All the above
-street lights
-businesses
- Homes, etc
Explanation; Nuclear energy comes from splitting atoms in a reactor to heat water into steam, turn a turbine and generate electricity.Nuclear reactions are used to release nuclear energy that generate heat, which most frequently is then used in steam turbines to produce electricity in a nuclear power plant.Because nuclear power plants do not burn fuel, they do not produce greenhouse gas emissions.Nuclear energy may be used in a wide variety of fields as it generates high levels of electricity without causing damage to our environment and atmosphere.Answer:
D. all of the above
Explanation:
given the equation Mg +2HCL --> MgCL2+H2, how many moles of hydrochloric acid are needed to react with O.50 mole of magnesium ?
Since mole ratio of magnesium to hydrochloric acid is 1:2, the answer is 1 mole of HCL.
The moles of hydrochloric acid are needed to react with O.50 mole of magnesium is 1 mole
What are moles ?The amount of substance which contains same number of atoms, molecules or ions as the number of atoms present in 12 g of carbon (C-12) is called a mole.
1 mol = 6.023 * 10²³ atoms
In the question
An equation Mg +2HCl --> MgCl₂+H₂ is given
It is asked that moles of hydrochloric acid needed to react with O.50 mole of magnesium = ?
It can be seen that the equation given is balanced as the number of atoms of the elements in the reactants is equal to the atoms in the products.
The mole ratio of Mg to HCl is 1 : 2
The mole of Magnesium is 0.5
Therefore the mole of HCl required to react will be 1 mol
To know more about Mole
https://brainly.com/question/26416088
#SPJ2
For acidic solutions, which element is added to balance half-reactions?
A.
hydrogen
B.
hydroxide
C.
oxygen
D.
nitrogen
Answer:
We add A Hydrogen
Explanation:
When we have a half-reaction in an acidic media usually we add (H+) hydrogen plus or protons to the reaction to balance in both sides of the reaction the amount of hydrogen.
After this step the next one is equilibrate the charges (e-) and finally we add the two half-reactions to write a short version
Answer:
hydrogen
Explanation:
Plato
BRAINLIEST + 20 POINTS!!!
Which of the following statements is true about energy quantization at the atomic level?
The energy of a photon depends on the frequency of the emission.
The energy of a photon depends on the mass of the neutrons and protons.
An electron can only move from a lower energy level to a higher energy level.
An electron may emit or absorb a quarter of a photon during energy level transitions.
Answer:
The energy of a photon depends on the frequency of the emission.
Explanation:
E = hν
where E is the energy of a photon, ν is the frequency of photon and h is Planck’s constant.
Energy of a photon is quantized and is directly proportional to the frequency of the emission.
Quantized energy of a photon explained the photoelectric effect. It was proven that light not has wave nature but particle nature as well. This later gave rise to wave particle duality of light waves.
Could anyone possible help me?
#3 question D is Acid Rain
Write an equation for the decomposition of Al(ClO3)3 , To produce aluminum Chloride and Oxygen?
Thank you :)
Answer:
2Al(ClO₃)₃ → 2AlCl₃ + 9O₂.
Explanation:
Aluminium chlorate is decomposed to produce aluminium chloride and oxygen according to the equation:2Al(ClO₃)₃ → 2AlCl₃ + 9O₂.
That every 2.0 moles of aluminium chlorate is decomposed to produce 2.0 moles of aluminium chloride and 9.0 moles of oxygen.
The decomposition of aluminium chlorate ([tex]Al(ClO_3)_3[/tex]) to produce aluminium chloride ([tex]AlCl_3[/tex]) and oxygen gas ([tex]O_2[/tex]) can be represented by the following balanced chemical equation:
[tex]\[ 2 \text{Al(ClO}_3)_3 \rightarrow 2 \text{AlCl}_3 + 9 \text{O}_2 \][/tex]
To write the equation, we start with the reactants and products given in the question. Aluminium chlorate ([tex]Al(ClO_3)_3[/tex]) decomposes into aluminium chloride ([tex]AlCl_3[/tex]) and oxygen gas ([tex]O_2[/tex]). We need to ensure that the equation is balanced, meaning that the number of atoms of each element must be the same on both sides of the equation.
Starting with the aluminium atoms, we have one aluminium atom on both sides of the equation, so aluminium is balanced.
Next, we look at the chlorine atoms. There are three chlorine atoms in each [tex]Al(ClO_3)_3[/tex] molecule, for a total of six chlorine atoms in [tex]2Al(ClO_3)_3[/tex]. To balance the chlorine atoms on the product side, we need six chlorine atoms in the aluminium chloride, which gives us [tex]AlCl_3[/tex] for each aluminum atom, hence [tex]2AlCl_3[/tex].
Finally, we balance the oxygen atoms. There are nine oxygen atoms in each [tex]2Al(ClO_3)_3[/tex] (since there are three oxygen atoms in each [tex]ClO_3[/tex]group and we have six [tex]ClO_3[/tex] groups in total). To balance the oxygen atoms, we need nine oxygen atoms on the product side, which means we need 9/2 molecules of [tex]O_2[/tex], since each [tex]O_2[/tex] molecule contains two oxygen atoms. However, because we cannot have half a molecule, we multiply the entire equation by 2, resulting in 9 molecules of [tex]O_2[/tex].
This gives us the balanced equation:
[tex]\[ 2 \text{Al(ClO}_3)_3 \rightarrow 2 \text{AlCl}_3 + 9 \text{O}_2 \][/tex]
This equation correctly represents the conservation of mass, with an equal number of each type of atom on both sides of the reaction.
The Big Bang theory states that ________.
A.The universe will explode
B.The universe began as a small,dense ball of matter
C.The universe is contracting
D.The universe cannot expand anymore
I believe the correct answer is B
Final answer:
The Big Bang theory posits that the universe began as a highly compressed, hot, and dense state roughly 13.7 billion years ago, later expanding and cooling to its current form, with the cosmic microwave background (CMB) serving as a key piece of evidence.
Explanation:
The Big Bang theory states that the universe began as a small, dense ball of matter. This is often described as a hot, dense state, which then underwent rapid expansion and cooling to arrive at its present condition. According to this theory, the universe started about 13.7 billion years ago, and it continues to expand and cool today. The cosmic microwave background (CMB) is a critical piece of evidence supporting the theory, as it is the redshifted afterglow of the Big Bang and can be observed from any direction in space.
Contrary to the Big Bang being an explosion of matter into space, it is more accurately the expansion of space itself, with the universe's density decreasing over time as it expands. This expansion continues to be a subject of study, including whether the universe will eventually stop expanding and begin contracting in a 'big crunch' or continue to expand indefinitely, an idea connected to concepts like the cosmological constant and dark energy.
Which statement about the elements in the periodic table is true
A. The number of valence electrons increases as atomic mass increases. == Generally true for the representative elements since atomic mass generally increases with increasing Z.
B. The reactivity of alkali metals increases as atomic mass increases. == True. Atomic mass increases down the column and so does reactivity
C. The reactivity of the halogens increases as atomic mass increases. == False. Reactivity decreases down the column.
D. The number of valence electrons decreases across a period. == False. In general, the number of valence electrons increases across a period, particularly for the representative elements.
Answer:
The reactivity of alkali metals increases as atomic mass increases.
Explanation:
There are six elements in the periodic table that can be classified as alkali metals. These elements are extremely reactive and it is correct to say that the reactivity of alkali metals increases as the atomic mass increases.
These metals can be found in the IA family of the periodic table and contain the names: Lithium, Sodium, Potassium, Rubidium, Cesium, Francium.
The number of grams of H2 in 1470 mL of H2 gas.
To find the number of grams of H2 in 1470 mL of H2 gas, convert the volume from mL to L, calculate the number of moles using the molar volume at STP, and then find the mass of H2 gas using stoichiometry and the molar mass of H2.
Explanation:To determine the number of grams of H2 in 1470 mL of H2 gas, we need to use the concept of molar mass and stoichiometry. The molar mass of H2 is 2 g/mol, which means that one mole of H2 gas weighs 2 grams. We can use the molar volume of gases at STP (standard temperature and pressure), which is approximately 22.4 L/mol, to convert the volume of the gas into moles. From there, we can use stoichiometry to determine the mass of H2 gas in grams.
First, convert the volume of the gas from milliliters to liters by dividing by 1000. 1470 mL is equal to 1.47 L. Using the molar volume of gases at STP, we can find the number of moles: 1.47 L / 22.4 L/mol = 0.0656 mol.
Since each mole of H2 gas weighs 2 grams, the mass of H2 gas in grams is: 0.0656 mol * 2 g/mol = 0.1312 g.
Learn more about Calculating grams of H2 gas in a given volume here:https://brainly.com/question/28746817
#SPJ11
The number of grams of H₂ in 1470 mL of H₂ gas is calculated to be 0.1312 grams.
To find the number of grams of H₂ in 1470 mL of H₂ gas, we need to use the ideal gas law, which is:
PV = nRT
Where:
P is the pressure (in atm)V is the volume (in liters)n is the number of molesR is the ideal gas constant (0.0821 L·atm/(mol·K))T is the temperature (in Kelvin)For this calculation, we assume the gas is at standard temperature and pressure (STP; 0°C and 1 atm), where 1 mole of an ideal gas occupies 22.4 L.
First, convert the volume from mL to L:
1470 mL = 1.470 L
At STP, 1 mole of H₂ gas occupies 22.4 L. Thus, the number of moles of H₂ gas is:
n = V / 22.4 L = 1.470 L / 22.4 L/mol = 0.0656 mol
Next, we find the mass using the molar mass of H₂ (2 g/mol):
Mass = n × molar mass = 0.0656 mol × 2 g/mol = 0.1312 g
Therefore, the number of grams of H₂ in 1470 mL of H₂ gas is 0.1312 grams.
General formula for double replacement reaction
The general formula for “Double Replacement” would beAB+CD —> AD+CB.
I really hope this helps you.
Which unit can be used to express the rate of a reaction? A. mL / s B. mL / g C. g / mL D. mL / mol E. s / mL
Answer:A) mL / s
Explanation:This is the amount of milliliters per second
1. Which elements are known as d-block elements?
transition metals
alkali earth metals
halogens
alkali metals
The d-block elements are found in groups 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 of the periodic table.
So your answer is A) Transition metals
Answer:
The answer is Transition metals they are the d-block elements.
Explanation:
The transition metals are called d-block due to these elements have electrons in the outer orbital d.
Orbitals in atoms: The atoms have electrons that are negative charged particles moving around the nucleus. The electrons are distributed in orbitals, each orbital has an energy value and representations with letters the lowest energy orbital is s, then p, d and f.
The d-orbital due to its energetic value can hold up to 10 electrons and these elements are important due to they are required for many organic, inorganic, biological and technological process.
For example: a d-block element is the Iron Fe who has magnetic properties and it is required for the human body to form hemoglobin ( protein needed for oxygen transport in cells.
Which term describes a trace, print, or remain of an organism preserved over time in a rock?
A. skeleton
B. fossil
C. mineral
D. sedimentary rock
The term describes a trace, print, or remain of an organism preserved over time in a rock is fossil. Therefore, option B is correct.
What are fossils ?Any surviving remains, impression, or evidence of a once-living thing from a previous geological epoch is referred to as a fossil. Examples include exoskeletons, bones, shells, animal or microbe imprints in stone, items preserved in amber, hair, petrified wood, and DNA traces. The fossil record is the collection of all fossils.
The majority of fossils are created when a living thing (such as an animal or plant) dies and is swiftly buried by sediment (such as mud, sand or volcanic ash).
The preserved remnants of plants and animals that were submerged in sediments like sand and mud beneath ancient seas, lakes, and rivers are known as fossils. Any preserved sign of life that is typically more than 10,000 years old is considered a fossil.
Thus, option B is correct.
To learn more about the fossils, follow the link;
https://brainly.com/question/6867325
#SPJ2
A 25.5 ml aliquot of HCl of unknown concentration was titrared with .113 M NaOH. It took 51.2 ml of the base to reach the endpoint of the titration. The concentration (M) of the acid was ?
0.227 M
Explanation;Volume of HCl = 25.5 mL or 25.5 / 1000 => 0.0255 L
Molarity or concentration of NaOH = 0.113 M
Volume of NaOH = 51.2 mL / 1000 = 0.0512 L
Number of moles NaOH:
Moles = Molarity x Volume
= 0.113 x 0.0512
= 0.0057856 moles of NaOH
From the equation we can obtain the mole ratio:
HCl + NaOH = NaCl + H2O
1 mole HCl : 1 mole NaOH
Therefore;
Moles of HCl : 0.0057856 moles NaOH
Hence; moles of HCl = 0.0057856 x 1 / 1
= 0.0057856 moles of HCl
Molarity of HCl = moles of HCL / Volume of HCl
M = 0.0057856 / 0.0255
= 0.227 M
How do I balance chemical equations?
Final answer:
To balance a chemical equation, follow these steps: Determine the correct formulas, count the number of atoms, balance the elements one at a time, check the balance, and reduce coefficients if needed.
Explanation:
In order to balance a chemical equation, you can follow the steps below:
Step 1: Plan the problem. Determine the correct chemical formulas for each reactant and product, and write the skeleton equation.Step 2: Count the number of atoms. Count the number of atoms of each element that appears as a reactant and as a product.Step 3: Balance the elements one at a time. Place coefficients in front of the formulas. Start by balancing elements that only appear in one chemical formula on each side of the equation.Step 4: Check the balance. Ensure that all atoms or polyatomic ions are equal on both sides of the equation.Step 5: Reduce coefficients (if needed). Make sure that all coefficients are in the lowest possible ratio.Which phrase best describes humidity?
Heat describes humidity
what causes matter to exist in three different states
NOT 100% SURE
Thermal Energy..?
When I think of three states of matter I think of water as an example:
• Adding extreme heat to the liquid form of water can turn it into gas.
• Adding heat to ice can turn it into the liquid form of water.
• Freezing the liquid form of water can turn it into ice.
I would say temperature (thermal energy) has an effect of the different states of matter.
how many atoms are in 1.5 mole of iron?
There are approximately 9.033 x 10^23 atoms in 1.5 moles of iron. This is calculated by multiplying the number of moles by Avogadro's number.
Explanation:The subject at hand involves calculations using Avogadro's number. Avogadro's number (6.022 x 1023) represents the number of atoms in a single mole of any substance. To calculate the number of atoms in a particular quantity of moles, you only need to multiply the amount of moles by Avogadro's number. Therefore, the number of atoms in 1.5 moles of iron would be 1.5 times Avogadro's number.
So, 1.5 (moles of iron) x 6.022 x 10^23 (atoms/mole) = 9.033 x 10^23 atoms of iron. Hence, there are about 9.033 x 10^23 atoms in 1.5 moles of iron.
Learn more about Mole to atom conversion here:https://brainly.com/question/19875795
#SPJ3
In a neutralization reaction, ______
and hydroxide ions react to form
______.
Explanation:
A reaction in which a hydrogen ion and hydroxide ion reacts and results in the formation of water is known as a neutralization reaction.
Basically in a neutralization reaction, a salt is also formed when an acid and a base reacts together along with formation of water and pH of a neutralized reaction is equal to 7.
For example, [tex]H^{+} + OH^{-} \rightarrow H_{2}O[/tex]
Therefore, we can conclude that in a neutralization reaction, hydrogen and hydroxide ions react to form water.
Oxygen decays to form nitrogen. 15 8 O → 15 7 N + 0 1 e This type of nuclear decay is called .
Hey yall its beta plus decay
Answer: [tex]\beta^+[/tex] decay
Explanation: General representation of an element is given as: [tex]_Z^A\textrm{X}[/tex] where,
Z represents Atomic number
A represents Mass number
X represents the symbol of an element
[tex]\beta^+[/tex]: It is a type of decay process, in which a proton gets converted to neutron and an electron neutrino. This is also known as [tex]\beta ^+[/tex]-decay. In this the mass number remains same.
[tex]_A^Z\textrm{X}\rightarrow _{Z-1}^A\textrm{Y}+_{+1}^0e[/tex]
[tex]_8^{15}\textrm{O}\rightarrow _{7}^{15}\textrm{N}+_{+1}^0\beta[/tex]
How many atoms are in mercury (ii) biocarbonate?
Alias: Mercuric Hydrogen Carbonate; Mercury(II) Bicarbonate
Formula: Hg(HCO3)2
Molar Mass: 322.6237
What is number “4” in SiCi4?
It is a subscript
Also do you mean Cl not Ci. I assume you do because then it means 4 chlorine in that compound.
What happens when a mechanical wave travels through a medium?
A ) Energy is transferred.
B ) Energy is lost.
C ) Energy is gained.
D ) Energy fluctuates.
Your answer would be Option A. Energy is transferred.
I just took this quiz, and can 100% confirm this is the answer.
Hope this helps! :)
When a mechanical wave travels through a medium, it transfers energy from one particle to another causing them to vibrate. The particles do not travel with the wave but rather vibrate about a central point.
Explanation:When a mechanical wave travels through a medium such as air, water, or a solid material, the primary process is the transfer of energy. The mechanical wave causes particles in the medium to vibrate back and forth, thereby transferring energy from one particle to the next. However, it's important to note that while energy is transferred, the particles themselves don't travel with the wave but rather vibrate about a central point. This is different from losing, gaining or fluctuation of energy, but rather it's a consistent transfer of energy from one place to another.
Learn more about Mechanical Waves here:https://brainly.com/question/24459019
#SPJ11
A measurement of how often something occurs in a given time period is _____.
A.) Amplitude
B.) Frequency
C.) Wavelength
D.) Sonic Boom
frequency
hope this helps :)
What feature is similar among all organisms?
A. They are composed of one or more cells that function to sustain life.
B. They are composed of multiple tissue types.
C. They can consume other organisms to create energy.
D. They can transform sunlight into food for sustenance.
The answer is A because all living things must contain a cell to be able to sustain life within
All organisms are composed of one or more cells that perform the basic functions of life.
Cells are the fundamental units of life.
Energy can generally be considered to be either kinetic energy or potential energy. Some specific forms of energy, such as electrical, magnetic, and gravitational energy, can operate in the space around objects and affect other objects that come near. In these examples,
A.
energy is continuously created.
B.
energy is continuously destroyed.
C.
energy exists in a field.
D.
all of these
C) Energy exists in a field.
C energy exists in a field
H2 + O2 ----> H2O What is the mole ratio of hydrogen to water?
2:2
ioudhfihsOIUDHFIUOSAHD
The mole ratio of reactants and products is learned by comparing the coefficients of the balanced equation. The current equation is unbalanced, so adding some coefficients to help balance the reactants and products is necessary.
2H2 + O2 —— 2H2O
In this equation, you can count the number of hydrogens and oxygens on each side to verify that there are the same on each. Now, compare the coefficients:
2H2:2H2O
2:2
The mole ratio of hydrogen to water is 2:2, simplified to 1:1. Choosing which ratio is to be used is dependent on the context of the question, however both are technically correct.
How much energy is equal to 1 kg of mass?
This implies, for instance, that 1 kilogram of matter is equivalent to an energy E = (1 kg)×(3×108 m/sec)2 = 9×1016 kg m2/sec2. An energy of 1 kg m2/sec2 is known as 1 joule, for short.
Calculate the theoretical yield of hydrogen gas (in L) at 295 K for a reaction of 1.50 g magnesium with excess hydrochloric acid. If 1.205 L of gas is produced, what is the percent yield of the reaction?
Answer:
80.33 %.
Explanation:
For the reaction:Mg(s) + 2HCl(aq) → MgCl₂ + H₂.
Every 1.0 mole of Mg is dissolved in 2.0 moles of HCl and produce 1.0 mole of MgCl₂ and 1.0 mol H₂.To get the theoretical yield of hydrogen gas (in L):We want to calculate the no. of moles of Mg in 1.50 g:n = mass/atomic mass = (1.50 g)/(24.3 g/mol) = 0.062 mol.
Using cross multiplication:
1.0 mol of Mg produces → 1.0 mol of hydrogen gas.
0.062 mol of Mg produces → 0.062 mol of hydrogen gas.
∵ PV = nRT.
∴ V of hydrogen (the theoretical yield) = nRT/P = (0.062 mol)(0.082 L.atm/mol.K)(295.0 K)/(1.0 atm) = 1.50 L.
The actual yield of the reaction = 1.205 L.
∴ The percent yield of the reaction = (actual yield)/(theoretical yield) x 100 = (1.205 L)/(1.50 L) x 100 = 80.33 %.
Final answer:
The theoretical yield of hydrogen gas at 295 K from reacting 1.50 g of magnesium with excess hydrochloric acid is 1.484 L. The percent yield, with an actual yield of 1.205 L of gas, is 81.19%.
Explanation:
Calculating Theoretical and Percent Yield
The student has asked to calculate the theoretical yield of hydrogen gas (in L) at 295 K for a reaction of 1.50 g magnesium with excess hydrochloric acid and then to determine the percent yield of the reaction given that 1.205 L of gas is produced.
To solve this, we first need to find the number of moles of magnesium (Mg) that will react. The molar mass of Mg is 24.305 g/mol, so:
Number of moles of Mg = Mass of Mg / Molar mass of Mg
= 1.50 g / 24.305 g/mol
= 0.0617 mol
According to the balanced chemical reaction, Mg(s) + 2 HCl(aq) → MgCl₂(aq) + H₂(g), 1 mole of Mg produces 1 mole of H₂. Therefore, the number of moles of H₂ will also be 0.0617 mol.
Now, using the ideal gas law, PV = nRT, where P (pressure) = 1 atm (standard pressure), V is the volume, n is the number of moles of gas, R is the ideal gas constant (0.0821 L·atm/K·mol), and T is the temperature in Kelvin:
= 0.0617 mol × 0.0821 L·atm/K·mol × 295 K / 1 atm
= 1.484 L
This is the theoretical yield. The percent yield is calculated as:
Percent yield = (Actual yield / Theoretical yield) × 100%
= (1.205 L / 1.484 L) × 100%
= 81.19%
what is the mass of 50 carbon atoms? What is the mass of 50 hydrogen atoms?
The mass of 50 carbon atoms is [tex]\bold{99.07\;\times\;10^{-23}}[/tex] amu, and the mass of 50 hydrogen atoms is [tex]\bold{8.30\;\times\;10^{-23}}[/tex] amu.
Computation for the mass of carbon and hydrogen atomThe mass of an atom can be given by the Avogadro law.
According to the Avogadro law, 1 mole of an element is composed of [tex]\rm 6.023\;\times\;10^{23}[/tex] atoms. The molar mass of an element is the mass of a mole of substance.
Thus, the mass of atoms can be given by:
[tex]\rm 6.023\;\times\;10^2^3\;atoms=molar\;mass[/tex]
Mass of 50 carbon atoms can be given as:Molar mass of carbon is 12 amu.
[tex]\rm 6.023\;\times\;10^2^3\;Carbon\;atoms=12.01\;amu\\\\50\;Carbon\;atoms=\dfrac{12.01}{6.023\;\times\;10^2^3}\;\times\;50\;amu\\\\50\;Carbon\;atoms=99.70\;\times\;10^{-23}\;amu[/tex]
The mass of 50 carbon atoms is [tex]99.70\;\times\;10^{-23}[/tex] amu.
The mass of 50 hydrogen atoms is given by:Molar mass of hydrogen is 1 amu.
[tex]\rm 6.023\;\times\;10^2^3\;Hydrogen\;atoms=1\;amu\\\\50\;Hydrogen\;atoms=\dfrac{1}{6.023\;\times\;10^2^3}\;\times\;50\;amu\\\\50\;Hydrogen\;atoms=8.30\;\times\;10^{-23}\;amu[/tex]
The mass of 50 hydrogen atoms is [tex]8.30\;\times\;10^{-23}[/tex] amu.
Learn more about mass of an atom, here:
https://brainly.com/question/5566317
What is the relationship between reaction rate and reaction time
Final answer:
Reaction rate and reaction time have an inverse relationship.
Explanation:
The reaction rate refers to how fast a chemical reaction occurs, while the reaction time indicates the duration it takes for the reaction to happen. In general, there is an inverse relationship between reaction rate and reaction time. The faster the reaction rate, the shorter the reaction time, and vice versa. For example, if we compare two reactions, one with a fast reaction rate and the other with a slow reaction rate, the reaction with the fast rate will have a shorter reaction time.