n her abstract works Electric Dress and Untitled, Japanese artist Atsuko Tanaka created ________ through the repetition of lines and circular shapes in bold colors. a. scale b. unity c. balance d. emphasis e. focal point

Answers

Answer 1

Answer:

b. unity

Explanation:

In the images I added you can observe Atsuko Tanak's works, in both of them you can observe how the sum of colorful and repetitive elements creates the sensation of unity.

I hope you find this information useful and interesting! Good luck!

N Her Abstract Works Electric Dress And Untitled, Japanese Artist Atsuko Tanaka Created ________ Through
N Her Abstract Works Electric Dress And Untitled, Japanese Artist Atsuko Tanaka Created ________ Through

Related Questions

Two boxes of masses m=35kg and m2=45kg, are hung vertically from opposite ends of a rope passing over a rigid horizontal metal rod. They system starts moving from rest. Assuming that friction between the rod and the rope is negligible, determine the magnitude of

(a) the acceleration of the boxes
(b) the tension in the rope
(c) the magnitude of each box's displacement after 0.5s

Answers

Answer:

a) 5.51m/s² b) 192.94N c) 1.38m each

Explanation:

Given two boxes of masses m1 = 35kg and m2 = 45kg hung vertically from opposite ends of a rope passing over a rigid horizontal metal rod, we will analyze the forces acting on each body.

According Newton's second law, Force = mass ×acceleration

The forces acting on body of mass m1 are the tension (T) and the frictional force (Ff) which opposes the tension.

Taking the sum of horizontal forces acting on mass m1, we will have;

T +(-Ff) = m1a

T - Ff = m1a... (1)

For the mass m2, the forces acting on the body are in the vertical direction and this forces are the weight (W) acting downwards and the tension(T) acting upwards. The sum of the forces in the body is given as ;

W + (-T) = m2a

W-T = m2a ...(2)

Since W = mg, equation 2 will become;

m2g - T = m2a...(2)

Solving equation 1 and 2 simultaneously to get the tension and the acceleration, we have;

T - Ff = m1a ... 1

m2g - T = m2a ... 2

Since friction is negligible, Ff = 0

Adding the two equation will give;

m2g-Ff = m2a+m1a

Since Ff =0

m2g = (m2+m1)a

a = m2g/m1+m2

a = 45(9.8)/45+35

a =441/80

a = 5.51m/s²

b) Substituting a = 5.51 into equation 1 to get the tension T in the rope will give;

T = m1a

T = 35×5.51

T = 192.94N

c) since velocity = displacement/time

Displacement = velocity × time

To get the velocity, since acceleration = velocity/time,

Velocity = acceleration ×time

Velocity = 5.51× 0.5

Velocity = 2.76m/s

Displacement of each box will be the same since they are moving with the same acceleration.

Displacement = 2.76m/s × 0.5s

Displacement of each boxes = 1.38m

Final answer:

The acceleration of the boxes is 0.98 m/s^2, the tension in the rope is 376.3 N, and the displacement of each box after 0.5 seconds is 0.12 m.

Explanation:

This question deals with the physics of motion, particularly involving concepts of mass and friction. Given that the two boxes with different masses m1=35kg and m2=45kg are hung vertically from opposite ends of a rope over a rigid horizontal metal rod, and stating negligible friction, we can compute:  

The acceleration (a) of the boxes using the equation: a = (m2 - m1)*g / (m1 + m2) where g is the acceleration due to gravity. Gravity is approximately 9.8 m/s^2. Substituting the given values, a = (45 - 35)*9.8 / (35 + 45) = 0.98 m/s^2.   The tension (T) in the rope using the formula T = m1 * (g + a) or T = m2 * (g - a). Both formulas lead to the same result. Substituting the given values for the lighter 35kg box, T = 35*(9.8 + 0.98) = 376.3 N.   The magnitude of each box's displacement after 0.5 seconds can be calculated using the equation s=0.5*at^2. Substituting the values, s = 0.5 * 0.98 * (0.5)^2 = 0.12 m.

Learn more about Motion here:

https://brainly.com/question/35591666

#SPJ3

The only force acting on a 3.0 kg canister that is moving in an xy plane has a magnitude of 5.0 N. The canister initially has a velocity of 3.6 m/s in the positive x direction, and some time later has a velocity of 7.0 m/s in the positive y direction. How much work is done on the canister by the 5.0 N force during this time

Answers

Answer:

The work done on the canister by the 5.0 N force during this time is

54.06 Joules.

Explanation:

Let the initial kinetic energy of the canister be

KE₁ = [tex]\frac{1}{2} mv_1^{2}[/tex] = [tex]\frac{1}{2} *3*3.6^{2}[/tex] = 19.44 J in the x direction

Let the the final kinetic energy of the canister be

KE₂ = [tex]\frac{1}{2} mv_2^{2}[/tex] = [tex]\frac{1}{2} *3*7.0^{2}[/tex] = 73.5 J in the y direction

Therefore from the Newton's first law of motion, the effect of the force is the change of momentum and the difference in energy between the initial and the final

= 73.5 J - 19.44 J = 54.06 J

Explanation:

Below is an attachment containing the solution.

Astronomers estimate that new stars form in our galaxy at the rate of about

Answers

1 Star = 3 × (Mass of the Sun)

Explanation:

The quantity at which the speed of formation of the star depends is called the "star formation rate". Astronomers estimate that in our Galaxy the star formation rate is about 3 solar masses per year According to "solar mass per year" the mass of interstellar gas and dust related to about 3 times the mass of the Sun goes into stars each year).However, the whole of the mass doesn't necessarily go in the formation of 1 star.
Final answer:

Stars form in the Milky Way at a rate of about 1 solar mass per year, which means it would take a few hundred billion years for all gas to be turned into stars, far exceeding the universe's age of 14 billion years. Pulsars and supernova events influence this star-forming process and the interstellar medium.

Explanation:

Astronomers have estimated that new stars form in our galaxy, the Milky Way, at a rate of about 1 solar mass per year. If we consider the amount of interstellar gas available to form new stars, and no new gas was added, we can calculate how long it would take for all the gas to be converted into stars. Given that the Milky Way contains about a few hundred billion solar masses of gas, it would take a few hundred billion years for all the interstellar gas to be used up at the current rate of star formation, which is significantly longer than the age of the universe (14 billion years).

Stars, including pulsars, form and die within the galaxy at varying rates. For example, one new pulsar is born approximately every 25 to 100 years, aligned with the rate of supernovae occurrences. Supernova explosions contribute to the recycling of interstellar material, affecting star formation and the interstellar medium.

On your first day at work as an electrical technician, you are asked to determine the resistance per meter of a long piece of wire. The company you work for is poorly equipped. You find a battery, a voltmeter, and an ammeter, but no meter for directly measuring resistance (an ohmmeter). You put the leads from the voltmeter across the terminals of the battery, and the meter reads 12.1 . You cut off a 20.0- length of wire and connect it to the battery, with an ammeter in series with it to measure the current in the wire. The ammeter reads 6.50 . You then cut off a 40.0- length of wire and connect it to the battery, again with the ammeter in series to measure the current. The ammeter reads 4.50 . Even though the equipment you have available to you is limited, your boss assures you of its high quality: The ammeter has very small resistance, and the voltmeter has very large resistance.
What is the resistance of 1 meter of wire?

Answers

Explanation:

Below is an attachment containing the solution.

Nana manages to stop their decent. While stopped, with the axe in the ice, her coefficient of static friction is LaTeX: \mu_s=2.8μ s = 2.8. What is the maximum acceleration ice Popo can climb up the rope, without causing them to slide again?

Answers

Answer:

Acceleration, a= 1.65m/s^2

Acceleration is downward.

Explanation:

y: N- m1gcosalpha=0

x: Ff- FT- m1gsinalpha= m1× alpha

Ff= uN= um1gcosalpha

FT=m2g

Acceleration ,a = g(ucosalpha- (m2/m1)-sin alpha)

a= (m2/m1) + sinalpha= 1.976

Cos alpha= 0.766

U2= 2.8

a= g(2.8×0.766)- 1.976)

a= g× 0.1688

a= 9.8× 0.1688

a=1.65m/s^2

 

A high-speed dart is shot from ground level with a speed of 150 m/s at an angle 30° above the horizontal. What is the vertical component of its velocity after 4.0 s if air resistance is neglected?

Answers

This vertical component of velocity is 35 m/s

Explanation:

The dart is project with 150 m/s from a point at an angle of 30⁰

The vertical component of velocity = 150 sin 30 = 75 m/s

Thus initial vertical velocity is = 75 m/s

The velocity after 4 s can be calculate by

v = u - g t

here u is the initial velocity and t is the time , g is the acceleration due to gravity .

Thus v = 75 - 10 x 4 = 35 m/s

The velocity after 4.0 seconds will be "35 m/s".

According to the question,

Speed,

150 m/s

Angle,

30°

Vertical component of velocity,

[tex]150 \ Sin 30^{\circ} = 75 \ m/s[/tex]

After 4 seconds, the velocity will be:

→ [tex]v = u-gt[/tex]

By substituting the values, we get

     [tex]= 75-10\times 4[/tex]

     [tex]= 75-40[/tex]

     [tex]= 35 \ m/s[/tex]

Thus the answer above is right.    

Learn more:

https://brainly.com/question/14755221

The average distance of the planet mercury from the sun is 0.39 times the average distance of the earth from the sun. How long is a year on mercury in units of earth years?

Answers

Answer:

[tex]T_1=0.24y[/tex]

Explanation:

Using Kepler's third law, we can relate the orbital periods of the planets and their average distances from the Sun, as follows:

[tex](\frac{T_1}{T_2})^2=(\frac{D_1}{D_2})^3[/tex]

Where [tex]T_1[/tex] and [tex]T_2[/tex] are the orbital periods of Mercury and Earth respectively. We have [tex]D_1=0.39D_2[/tex] and [tex]T_2=1y[/tex]. Replacing this and solving for

[tex]T_1^2=T_2^2(\frac{D_1}{D_2})^3\\T_1^2=(1y)^2(\frac{0.39D_2}{D_2})^3\\T_1^2=1y^2(0.39)^3\\T_1^2=0.059319y^2\\T_1=0.24y[/tex]

Final answer:

A year on Mercury is approximately 88 Earth days long, which means it is about 0.241 Earth years, due to Mercury's average distance from the Sun being 0.39 times that of Earth's.

Explanation:

The student's question relates to the orbital period of Mercury compared to Earth's, given its average distance from the Sun. Mercury’s orbit around the Sun takes approximately 88 Earth days, which constitutes a Mercury year. This is calculated using Kepler's third law of planetary motion, which relates the orbital period of a planet to its average distance from the Sun (orbital semi-major axis).

Because Mercury is 0.39 times as far from the Sun as Earth is, its orbital period is significantly shorter than Earth's. Earth's average distance from the Sun is approximately 1 astronomical unit (AU), making it the basis for measuring distances in our solar system. Therefore, a year on Mercury, in Earth years, is 88/365, or about 0.241 Earth years.

When you float in fresh water, the buoyant force that acts on you is equal to your weight. When you float higher in the denser water of the Dead Sea, the buoyant force that acts on you is:_______.a) greater than your weight.
b) less than your weight.
c) equal to your weight.

Answers

Final answer:

The buoyant force experienced by an object submerged in a fluid is determined by the Archimedes' principle. When floating in the denser water of the Dead Sea, the buoyant force is greater than one's weight.

Explanation:

The buoyant force experienced by an object submerged in a fluid is determined by the Archimedes' principle, which states that the buoyant force is equal to the weight of the fluid displaced by the object. When a person floats in fresh water, the buoyant force acting on them is equal to their weight. However, when they float higher in the denser water of the Dead Sea, the buoyant force that acts on them is greater than their weight. Therefore, the correct answer is (a) greater than their weight.

Final answer:

The buoyant force acting on you when you float in the denser water of the Dead Sea is equal to your weight, which is consistent with Archimedes' principle. The correct option is c.

Explanation:

When you float higher in the denser water of the Dead Sea, the buoyant force that acts on you is: c) equal to your weight. Archimedes' principle tells us that the buoyant force on an object submerged in a fluid is equal to the weight of the fluid that the object displaces. Given that the Dead Sea has a higher density due to its salt content, you displace less water to experience a buoyant force that equals your weight, compared to fresh water. As a result, you float higher in the Dead Sea, but the buoyant force itself remains equal to your weight. Hence, Option c is correct.

A 2.0-mole sample of an ideal gas is gently heated at constant temperature 330 K. It expands from initial volume 19 L to final volume V2. A total of 1.7 kJ of heat is added during the expansion process. What is V2? Let the ideal-gas constant R = 8.314 J/(mol • K).

32 L

41 L

26 L

35 L

Answers

Answer:

26 L

Explanation:

According to the first law of thermodynamics, for an ideal gas:

[tex]\Delta U=Q-W[/tex]

where

[tex]\Delta U[/tex] is the change in internal energy of the gas

Q is the heat absorbed by the gas

W is the work done by the gas

The internal energy of a gas depends only on its temperature. Here the temperature of the gas is kept constant (330 K), so the internal energy does not change, therefore

[tex]\Delta U=0[/tex]

So we have

[tex]Q=W[/tex]

The heat added to the gas is

[tex]Q=1.7 kJ = 1700 J[/tex]

So this is also equal to the work done by the gas:

[tex]W=1700 J[/tex]

For a process at constant temperature, the work done by the gas is given by

[tex]W=nRT ln\frac{V_2}{V_1}[/tex]

where:

n is the number of moles

R is the gas constant

T is the temperature of the gas

[tex]V_1[/tex] is the initial volume

[tex]V_2[/tex] is the final volume

In this problem, we have:

W = 1700 J is the work done by the gas

n = 2.00 mol

T = 300 K is the gas temperature

[tex]V_1=19 L[/tex] is the initial volume of the gas

And solving the equation for V2, we find the final volume of the gas:

[tex]V_2=V_1 e^{\frac{W}{nRT}}=(19)e^{\frac{1700}{(2.0)(8.314)(330)}}=26 L[/tex]

A tilted bed is said to have a _____, describing the angle that the bed forms with the horizontal plane--and a _____,the compass direction that lies at right angles to the tilted bed.

Answers

Answer:

The answer to the question is

A tilted bed is said to have a _dip____, describing the angle that the bed forms with the horizontal plane--and a strike, the compass direction that lies at right angles to the tilted bed.

Explanation:

The dip of a tilted bed, describes the acute angle a tilted bed makes with the horizontal plane, by stating the numerical value of the angle from 0 to 90 degrees  as well as pointing out the orientation of the downward dipping direction in the orientation towards N, S, E, W

The strike line represents the line formed to represent the intersection of a feature of a bed  such as the bed rock surface with a horizontal plane.

The dip and the strike line of a tilted bed are always at right angles to each other on a geologic map.

Final answer:

A tilted geological layer's angle with the horizontal is called the 'dip' and the line it forms intersecting with the horizontal at 90 degrees is the 'strike'. These measurements help determine the orientation of rock layers suffering from deformation.

Explanation:

A tilted bed is said to have a dip, describing the angle that the bed forms with the horizontal plane—and a strike, the compass direction that lies at right angles to the tilted bed. The dip is a measure of the steepest angle of descent relative to the horizontal plane and indicates the direction in which water would flow down the plane. The strike, on the other hand, is the direction of the line formed by the intersection of a rock layer's surface with the horizontal plane, which is always perpendicular to the dip direction. Survey instruments like a Brunton Compass are commonly used by geologists to measure strike and dip accurately to understand feature orientations within geological formations.

How does sugar affect the attention of small children?

Answers

Sugar can have a powerful effect on children's behavior, and this is often in direct proportion to the amount of sugary foods they consume. ... When sugary foods are consumed regularly, it can affect attention span and learning ability, and can aggravate hyperactivity in children with ADHD.
It hypes them up to a point they run wild

Enrico is having trouble telling the difference between the sound of a tuba and the sound of a piccolo. Even though a piccolo produces much briefer, faster sound waves than does a tuba, he has trouble picking out the differences in the _____ of these sounds. Please choose the correct answer from the following choices, and then select the submit answer button.

Answers

Answer: Pitch

Explanation:

Pitch of sound is defined as the factor that monitors the sound quality through produced vibrations rate.It helps in determination of sounds tone in terms highness or lowness.

According to the question,Enrico is finding difficulty in judging the difference between pitch sound of tuba and piccolo as per their tone in terms of high or low.

Enrico is having trouble telling the difference between the sound of a tuba and the sound of a piccolo. Even though a piccolo produces much briefer, faster sound waves than does a tuba, he has trouble picking out the differences in the pitch of these sounds.

Pitch: Pitch is the perceptual attribute of sound that allows us to distinguish between different frequencies. The sound of a tuba and a piccolo are different primarily because they produce sound waves at different frequencies. A tuba produces lower frequency sound waves (lower pitch), while a piccolo produces higher frequency sound waves (higher pitch). If Enrico is having trouble telling the difference between the sound of a tuba and a piccolo, it suggests he is having trouble distinguishing between their pitches.

Loudness: Loudness refers to the perceived volume or intensity of a sound. While the tuba and piccolo can be played at different volumes, the primary distinguishing factor between them is not loudness but pitch.

Hue: Hue is a term used in the context of color, not sound. It refers to the distinct characteristic of color that allows us to differentiate between colors such as red, blue, and green.

Amplitude: Amplitude refers to the height of the sound wave and is related to the loudness or volume of the sound. While amplitude can affect how loud a sound is, it does not directly differentiate between the characteristic sounds of a tuba and a piccolo.

Therefore, the appropriate term for distinguishing between the sounds of different instruments, such as a tuba and a piccolo, is pitch.

The complete question is:

Enrico is having trouble telling the difference between the sound of a tuba and the sound of a piccolo. Even though a piccolo produces much briefer, faster sound waves than does a tuba, he has trouble picking out the differences in the of these sounds.

O pitch

O loudness

O hue

O amplitude

A super ball is dropped from a height of 100 feet. Each time it bounces, it rebounds half the distance it falls. How many feet will the ball have traveled when it hits the ground for the fourth time

Answers

The total distance travelled by the ball after the fourth impact is 275 feet.

Explanation:

Given-

Height, h = 100 feet

Rebounds half the distance

Distance in feet for the fourth time, x = ?

For the first time, the distance travelled by the ball is, x = 100 feet

For the second time, it will bounce up to 50 feet and fall upto 50 feet( half of 100 feet)

So, the distance travelled after the second impact, x = 100 + 50 + 50 = 200 feet

For the third time, it will bounce up to 25 feet and fall upto 25 feet( half of 50 feet)

So, the distance travelled after the third impact, x = 200 + 25 + 25 = 250 feet

For the fourth time, it will bounce up to 12.5 feet and fall upto 12.5 feet( half of 25 feet)

So, the distance travelled after the fourth impact, x = 250 + 12.5 + 12.5 = 275 feet

Therefore, total distance travelled by the ball after the fourth impact is 275 feet.

A stretched spring has a total length of 20 cm and a spring constant of 200 N/m. It is storing 0.25 J in its elastic potential energy store. Determine the unstretched length of the spring. (Please answer ASAP thank you!)

Answers

The unstretched length of the spring is 0.15 m

Explanation:

Given-

Length of the stretched spring, [tex]x_{f}[/tex] = 20 cm = 0.2 m

K = 200 N/m

U = 0.25 J

unstretched length of the spring, x₀ = ?

We know,

U = [tex]\frac{1}{2} (k)[/tex] (Δx)²

Δx = [tex]x_{f}[/tex] - x₀

Δx = 0.2 - x₀

0.25 = 100 (0.2 - x₀)²

0.0025 = (0.2 - x₀)²

0.05 = 0.2 - x₀

x₀ = 0.15 m

Therefore, the unstretched length of the spring is 0.15 m

Equipotential surface A has a potential of 5650 V, while equipotential surface B has a potential of 7850 V. A particle has a mass of 5.40 10-2 kg and a charge of 5.10 10-5 C. The particle has a speed of 2.00 m/s on surface A. A nonconservative outside force is applied to the particle, and it moves to surface B, arriving there with a speed of 3 m/s. How much work is done by the outside force in moving the particle from A to B

Answers

Answer:

0.247 J = 247 mJ

Explanation:

From the principle of conservation of energy, the workdone by the applied force, W = kinetic energy change + electric potential energy change.

So, W = ΔK + ΔU =1/2m(v₂² - v₁²) + q(V₂ - V₁) where m = mass of particle = 5.4 × 10⁻² kg, q = charge of particle = 5.10 × 10⁻⁵ C, v₁ = initial speed of particle = 2.00 m/s, v₂ = final speed of particle = 3.00 m/s, V₁ = potential at surface A = 5650 V, V₂ = potential at surface B = 7850 V.

So, W = ΔK + ΔU =1/2m(v₂² - v₁²) + q(V₂ - V₁)

          = 1/2 × 5.4 × 10⁻²kg × ((3m/s)² - (2 m/s)²) + 5.10 × 10⁻⁵ C(7850 - 5650)

          = 0.135 J + 0.11220 J

          = 0.2472 J

          ≅ 0.247 J = 247 mJ

The greater the masses of two objects, the __ the resultant gravitational force; the greater the distance between the two objects, the ___the resultant gravitational force.

Answers

Answer:

The greater the masses of two objects, the greater the resultant gravitational force; the greater the distance between the two objects, the smaller the resultant gravitational force.

Explanation:

The gravitational force between two objects is an attractive force, whose magnitude is:

[tex]F=G\frac{m_1 m_2}{r^2}[/tex]

where

G is the gravitational constant

m1, m2 are the masses of the two objects

r is the distance between the objects

From the equation above, we observe that:

- The magnitude of the force is directly proportional to the product of the masses

- The magnitude of the force is inversely proportional to the square of the distance between the masses

Therefore, we can say that:

The greater the masses of two objects, the greater the resultant gravitational force; the greater the distance between the two objects, the smaller the resultant gravitational force.

Final answer:

The gravitational force between two objects increases with the masses and decreases with the distance between them. The correct terms for the blanks are 'stronger' for the effect of mass and 'weaker' for the effect of distance.

Explanation:

The question is related to the concept of gravitational force in physics. We know from Newton's law of universal gravitation that the gravitational force between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. This can be represented by the formula:

[tex]F_{gravity} = G \frac{ (M_1 M_2)}{R^2}[/tex],

where [tex]F_{gravity}[/tex] is the gravitational force, G is the gravitational constant, [tex]M_1[/tex] and [tex]M_2[/tex] are the masses of the two objects, and R is the distance between the centers of the two objects.

Thus, the sentence correctly filled out would be: The greater the masses of two objects, the stronger the resultant gravitational force; the greater the distance between the two objects, the weaker the resultant gravitational force.

"____ formulated the law of falling bodies and used the telescope to confirm empirically the previously rhetorical model of a heliocentric universe?"

Answers

Answer:

Galileo

Explanation:

Galileo formulated the law of free falling bodies that distance traveled by falling bodies are proportional to the squares of the time elapsed.

Galileo confirmed the model of  heliocentric universe given previously by Copernicus that the whole universe revolves around the sun . His observation of movement of Venus helped him prove this model.

A 0.40-kg block is attached to the end of a horizontal ideal spring and rests on a frictionless surface. The block is pulled so that the spring stretches for 2.0 cm relative to its unstrained length. When the block is released, it moves with an acceleration of 8.0 m/s2. What is the spring constant of the spring

Answers

Answer:

160N/m

Explanation:

According to Hooke's law which states that the extension of an elastic material is directly proportional to the applied force provided that the elastic limit is not exceeded. Mathematically,

F = ke where

F is the applied force

k is the spring constant

e is the extension

From the formula k = F/e

Since the body accelerates when the block is released, F = ma according to Newton's second law of motion.

The spring constant k = ma/e where

m is the mass of the block = 0.4kg

a is the acceleration = 8.0m/s²

e is the extension of the spring = 2.0cm = 0.02m

K = 0.4×8/0.02

K = 3.2/0.02

K = 160N/m

The spring constant of the spring is therefore 160N/m

Final answer:

The spring constant of the spring is calculated using Hooke's Law and Newton's second law of motion. By multiplying the mass of the block by its acceleration, we found the force, and then divided the force by the displacement to get the spring constant, which is 160 N/m.

Explanation:

To determine the spring constant of the spring, we need to apply Hooke's Law, which states that the force exerted by an ideal spring is directly proportional to its displacement from the equilibrium position (F = -kx), where 'F' is the force, 'k' is the spring constant, and 'x' is the displacement. Since the block is on a frictionless surface and we know the acceleration (a = 8.0 m/s2) and the mass (m = 0.40 kg), we can first find the force using Newton's second law (F = ma), and then use that force to calculate the spring constant 'k'.

The force exerted by the spring can be calculated as:

F = m * a
= 0.40 kg * 8.0 m/s²
= 3.2 N

The displacement (x) from the equilibrium position is given as 2.0 cm, which is 0.020 m in SI units. Using Hooke's Law, the spring constant can be calculated:

k = F / x
= 3.2 N / 0.020 m
= 160 N/m

Why do people in less developed countries use wood as a primary energy source?

Answers

Answer:

The answer for this one is that wood is the oldest mean of energy and it is also cheap that is why people in less developed coubtries use wood as a primary energy source.

Explanation:

The Developing countries depends on the wood and other forest goods for their everyday cooking and heating needs, prompting the public to assist with tropical deforestation and insecurity through the usage of these tools.

Both ideas— that forest-derived energy is mainly used in the developed nation and its value in the energy portfolios of advanced economies is negligible— fail to catch

Final answer:

People in less developed countries rely on wood and biomass for energy because it's inexpensive and accessible; however, this reliance can lead to deforestation and pollution. In contrast, developed nations are seeing an increased biomass use due to rising fossil fuel costs, though they have a greater mix of energy sources.

Explanation:

People in less developed countries often use wood as a primary energy source for multiple reasons. Wood and other forms of biomass, such as animal dung, are inexpensive, relatively efficient, and readily available. These sources of energy are crucial for domestic uses including heating, sanitation, and cooking. In areas where electricity and modern fuels are not accessible or are too costly, biomass is a vital resource. Additionally, due to rapid population growth and poverty, some regions have a higher demand for firewood as they lack alternative energy sources. This reliance often leads to environmental issues like deforestation, as the use of wood outpaces the replenishment of forests.

Furthermore, in developed nations, the consumption of energy includes a mix of sources with a declining reliance on biomass due to access to electricity and other modern energy forms. However, as fossil fuel prices increase and availability declines, biomass use is also growing in these nations. Despite being renewable, the environmental impact of biomass as an energy source includes deforestation and the release of harmful pollutants such as carbon monoxide and particulate matter from burning wood.

An unstrained horizontal spring has a length of 0.43 m and a spring constant of 238 N/m. Two small charged objects are attached to this spring, one at each end. The charges on the objects have equal magnitudes. Because of these charges, the spring stretches by 0.013 m relative to its unstrained length. Determine the possible algebraic signs and the magnitude of the charges. (a) the possible algebraic signs

Answers

Answer:

The charges on the spring are 1.23E-5 C and they have the same sign

Explanation:

Given

Coulomb laws states that the force exerted by a charge q on another charge Q at a distance r is given by

F = kqQ/r²

Where k = 8.99 * 10^9 Nm²/C²

r = 0.43 + 0.013

r = 0.443m

The force on the spring is calculated as;.

F = kx where x is the stretch length of the spring and k is the spring constant

The force acting on the spring = 238 * 0.013

F = 3.094N

By comparison;

F = kqQ/r² becomes

3.094 = F = kqQ/r²

kqQ/r² = 3.094 (Considering that a = Q)

kq²/r² = 3.094

8.99 * 10^9 * q²/0.443 = 3.094 -- make q² the subject of formula

q² = 3.094 * 0.443/8.99*10^9

q² = 1.524629588431E−10

q = √1.524629588431E−10

q = 0.000012347589191545C

q = 1.23E-5 C

The charges on the spring are 1.23E-5 C and they have the same sign

A typical flying insect applies an average force equal to twice its weight during each downward stroke while hovering. Take the mass of the insect to be 7.0g , and assume the wings move an average downward distance of 1.5cm during each stroke. Assuming 117 downward strokes per second, estimate the average power output of the insect.

Answers

Answer:

Average power output of insect is 2.42W

Explanation:

Workdone by constant force during displacement is given by:

W= F× d cos theta

Where theta is angle between F and d.

Power output due to the force over the interval time is given by:

P= Workdone/change in time

Ginen:

Mass of insect,m= 7.0g= 7/1000 = 0.07kg

Downward force applied by insect,F= 2mg

Distance moved by the wing each stroke=1.5cm=1.5/100= 0.015m

W= F× d cos theta

Where theta=0° since force is in the same direction as the displacement.

W= 2mg×d

W= 2× 0.07 × 9.8 × 0.015

W= 0.02058J

Power output = W/ change in time

Since wings make 117strokes each second time interval is 1/117 = 8.5×10^-3seconds

Power= 0.02058/(8.5×10^-3)

Power= 2.42W

A Ferris wheel with a radius of 5 m is rotating at a rate of one revolution every 2 minutes. How fast is a rider rising when the rider is 9 m above ground level

Answers

Explanation:

Below is an attachment containing the solution.

Final answer:

The rider is rising at a speed of approximately 15.71 m/min when the rider is 9 m above ground level on a Ferris wheel with a radius of 5 m rotating at a rate of one revolution every 2 minutes.

Explanation:

To find the speed at which the rider is rising, we can use the concept of angular velocity. The angular velocity of the Ferris wheel can be calculated by taking the circumference of the circle formed by the rider's position and dividing it by the time it takes to complete one revolution. In this case, the circumference is equal to 2π multiplied by the radius of the Ferris wheel. The time it takes to complete one revolution is given as 2 minutes.

The formula for angular velocity is ω = θ/t, where ω is the angular velocity, θ is the angle swept, and t is the time taken. Since one revolution is equal to 360 degrees or 2π radians, the angular velocity can be calculated as:

ω = (2π rad)/(2 min) = π rad/min

Now, to find how fast the rider is rising, we can use the relationship between linear velocity (v) and angular velocity (ω) given by v = rω, where r is the radius of the Ferris wheel. In this case, the radius is given as 5 m. Plugging in the values, the linear velocity is:

v = (5 m)(π rad/min) = 5π m/min ≈ 15.71 m/min

Therefore, when the rider is 9 m above ground level, the rider is rising at a speed of approximately 15.71 m/min.

Learn more about Angular velocity here:

https://brainly.com/question/29557272

#SPJ3

An air compressor compresses 6 L of air at 120 kPa and 22°C to 1000 kPa and 400°C. Determine the flow work, in kJ/kg, required by the compressor. The gas constant of air is R = 0.287 kPa·m3/kg·K. The flow work required by the compressor is

Answers

Final answer:

The required flow work of the compressor is calculated using the flow work equation and the ideal gas law. First, we determine the final volume using the ideal gas law. Then we substitute these figures into the flow work equation, giving the result as 8.08 kJ/kg.

Explanation:

The flow work required by the compressor is calculated using the equation

flow work = pressure * volume.

Given the initial pressure P1 = 120 kPa, volume V1 = 6 L and final pressure P2 = 1000 kPa,

we can substitute these values into the equation.

However, the volume at the end of compression is not given. To find this, we need to use the ideal gas law, P1V1/T1=P2V2/T2,

where T1 is the initial temperature and T2 is the final temperature.

Convert the temperatures to kelvins (T1 = 22 + 273 = 295 K, T2 = 400 + 273 = 673 K) and volume to m3 (V1 = 6 / 1000). Solving for V2 gives V2 = P1V1T2 / P2T1 = 0.00147 m3.

Now, substituting again into the flow work equation gives

flow work = (1000 kPa)(0.00147 m3) = 1.47 kJ.

This is the energy per unit volume, to find it per unit mass, divide it  by the specific volume

v2 = V2 / m = R*T2 / P2 = 0.182 m3/kg,

Therefore, the required flow work = 1.47 kJ / 0.182 kg = 8.08 kJ/kg.

Learn more about Flow Work here:

https://brainly.com/question/32657482

#SPJ3

The flow work required by the compressor is approximately 622.476 kJ/kg.

The flow work required by the compressor is given by the equation:

[tex]\[ w_{flow} = \int_{1}^{2} v \, dp \][/tex]

where [tex]\( v \)[/tex] is the specific volume of the air and [tex]\( dp \)[/tex] is the differential pressure change. For an ideal gas, the specific volume can be calculated using the ideal gas law:

[tex]\[ v = \frac{RT}{p} \][/tex]

where [tex]\( R \)[/tex] is the gas constant, [tex]\( T \)[/tex] is the absolute temperature in Kelvin, and [tex]\( p \)[/tex] is the pressure.

Given:

- Initial pressure [tex]\( p_1 = 120 \)[/tex] kPa

- Final pressure [tex]\( p_2 = 1000 \)[/tex] kPa

- Initial temperature [tex]\( T_1 = 22 + 273.15 = 295.15 \)[/tex] K (converting from Celsius to Kelvin)

- Final temperature [tex]\( T_2 = 400 + 273.15 = 673.15 \)[/tex] K

- Gas constant [tex]\( R = 0.287 \) kPa/m^3/kg/K[/tex]

Since the process is adiabatic and the air is being compressed, we can assume that the specific volume at the initial state [tex]\( v_1 \)[/tex] can be calculated using the initial conditions:

[tex]\[ v_1 = \frac{RT_1}{p_1} \][/tex]

Substituting the values:

[tex]\[ v_1 = \frac{0.287 \times 295.15}{120} \][/tex]

[tex]\[ v_1 = \frac{84.80}{120} \][/tex]

[tex]\[ v_1 = 0.7067 \text{ m}^3/\text{kg} \][/tex]

The flow work can be approximated if we assume the process to be isothermal at the inlet temperature (which is a common simplification for flow work calculation):

[tex]\[ w_{flow} = v_1(p_2 - p_1) \][/tex]

Substituting the values:

[tex]\[ w_{flow} = 0.7067(1000 - 120) \][/tex]

[tex]\[ w_{flow} = 0.7067 \times 880 \][/tex]

[tex]\[ w_{flow} = 622.476 \text{ kJ/kg} \][/tex]

A solid cylinder and a cylindrical shell have the same mass, same radius, and turn on frictionless, horizontal axles. (The cylindrical shell has light-weight spokes connecting the shell to the axle. A rope is wrapped around each cylinder and tied to a block. The blocks have the same mass and are held the same height above the ground, as shown in the figure (Figure 1) Both blocks are released simultaneously. The ropes do not slip. A) Which block hits the ground first? Or is it a tie? Explain. B) Complete the sentences with following terms.(solid) (hollow) , (translational kinetic) (gravitational potential) (rotational potential) (rotational kinetic) By the time the blocks reach the ground, they have transformed identical amounts of ________energy into_____________ energy of the cylinders. energy of the blocks and ____________But the moment of inertia of a __________cylinder is higher than that of a ___________ cylinder of the same mass, so more of the energy of the system is in the form of rotational kinetic energy for the ___________________cylinder than for the __________ one. This leaves less energy in the form of translational kinetic energy for the ____________cylinder. But it is the ____________ energy that determines the speed of the block. So the block moves more slowly for the system with the ____________cylinder, and so its block reaches the ground last.

Answers

Answer:

A solid moment of inertia is  [tex]I = \frac{mr^2}{2}[/tex].

Here, both the solid cylinder and the cylindrical shell have the same mass, the same radius, and turn on a horizontal, friction-less axle.

The solid cylinder has less inertia than the cylindrical shell, and it requires less torque to rotate, meaning that the solid cylinder weight block falls faster than the cylindrical shell itself.

Fill in the blanks, in order.

Gravitational potential energy, Translation kinetic energy, Kinetic energy;

Hallow, Solid, Hallow, Solid;

Hallow, Transitional kinetic energy, Hallow

Answer:

The answer to the queations are;

A) The block attached to the solid cylinder would hit the ground first.

B) By the time the blocks reach the ground, they have transformed identical amounts of _gravitational potential_______energy into_____rotational kinetic________ energy of the cylinders. energy of the blocks and _______translational kinetic_____But the moment of inertia of a ____hollow______cylinder is higher than that of a ____solid_______ cylinder of the same mass, so more of the energy of the system is in the form of rotational kinetic energy for the ______hollow_____________cylinder than for the ___solid_______ one. This leaves less energy in the form of translational kinetic energy for the ____hollow________cylinder. But it is the ____translational kinetic________ energy that determines the speed of the block. So the block moves more slowly for the system with the ______hollow______cylinder, and so its block reaches the ground last.

Explanation:

To solve the question, we note that

The total energy of motion of the moving cylinders is equal to

K[tex]_{TOT[/tex] = 1/2·m·v² + 1/2·I·ω²

Where

m = Mass

v = Velocity

ω = Angular velocity

I = moment of inertia where I for hollow cylinder = MR² and

I for solid cylinder = 1/2·MR².

Therefore we have

K[tex]_{TOT[/tex] for solid cylinder = 1/2·m·v² + 1/2·I·ω² = 1/2·m·v² + 1/2·1/2·MR²·ω²

= 1/2·m·v² + 1/4·MR²·v²/r² = 1/2·m·v² + 1/4·M·v² = 3/4·m·v²

For the hollow cylinder, we have

K[tex]_{TOT[/tex] = 1/2·m·v² + 1/2·MR²·ω² = 1/2·m·v² + 1/2·MR²·v²/r² = 1/2·m·v² + 1/2·m·v²

= m·v²

From conservation of energy the initial potential energy is transformed into potential energy as follows

PE = m·g·h

Where:

m = Mas

g = Gravitational acceleration

h = height

Therefore

For the solid cylinder 3/4·m·v² = m·g·h and  v² = [tex]\frac{3}{4} \frac{m*g*h}{m}[/tex] and v  = [tex]\sqrt{\frac{4}{3} gh}[/tex]

For the hollow cylinder m·v² = m·g·h and  v² = [tex]\frac{m*g*h}{m}[/tex] and v  = [tex]\sqrt{gh}[/tex]

This shows that the solid cylinder has a higher downward velocity and the block attached to the solid cylinder would hit the ground first

B) By the time the blocks reach the ground, they have transformed identical amounts of _gravitational potential_______energy into_____rotational kinetic________ energy of the cylinders. energy of the blocks and _______translational kinetic_____But the moment of inertia of a ____hollow______cylinder is higher than that of a ____solid_______ cylinder of the same mass, so more of the energy of the system is in the form of rotational kinetic energy for the ______hollow_____________cylinder than for the ___solid_______ one. This leaves less energy in the form of translational kinetic energy for the ____hollow________cylinder. But it is the ____translational kinetic________ energy that determines the speed of the block. So the block moves more slowly for the system with the ______hollow______cylinder, and so its block reaches the ground last.

Your goniometer breaks. Describe another way you might be able to measure range of motion. You may use any other materials.

Answers

Answer:

Explained below:

Explanation:

Range of Motion is the measurement of action throughout a specific joint or body part. If your goniometer breaks, no need to worry because an inclinometer is also helpful to measure the range of motion in a joint by measuring the joint angles at length and flexion and in order to verify that there is improvement being made on rising the range of motion in a joint, the physical therapist measures the joint angle before the treatment and keep on doing to do so over time.

It is possible to measure a range of motion by using a protractor and a ruler.

What is motion?

Motion or movement is a measure to indicate the distance that travels a particular object and/or material.

This unit of distance (motion) can be measured by using different geometrical tools.

The range of motion is widely measured by using measurement tools such as a protractor and a ruler.

In conclusion, it is possible to measure a range of motion by using a protractor and a ruler.

Learn more in:

https://brainly.com/question/11231871

A car is rounding a circular curve of radius r on a banked turn. As the drawing indicates, there are two forces acting on the car, its weight mg and the normal force FN exerted on it by the road. Which force, or force component, provides the centripetal force that keeps the car moving on the circular path?
1. The vertical component, FNcosθ of the normal force.
2. The horizontal component, FNsinθ of the normal force.
3. Both the normal force, FN, and the weight, mg, of the car.
4. The normal force, FN.
5. The weight, mg, of the car.
6. The horizontal component, FNsinθ of the norma.l

Answers

Final answer:

The horizontal component of the normal force, represented as FNsinθ, provides the centripetal force necessary for a car to round a circular curve on a banked turn without friction.

Explanation:

When a car is rounding a circular curve on a banked turn, the force that provides the centripetal force necessary to keep the car moving on the circular path is the horizontal component of the normal force exerted on it by the road. This can be represented as FNsinθ, where θ is the banking angle. The weight of the car, mg, acts vertically downwards and does not contribute to the centripetal force in this ideal frictionless scenario. For ideal banking, where the angle is perfect for the speed and radius of the turn, the net external force equals the horizontal centripetal force required for circular motion. Therefore, the horizontal component of the normal force is the only force component that acts towards the center of the curvature, providing the centripetal acceleration.

SPEAR is a storage ring at the Stanford Linear Accelerator which has a circulating beam of electrons that are moving at nearly the speed of light (2.998 108 m/s). If a similar ring is about 92.0 m in diameter and has a 0.40 A beam, how many electrons are in the beam

Answers

Answer:

[tex]2.4\times 10^{12}[/tex]

Explanation:

We are given that

Speed of light,v=[tex]2.998\times 10^8 m/s[/tex]

Diameter of ring,d=92 m

Radius,r=[tex]\frac{d}{2}=\frac{92}{2}=46 m[/tex]

Current, I=0.40 A

We have to find the number of electrons in the beam.

We know that

Current,I=[tex]\frac{q}{t}[/tex]

Where q= ne

[tex]e=1.6\times 10^{-19} C[/tex]

Using the formula

[tex]0.40=\frac{1.6\times 10^{-19}n}{\frac{2\pi r}{v}}[/tex]

[tex]0.40=\frac{1.6\times 10^{-19}n\times v}{2\pi r}[/tex]

[tex]0.40=\frac{1.6\times 10^{-19}n\times 2.998\times 10^8}{2\pi\times 46}[/tex]

[tex]n=\frac{0.40\times 2\pi\times 46}{1.6\times 10^{-19}\times 2.998\times 10^8}=2.4\times 10^{12}[/tex]

Why do the pvc plastic wells used in this weeks elisa need to be sticky on the inner walls and how may your results change if a different non-adherent plastic was used instead?

Answers

Answer:

The stickiness in the inner walls allows them to be easily coated with the desired antigens, this translates in the use of a smaller amount of antigen. If the walls weren't sticky there's a possibility the antigen won't stick to them and therefore the result of the ELISA can be a false negative.

I hope you find this information useful and interesting! Good luck!

The ball was kicked in the air and it iss about to hit the . if horizonta componenet of its final velocity is 10m/s and vertical component of its final velocity is -10m/s .what is the magnotide of th final vellocity of the ball?

Answers

Answer:

The magnitude of the final velocity is 14.14 m/s

Explanation:

The horizontal component of the final velocity and vertical component of the final velocity, forms a perpendicular vector. To determine the magnitude of the final velocity, we sum the two vectors.

To add two perpendicular vector, Pythagoras principle is used.

[tex]V^2 = V_x^2 +V_y^2\\\\V = \sqrt{V_x^2 +V_y^2}\\\\V = \sqrt{(10)^2 +(-10)^2} =14.14 m/s[/tex]

The magnitude of the final velocity is 14.14 m/s

Consider the following possible stages in the evolution of a star like our sun: black dwarf, giant, main-sequence, planetary nebula, supernova, white dwarf. Rank the stages in the order they occur. Leave out any stages that will not occur in the evolution of a star of similar mass to the sun

Answers

Answer:

Main sequence

Giant

Planetary nebula

White dwarf

Black dwarf

Explanation:

Main Sequence:

Stars are called main sequence stars when their core temperature reaches up to 10 million kelvin and their start the nuclear fusion reactions of hydrogen into helium in the core of the star. For example sun is known as to be in the stage of main sequence as the nuclear fusion reactions are happening in its core.

Giant:

Next step is the Giant phase. When the stars run out of their fuel that is hydrogen for the nuclear fusion reactions then they convert into Giant stars. Giant stars have the larger radius and luminosity then the main sequence stars.

Planetary nebula:

Planetary nebula consists of glowing gases and plasma, it ejects from the red giant stars that run out of their fuel.

White dwarf:

When the stars run out of their fuel then they shed the outer layer planetary nebula, the remaining core part that left behind is called as white dwarf. It's the most dense part as the most of the mass is concentrated in this part.

Black dwarf:

When the white dwarf cool down completely that it no longer emitt heat and light then it is called as black dwarf.

These were the possible stages that includes in the evolution of stars

Other Questions
Trift company made total purchases of $ 310 comma 000 in the most current year. It paid freight in of $ 5 comma 500 on its purchases. Freight out, the cost to deliver the merchandise when it was sold to Trift's customers, totaled $ 7 comma 800. Of the total purchases Trift made during the period, it returned $ 28 comma 000 of the merchandise. Trift took advantage of $ 2 comma 700 of purchase discounts offered by its vendors. What was Trift's cost of inventory? Look at the proof. Name the postulate you would use to prove the two triangles are congruent. A. AAA Postulate B. SSS Postulate SAS C. SAS Postulate 4. The NIMS Management Characteristic of Chain of Command and Unity of Command means that each person: A. Continues to report directly to their day-to-day supervisor. B. Reports to only one ICS supervisor. C. May receive work assignments from multiple supervisors in the organization. D. May be assigned to multiple jurisdictions. Decimal equivalent to 11/44 Asha has a fear of darkness. To extinguish this fear, she is placed in a dark room ensuring that she suffers no harm in the process. In this scenario, which of the following techniques is being used to reduce Asha's fear of the dark?A) GeneralizationB) FloodingC) SensitizingD) Discrimination The BCG has given specific names and descriptions to the four resulting quadrants in its growth-share matrix based on the amount of cash they generate for or require from the organization. "Cash cows" are SBUs that are classified as having:___________A. high market growth rates and high relative market shares.B. low market growth rates but high relative market shares.C. low market growth rates and low relative market shares.D. high market growth rates but low relative market shares.E. medium market growth rates and medium relative market shares. Bertina is conducting a long-term study of intelligence, asking if it changes significantly as people age. In this study, intelligence would be considered a(n): constant. confound. variable. sample. Solve -8(2z-3) Equivalent to -16z-3 3) Paul bought 2 muffins, 2 brownies and I cookie at a bake sale. The muffins cost $1.30each, the brownies cost $0.75 a piece and the cookie was $0.50. If he paid with a twentydollar bill, how much change should he get back? As discussed in the textbook, which of the following is true in China when an outsider allegedly commits or actually commits fraud in the course of business dealings with Chinese firms? Which of the following best explains why globalization has led to wage cutsin some jobs in the United States?OA. Immigration increases domestic consumption, leading to morecompetition for goods and services.OB. Free trade increases competition among producers, providing anincentive to increase productivity and lower prices.OC. Outsourcing increases the domestic supply of workers, drivingdown the price of labor.OD. Protectionist policies increase tariffs, which make goods andservices more expensive. True or False: Beta testing is the act of implementing a new idea, system or product on a large scale, controlled environment within the entire organization. Help show the work for 5.2 divide by 0.13 A biotechnology company produced 225 doses of somatropin, including 11 which were defective. Quality control test 15 samples at random, and rejects the batch if any of the random samples are found defective. What is the probability that the batch gets rejected? A scoop of ice cream has a 3 inch radius. How tall should the ice cream cone of the same radius be in order to contain all of the ice cream inside the cone? Depreciation is computed from the first of the month of acquisition to the first of the month of disposition. Land A and Building A were acquired from a predecessor corporation. Thompson paid $732,500 for the land and building together. At the time of acquisition, the land had a fair value of $65,600 and the building had a fair value of $754,400. Land B was acquired on October 2, 2019, in exchange for 2,200 newly issued shares of Thompsons common stock. At the date of acquisition, the stock had a par value of $5 per share and a fair value of $17 per share. During October 2019, Thompson paid how to graph -5x + y = 1 Today, entire populations of frogs, toads, and salamanders are vanishing without a trace. Recent studies implicate a wide array of factors. What is the second greatest cause of decline for threatened species? A shoreline is eroding at a rate of 1/3 foot per 3 months. How many feet are eroding per year? Who do you mark some one Brainlist?