the following probabilities. Round your answers to four decimal places (e.g. 98.7654). What is the sound intensity level in decibels of ultrasound of intensity 7.53 104 W/m2, used to pulverize tissue during surgery? what color is your feces if ur healthy According to the law of supply:there is a direct relationship between price and the quantity supplied.there is an inverse relationship between price and the quantity supplied.there is a direct relationship between price and quantity demanded.there is an inverse relationship between price and quantity demanded. Farmer Jones raises ducks and cows. He looks out his window and sees 54 animals with a total of 122 feet. If each animal is "normal", have many of each type of animal does he have List the parts of the respiratory system, which air passes through Adam is a sole proprietor. He must file for bankruptcy to reorganize his debt under a repayment plan so he can pay his creditors and continue operating his business. He should file a: a. Chapter 10 bankruptcy. b. Chapter 12 bankruptcy. c. Chapter 7 bankruptcy. d. Chapter 13 bankruptcy. In the human brain the basal ganglia, limbic system, and olfactory bulbs are considered part of the: A. metencephalon. B. diencephalon. C. telencephalon. D. mesencephalon. Derek will deposit $3,382.00 per year for 12.00 years into an account that earns 15.00%, The first deposit is made next year. He has $12,548.00 in his account today. How much will be in the account 37.00 years from today? Managers use a0 of their organization to help them plan and implement programs in their communities.