Answer:
The result would differ in the sense that the reproductive success would not decrease at the same rate at 20% as it would at 100%. At 20% it would decrease faster.
Final answer:
A 20% negative selection pressure results in a slower rate of allele elimination from the population, leading to a more gradual evolutionary change compared to 100% negative selection pressure. This allows for greater genetic diversity and adaptability in facing future environmental changes.
Explanation:
Naturally occurring selective pressures, such as predators, diseases, or environmental conditions, tend to reduce an organism's reproductive capacity rather than completely negate it. If there was only 20% negative selection pressure, as opposed to 100%, this would mean that the affected individuals still retain a significant proportion (80%) of their reproductive capability. Consequently, the alleles or genetic traits subject to this pressure would be eliminated from the population at a slower rate compared to a scenario with 100% negative selection pressure. Over time, this could lead to a more gradual change in the allele frequencies within the population, affecting the pace at which evolution occurs under these selective pressures.
The evolutionary impact of differing levels of selective pressure illustrates how natural selection can shape populations over time. A 20% selective pressure allows for a greater diversity of genetic material to remain within the population, potentially enabling it to adapt to future changes in the environment or new selective pressures. Thus, understanding the nuances of selective pressure helps us grasp the complex dynamics of evolution and the survival of species in changing environments.
Theoretical and experimental measurements show that in many cases, the contributions of ionic and hydrogen-bonding interactions to ΔH for protein folding are close to zero. Provide an explanation for this result. (Hint: Consider the environment in which protein folding occurs.)
The formation of favorable ______ ionic or ________ interactions in a _________ protein replace interactions between solvent (water) and the ionic species (or _________donors and acceptors) in the _________ state. The favorable ΔH obtained by formation of ____________ bonds in the ___________ protein is offset by the energy required to ___________ many interactions, with solvent going from the ________ to the ________ state.
Fill in the blanks above using the words listed below.
H-bonding
H-bond
intermolecular
restore
unfolded
folded
C-bond
break
intramolecular
C-bonding
Answer:
The formation of favorable C-bond ionic or C-bonding interactions in a folded protein replace interactions between solvent (water) and the ionic species (or restore donors and acceptors) in the unfolded state. The favorable ΔH obtained by formation of H-bond in the H-bonding protein is offset by the energy required to break many interactions, with solvent going from the inter-molecular to the intramolecular state.
Answer:
The answer is:
The formation of favorable intermolecular ionic or H-bonding interactions in a folded protein replace interactions between solvent (water) and the ionic species (or H-bond donors and acceptors) in the unfolded state. The favorable ΔH obtained by formation of intramolecular bonds in the folded protein is offset by the energy required to break many interactions, with solvent going from the unfolded to the folded state.
Explanation:
The idea that the bacterial genome is ""loose"" in the cytoplasm is incorrect because Choose one: A. the DNA is attached to the cell envelope and organized into domains through supercoiling and DNA-binding proteins. BY. attached ribosomes prevent tangling of the DNA. C. bacterial cells have a nucleus. D. the DNA is usually condensed into a chromosome.
Answer:D. the DNA is usually condensed into a chromosome
Explanation:
The bacterial genome is found loose in the cytoplasm but with a form. This unique feature is called the chromosomal DNA and it is not contained within a nucleus in the bacterial cell.
Answer: Option D.
DNA is usually condensed into a chromosome.
Explanation:
Bacterial genome refers to the complete set of DNA or complete set of genetic material of bacteria. Bacteria chromosomes are circular DNA. The chromosomes are packed by histone proteins into a condensed structure called chromatin. The condensed DNA is supercooled.
In wheat plants, the feature of having colored kernels is dominant to having white kernels that lack pigment. A true-breeding plant with colored kernels is crossed to a true-breeding plant with white kernels, resulting in progeny that all harbor colored kernels. The F1 progeny are then crossed, and a few members of the F2 generation have white/colorless kernels. The modified ratio observed is 15 colored: 1 non-colored. Explain these results.
Answer: It occurred a dihybrid cross and epistasis.
Explanation: In dihybrid cross, two different genes controlled two different traits. When they interact with each other is called Epistasis. However, in wheat plants, the genes related to color kernels don't act opposedly to each other. In other words, the genes have the same role in producing protein, so they can substitute for each other.
In the color determination mechanism, a biochemical reaction is necessary to convert a precursor substance into a pigment and that reaction happens with the product of either genes. That's why having a dominant allele makes the wheat colorful. So, crossing colored kernels with white ones will produce a heterozygous F1 generation. Crossing this generation will produce a F2 generation with modified ratio of 15 colored: 1 non colored because, every individual who has dominant alleles will produce the substance and thus the biochemical reaction will happen. Only recessive homozygous ones won't have the substance and so won't have color.
State whether each of the following statements is true or false, and explain your choice: a. The chromosomes in a somatic cell of any organism are all morphologically alike. b. During mitosis, the chromosomes divide and the resulting sister chromatids separate at anaphase, ending up in two nuclei, each of which has the same number of chromosomes as the parental cell.
Final answer:
The chromosomes in a somatic cell of any organism are not all morphologically alike. During mitosis, chromosomes divide and sister chromatids separate, resulting in two nuclei with the same number of chromosomes as the parent cell.
Explanation:
a. False. The chromosomes in a somatic cell of any organism are not all morphologically alike. Somatic cells contain pairs of homologous chromosomes, which are matched pairs containing the same genes in identical locations along their lengths. This means that each homologous chromosome may have different variants called traits caused by differences in the DNA sequence for a gene. So, the chromosomes in a somatic cell can show morphological variation.
b. True. During mitosis, the chromosomes divide and the resulting sister chromatids separate at anaphase, ending up in two nuclei, each of which has the same number of chromosomes as the parental cell. This ensures that each daughter cell receives an identical set of chromosomes to the parent cell.
"In 1958, Meselson and Stahl conducted an experiment to determine which of the three proposed methods of DNA replication was correct. Identify the three proposed models for DNA replication."
Answer:
Three proposed models: 1) Conservative
2) Semiconservative
3) Dispersive
Correct one: 2) Semiconservative
Explanation:
Meselson and Stahl proposed that the process of DNA replication could be conservative, semiconservative or dispersive. Conservative DNA replication will form one DNA duplex with both newly formed strands and the other duplex with both parental strands. The semi conservative mechanism will form two DNA helices each of which would have one parental strand and one newly formed strand (hybrid). The dispersive mechanism will form DNA double helices with patches of the new and parental strand.
However, they found that DNA replication follows a semi-conservative mechanism as after two rounds of replication of heavy chain DNA in the light-medium formed two molecules of hybrid DNA and two DNA molecules with light chains only. There was no DNA molecule with both the strands having the heavy chains.
The three proposed models for DNA replication individually tested by Meselson and Stahl in 1958 were the conservative, semi-conservative, and dispersive models. Their experiment proved the semi-conservative model, where each new DNA molecule consists of one old and one new strand, to be the accurate depiction.
Explanation:In 1958, Matthew Meselson and Franklin Stahl conducted an experiment with the goal of determining the accurate model for DNA replication. The three proposed models that they evaluated were the conservative model, the semi-conservative model, and the dispersive model.
In the conservative model, the parent DNA molecule remains intact and an all-new molecule is formed based on its template. In contrast, the semi-conservative model suggests that each of the two new DNA molecules consists of one original and one new strand, replicating its structure from the parent molecule. Lastly, the dispersive model proposes that each strand of both daughter molecules contains a mixture of old and newly synthesized DNA.
As a result of the experiment, they found that the semi-conservative model was the correct depiction of DNA replication.
Learn more about DNA Replication Models here:https://brainly.com/question/34279455
#SPJ12
Two linked genes, A and B, are separated by 18 cM. A man with genotype AB/ab marries a woman who is ab/ab. The man’s father was AB/AB.a. What is the probability that their first child will be Ab/ab?b. What is the probability that their first two children will both be ab/ab?
Answer:
a) 9%.
b) 16.8%.
Explanation:
a).
We are provided with the information that Two linked genes, A and B, are separated by 18 cM (centiMorgan). i.e the recombinant frequency is 18%
Also , the man's genotype is AB/ab... This only result to one explanation, that The man will definitely produce 18% of recombinant gametes which entails
9% Ab & 9% aB
i.e 0.09 Ab & 0.09 aB
On the other-hand, The mother ab/ab have tendency to produce just one single type of gamete which is ab
∴
The probability that their first child will be Ab/ab will be
Pr ( Ab/ab) = (0.09) x (1)
= 0.09
= 9%.
b).
If the father produces 18% of recombinant gametes which entails
9% Ab & 9% aB , this typically implies that the number of the non-recombinant gametes will be;
100%-18% = 82% ( non-recombinant gametes)
i.e genotype AB/ab = 82%
AB =41%; ab = 41%
AB = 0.41 ; ab = 0.41
Now, the probability that their first two children will both be ab/ab:
Using Multiplication Rule to calculate the probability that their first two children (ab/ab); we have:
(0.41)(1) ×(0.41)(1)
= 0.1681
= 16.8%.
The probability of the first child being Ab/ab as 25% and the probability of the first two children being ab/ab as 6.25%.
Probability of first child being Ab/ab:
Since the man is AB/ab and woman is ab/ab, the possible gametes are AB, ab, and Ab.The probability of their first child being Ab/ab is 1/4 or 25%.Probability of first two children both being ab/ab:
The probability of having a child with ab/ab is 1/4.For both children to be ab/ab, the probability is (1/4) x (1/4) = 1/16 or 6.25%.Principles of Ecology: Part 4 FANR/MARS 1100 Law of Tolerance Survival depends on _________________________ of many factors, which can vary greatly. For each factor a given species has a ______________ of __________________________. If environmental conditions exceed upper or lower limitof tolerance, deathcan result.
Answer:
Survival depends on interaction of many factors, which can vary greatly. For each factor a given species has a range of conditions. If environmental conditions exceed upper or lower limit of tolerance, death can result.
Explanation:
This is the Shelford's law of Tolerance.
This law states that the success of distribution of an organism can be controlled by some factors like topographic, climate, and biological requirements of plants and animals, in which their levels exceed the higher or lower limits of tolerance of the organism.
This was a law proposed by V. E. Shelford in 1911.
One factor that Saruman Enterprises considered in deciding whether to market a line of weight-loss supplements was the increasing rate of obesity in the United States. This trend is considered a(n) _______ factor.
Answer:
This trend is considered a(n) sociocultural factor.
Explanation:
In the field of business studies, sociocultural factors can be described as certain lifestyles or habits that characterize a particular society. The sociocultural environment of a particular area is used in business and marketing to make products which will attract the customers of a particular area. For example, with the increase in obesity of a particular place or city, people of that city will be more attracted to weight loss products.
Which of the following statements about the evolution of development is false? a. Evolution by natural selection "works" like a tinker, assembling new structures by combining and modifying available materials. b. Nearly all evolutionary innovations are the result of modifications of previously existing mechanisms and structures. c. The genes that control development are highly conserved. d. All of the above are true; none is false
All of the above are true; none is false
Explanation:
Evolution is the phenomena by which an organism gets modified or develops more advanced characters which makes it more fit for the survival in nature.
The first statement is true because evolution refers to the modification of existing characters nothing new develops spontaneously to overcome natural selection. During natural selection organisms that survive gradually surpass the selection pressure. And the evolved character of it gets fixed within the species.
Evolution occurs within the existing mechanisms and structure which find out new ways of surviving in the changing environment.
The genes that control the development are highly conserved and this is the reason we can trace back the similarities with common ancestors. And make a comparitive study of structural anatomy.
Final answer:
The false statement is: c. The genes that control development are highly conserved.
Explanation:
The correct answer is: c. The genes that control development are highly conserved.
Genes that control development can be highly variable between species, allowing for diverse developmental processes and structures to evolve. While certain core developmental genes may be conserved across different species, there is also significant variation that allows for evolutionary innovation.
For example, the Hox genes, which play a crucial role in determining body structure during development, can vary greatly between species, leading to diverse body plans across different organisms.
The body tubes are long, semi-rigid tubes, usually made of _______________________chloride or some other type of plastic. A typical ET tube has nine basic parts. The proximal end (sticking out of mouth) has a standard ________ mm adaptor.
Answer:
The body tubes are long, semi-rigid tubes, usually made of _polyvinyl_ chloride or some other type of plastic. A typical ET tube has nine basic parts. The proximal end (sticking out of mouth) has a standard _15_ mm adaptor.
Explanation:
An endotracheal tube (ET) is a flexible plastic tube that is inserted into the trachea through the mouth to help a patient breathe. Then it is connected to a ventilator for oxygen supply to patients's lungs. This process of insertion of tube is refereed as endotracheal intubation.
The body tubes in question are usually part of endotracheal tubes, made of polyvinyl chloride or a similar plastic. The proximal end of these tubes that sticks out of the mouth has a standard 15 mm adaptor.
Explanation:The body tubes referred to in the question are typically part of medical devices known as endotracheal (ET) tubes, used to secure a patient’s airway during operations or critical care. These tubes are long, semi-rigid tubes, typically made of polyvinyl chloride or some other type of plastic. A typical ET tube has nine basic parts. The proximal end, which sticks out of the patient's mouth, has a standard 15 mm adaptor. This universal size allows it to attach to a variety of equipment like ventilators or bag valve masks.
Learn more about Endotracheal Tubes here:https://brainly.com/question/36603018
#SPJ3
In watermelons, bitter fruit (B) is dominant over sweet fruit (b), and yellow spots (S) are dominant over no spots (s). The genes for these two characteristics assort independently. A homozygous plant that has bitter fruit and yellow spots is crossed with a homozygous plant that has sweet fruit and no spots. The F1 are intercrossed to produce the F2.
(a) What will be the phenotypic ratio in the F2?
(b) If an F1 plant is backcrossed to the bitter, yellow-spotted parent, what phenotypes and
proportions are expected in the offspring?
(c) If an F1 plant is backcrossed to the sweet, non-spotted parent, what phenotypes and proportions
are expected in the offspring?
(d) If you testcross the F1 plant, what phenotypes and proportions are expected in the offspring?
Answer:
(a) 9:3:3:1 of bitter fruit, yellow spots: bitter fruit no spots: sweet fruit yellow spots: sweet fruit no spots. (see colours showing the genotype on the punnett square)
(b) 100%, bitter, yellow spotted.
(c) 1:1:1:1 bitter fruit, yellow spots: bitter fruit no spots: sweet fruit yellow spots: sweet fruit no spots.
(d) 1:1:1:1 bitter fruit, yellow spots: bitter fruit no spots: sweet fruit yellow spots: sweet fruit no spots.
Explanation:
(a) The parental cross is BBSS x bbss.
We know that the F1 will be all BbSs (see attached punnet square). The only possible gametes the parental generation can pass on to the F1 are BS and bs, respectively.
The F1 intercross is therefore BbSs x BbSs. the alleles that each can pass on are BS, Bs, bS, or bs. The punnett square attached shows the phenotype ratio is 9:3:3:1 of bitter fruit, yellow spots: bitter fruit no spots: sweet fruit yellow spots: sweet fruit no spots. (see colours showing the genotype on the punnett square)
(b) An F1 plant is BbSs. If it is backcrossed with a bitter, yellow spotted parent (BBSS), the cross is BbSs x BBSS (see attached punnett square). The resulting genotypes all give a bitter, yellow spotted phenotypes, so the phenotype of the offspring is 100% bitter, yellow spotted
(c) An F1 plant is BbSs, if it is backcrossed with a sweet, non spotted parent (bbss), the cross is BbSs x bbss. (see attached punnett square). The resulting phenotypes are 1:1:1:1 of bitter fruit, yellow spots: bitter fruit no spots: sweet fruit yellow spots: sweet fruit no spots. I.e. 25% of each genotype
(d) A test cross is a cross between an individual with a known genotype and another plant. The plants showing the recessive trait have a known genotype (they must be homozygous). So in this case, the F1 plant would be crossed with the homozygous recessive plants (BbSs x bbss). Therefore, the resulting phenotypes would be as in option c, 1:1:1:1
would cephalization be an advantage to jellyfish? why or why not?
Answer:
Cephalization does not confer an advantage to free-floating or sea organisms. Many aquatic species display radial symmetry like the jelly fish for instance.
Aquatic animals are not cephalized because they must be able to find food, take caution and defend themselves from harm from all directions.
Effect of pH on the Conformation of α-Helical Secondary Structures The unfolding of the α helix of a poly-peptide to a randomly coiled conformation is accompanied by a large decrease in a property called specific rotation, a meas-ure of a solution’s capacity to rotate circularly polarized light. Polyglutamate, a polypeptide made up of only L-Glu residues, has the α-helix conformation at pH 3. When the pH is raised to 7, there is a large decrease in the specific rotation of the solu-tion. Similarly, polylysine (L-Lys residues) is an α helix at pH 10, but when the pH is lowered to 7 the specific
This is because the pH of the solution changes the chemical and stereochemical properties of the solution.
Explanation:All the proteins or polypeptides are formed of polymers of amino acids. These amino acids comprise of an alpha carbon, where a hydrogen, a carboxyl group, an amino group and a variable group R is attached. All these four groups have their specific stereochemistry which gives the polypeptide a particular shape in their coiled form.
Here in case of polyglutamate, the polymer is formed of chains of glutamic acid. This glutamic acid has carboxyl group in the R group which remains free even in the polymerized state. In acidic pH, the carboxyl group has its normal structure - COOH, but as the pH increase to 7,the hydrogen ion dissociates making it - COO⁻. So the stereochemistry changes and the specific rotation also changes.
Similarly in poly lysine, there's amino group in the R group which remains stable in alkaline pH of 10,but in case of neutral or acidic pH, the structure becomes - NH3⁺. So, the specific rotation changes.
Final answer:
The secondary structure of proteins, like alpha-helix, is crucial for protein function and is stabilized by hydrogen bonds. The alpha-helix structure can be altered by pH changes, resulting in different physical properties, such as specific rotation, which indicates structural changes.
Explanation:
Effect of pH on Protein Secondary Structure
The secondary structure of proteins, like the alpha-helix (α-helix) and beta-pleated sheet (β-pleated), plays a critical role in the protein's overall structure and function. These structures are stabilized by hydrogen bonds between the amino acids in the protein chain. The α-helix is particularly stable due to hydrogen bonds that form between the carbonyl oxygen of one amino acid and the amide hydrogen four residues away. Changes in pH can lead to a disruption of these hydrogen bonds, causing the protein to unfold or alter its conformation. This can be observed through changes in physical properties, such as specific rotation, which is a measure of how a substance rotates polarized light. Polyglutamate and polylysine are examples of polypeptides that change from an α-helical structure to a randomly coiled conformation when the pH shifts away from their optimal range, thereby exhibiting a change in specific rotation.
What are the differences between the G0, G1, and G2 phases of the cell cycle? Do all cells proceed through each of these phases? g
Answer:
The cell division is divided into two main phase - interphase and M (mitosis) phase. The interphase is further divided into G1, S phase and G2 phase.
G1 (gap 1 phase): The G1 phase is marked by the complete growth of the cell. The cells accquire different proteins and factors that are necessary for the cells to undergo the process of DNA rep[lication of the synthesis phase.
G2 phase (gap 2 phase) : During the G2 phase the cells prepares itself to undergo the M phase and underwent through the different phases of the cell cycle. The nuclear envelope forms around DNA and centrosomes are fully developed.
G0 phase: The G0 phase is also known as the extended phase of the G1 cycle. The G0 phase occurs when the cells are completely ready but do not undergo G1 phase, this might occur when the tissue is under the generation process.
The cells will go through the G1, S, G2 and M phase of the cell cycle. This is not necessary that all cells undergo the G0 phase of the cell cycle.
Which of these lists reflects the order in which cell organelles participate in the overall process that produces and transports many kinds of protein though the cell?
O Golgi apparatus, vesicles, ribosomes bound to rough endoplasmic reticulum, vesicles
O ribosomes bound to rough endoplasmic reticulum, vesicles, Golgi apparatus, vesicles
O Golgi apparatus, vesicles, ribosomes bound to rough endoplasmic reticulum
O vesicles, Golgi apparatus, ribosomes bound to rough endoplasmic reticulum
Answer:
O ribosomes bound to rough endoplasmic reticulum, vesicles, Golgi apparatus, vesicles
Explanation:
→Ribosomes bounded to R.ER are responsible for the mediation of the process of translation and elongation of the amino acids chains during protein synthesis for gebe expression. These R.ER bounded ribosomes are concerned for the synthesis of proteins for excretion out of the cells.
→As the protein chains were eleongated on the ribosomes units they are pushed into the lumen of R.ER into the intracistern space.Therefore R.ER is concerned with synthesis and packaging of protein synthesised by the attached ribosomes,
→These proteins are transported in vesicles,( which move through the cytoskeleton of the Cystosol) which budded off from the R.ER membranes.These vessicles transport the synthesized proteins to the Golgi complex.
→The Golgi apparatus receive the protein from the (R.ER), process it, and sorted it out into its vesicles(Golgi vesicles) for onward secretion out of the cells through excytosis from the plasma membranes. Example of this sorting and processing by the Golgi apparatus is the formation of Glycoprotein by addition of sugars molecules to proteins .
What are the emergent properties of the nervous system that cannot be predicted by studying individual neurons?
Answer:
Consciousness, human emotion etc, are emergent properties
Explanation:
The properties which are characteristics of an entire system and not its constituting members are called as emergent properties.
Consciousness with in an individual human being can be termed as an emergent property of nervous system. A single neuron cannot generate or holds the sense of consciousness, self-awareness, pride or honor etc. The entire nervous system can also generate complex human emotions such as fear, joy, pride etc. Neuro-biologists have not been able to depict the expression of these functions at micro level such as a single neuron and thus these properties are termed as emergent properties.
Micah has straight hair. If he is homozygous for the gene that determines straight hair, what is true of his parents?
Answer:
They have contributed same allele for straight hair.
Explanation:
There are two conditions homozygous and heterozygous. In homozygous conditions both the allele of a particular gene is same in an offspring which means the offspring got two same alleles from its parent for a particular gene and if an offspring is heterozygous for a gene that suggests that the parent has contributed two different alleles for that gene in the offspring.
So If Micah is homozygous for straight hair then it can be concluded that his parents have contributed two same alleles for straight hair genes.
If Micah is homozygous for the straight hair gene, both of his parents must have contributed an allele for straight hair. They could be homozygous or heterozygous for this trait.
Explanation:If Micah is homozygous for the gene that determines straight hair, it means he has two of the same type of allele for that gene - in this case, the allele for straight hair. This indicates that both of his parents must have contributed an allele for straight hair. The simplest scenario is that both of his parents are also homozygous for the straight hair allele. However, it's also possible that one or both parents are heterozygous, possessing one straight hair allele and one potentially recessive curly hair allele. In this scenario, they would have each passed the straight hair allele to Micah.
Learn more about Genetics here:https://brainly.com/question/32287923
#SPJ3
Some mutations result in proteins that function well at one temperature but are nonfunctional at a different (usually higher) temperature. Siamese cats have such a "temperature-sensitive" mutation in a gene encoding an enzyme that makes dark pigment in the fur. The mutation results in the breed's distinctive point markings and lighter body color.
Let's complete the question by adding the missing piece of information
The mutation results in the breed's distinctive point markings (ears, mask, tail and legs) and lighter body color. Use this information to explain the pattern of the cat's fur pigmentation.
Answer:
The mutation of the TYR gene results in the enzyme tyrosinase to be heat susceptible. Tyrosinase takes part in the production of melanin to give darker fur in colder areas. The areas like the tail, legs, ears, and face do lack as much body heat and so will get darker.
Explanation:
A unique protein (enzyme), known as tyrosinase, is the major workhorse in the development of the melanin. A research team from the University of California, USA, led by L. A. Lyons, discovered that Siamese cats have tyrosinase that went through mutation due to the changes in the DNA helix and is temperature-sensitive as it's activity reduces with a rise in temperature. This explains why cat’s warm parts of the body are coated with white, melanin-lacking hair since Tyrosinase is deactivated in these regions and melanin is not developed – hair is white-colored. On the other hand, in cooler boundary the enzyme is active and the melanin is formed – hair has dark color.
What would you expect the F1 generation flies to look like if two scarletmutants were crossed with each other?
Answer:
complementation test
Explanation:
The easiest examination to differentiate between the two possibilities is the complementation test. The test is simple to perform: two mutants cross and F1 is analyzed. If F1 expresses the wild-type phenotype, we conclude that each mutation is in one of two possible genes necessary for the wild-type phenotype. When it is shown that it is genetically shown that two (or more) genes control a phenotype, the genes are said to form a complementation group. Otherwise, if F1 does not express the wild type phenotype, but rather a mutant phenotype, we conclude that both mutations occur in the same gene.
These two results can be explained considering the importance of genes for phenotypic function. If two separate genes are involved, each mutant will have an injury to one gene while maintaining a wild-type copy of the second gene. When F1 occurs, it will express the mutant allele of gene A and the wild-type allele of gene B (each contributed by one of the mutant parents). F1 will also express the wild type allele for gene A and the mutant allele for gene B (contributed by the other mutant parent). Because F1 is expressing the two necessary wild-type alleles, the wild-type phenotype is observed.
You just bought two black guinea pigs from the pet store that are known to be heterozygous (Bb). You also know that black fur (BB) is dominant over white fur (bb), and that a lethal recessive allele is located only one cM away from the recessive b allele. You decide to start raising your own guinea pigs, but after mating these animals several times, you discover they produce only black progeny. a) How would you explain this result? b) If the original black guinea pigs produce an average of 10 offspring per mating, how many matings would you have to make with these same parents before you'd expect to see a white guinea pig? c) Indicate the most likely genotype of the white offspring.
Answer:
21 Mating
Explanation:
Ans A)The recessive lethal allele is tightly linked to, and thus co-segregates with, the recessive B allele, which is lethal in the homozygous state (bb)
Ans B)
1% of the gametes will be recombinant (Bl or bL)
0.5% of the gametes will be bL
0.5% of the gametes will be Bl
white animals will have the following genotype
genotype probability
bL/bL(0.005)(0.005) = 0.000025
bL/bl(0.005)(0.495) = 0.002475
bl/bL(0.495)(0.005) = 0.002475
Probability of white animal =0.004975
1/0.004975 = 201 therefore on average you'd have to look at 201 progeny before seeing a white animal so on average you'd have to do 21 mating
In proteins, amino acids are linked by peptide bonds; in polynucleotides, nucleotides are linked by ________.
Answer: Phosphodiester bond
Explanation:
The backbone of DNA consists of deoxyribose nucleotides linked by phosphodiester bridges.
The 3'-hydroxyl of the adjacent sugar of one deoxyribonucleotide is joined to the 5'-hydroxyl of the adjacent sugar by an internucleotide linkage called a phosphodiester bond.
Thus, phosphodiester bond is the answer
Answer:
Phosphodiester bond
Explanation:
Nucleotides are linked by phosphodiester bonds that are formed between the 5' phosphate group of one nucleotide and the 3' hydroxyl group of another nucleotide in the DNA.
Many kangaroo rats live in the Sonoran desert of the southwestern United States. They have a variety of adaptations for living in the desert. Under which circumstances would would the kangaroo rats of the Sonoran desert be most likely to develop new adaptations by natural selection?
Kangaroo rats in the Sonoran Desert would be most likely to develop new adaptations through natural selection if their environment undergoes significant changes that challenge their survival, leading to the evolution of advantageous traits that are passed on to offspring.
Explanation:The kangaroo rats of the Sonoran desert would be most likely to develop new adaptations by natural selection under circumstances where there are significant changes in their environment that create new challenges or pressures for survival. The key to this process is variation within the kangaroo rat population and the selective pressures that favor certain traits over others. For example, if the desert climate were to become even drier or if a new predator were introduced, those individuals with traits that improve their chances of survival, like even more efficient water conservation or better evasion tactics, would be more likely to survive and reproduce. These advantageous traits would be passed on to the next generation, leading to a population that is better adapted to the new conditions. This process over many generations results in evolution and the development of new adaptations.
Learn more about Natural Selection here:https://brainly.com/question/4075522
#SPJ12
Fungi can be identified at the genus and species level via visualization of their nucleus under a transmission electron microscope. Group of answer choices True False
Final answer:
The statement is false because fungi are not typically identified at the genus and species level by visualization of their nucleus under a transmission electron microscope, but rather by morphological characteristics and other methods.
Explanation:
The correct answer to the question is False. While fungi are eukaryotic organisms that do contain a nucleus, transmission electron microscopy of a nucleus is not typically used for identifying fungi down to the genus and species level. In practice, fungi are more commonly identified by their morphological characteristics, which can be observed under lower magnification microscopy, along with genetic sequencing and biochemical tests. For instance, the morphology of hyphae and the structure of mycelium, along with other characteristics like reproductive structures and spore types, are key attributes used in the identification of fungi. Transmission electron microscopy might be used for detailed cellular studies but not typically for standard identification at the genus and species level.
How does oceanic lithosphere form?
Two selectively permeable sacs A and B were submerged in a 45% glucose solution that was contained in a beaker. Sac A contained a 15% glucose solution and Sac contained a 15% sucrose solution. In which direction did net movement of water molecules occur? a. Only from Sac A to the beaker b. Only from Sac B to the beaker c. From the beaker to both sacs d. From both sacs to the beaker
Answer:
Option a. Only from Sac A to the beaker is correct.
Explanation:
As beaker contains glucose which is a monosaccharide and Sac A also have glucose in it, So, therefore glucose from sac A will move into beaker through the process of OSMOSIS.
Sac A (15% glucose) is less concentrated as compared to beaker (45% glucose) therefore this phenomenon will occur. (See attached image for more detailed and graphical explanation)
The net movement of water molecules occurred from the beaker to both sacs due to the concentration gradient.
The net movement of water molecules occurred from the beaker to both sacs. This is because the 45% glucose solution in the beaker created a concentration gradient, with a higher concentration of solute outside the sacs compared to inside.
Water molecules will naturally move from an area of lower solute concentration to an area of higher solute concentration through a selectively permeable membrane, in order to balance the concentrations on both sides.
Learn more about Net movement of water moleculeshttps://brainly.com/question/24963873
#SPJ3
For which one of the following observations were both Lamarck's hypothesis and Darwin's hypothesis in complete agreement?
a. More complex species are descended from less complex species.
b. Gradual evolutionary change explains why organisms are well-suited to their environments.
c. Acquired characteristics are inherited.
d. Use and disuse of organs determines their size in progeny.
Answer:
b. Gradual evolutionary change explains why organisms are well-suited to their environments.
Explanation:
Darwin and Larmack are both evolutionists who believed that the present organisms or offspring are descendants of previous organisms. And they are able to survive till today from previous generation because they have certain features that make them resistant to selective pressure in their environment. Lamarck called concluded that changes in the physical features of the present organisms from using a certain body part more than others in order to survive is the major reason for their existence and resistant to selective pressure. He called his theory Law of use and disuse .
Darwin believed that, the ability to survive by theses organisms was due to certain factor or trait(gene) which the descendants must have inherited from the previous generations,. And these trait(gene) made them to resist selection pressures,and therefore have higher competition for survival than other organisms which lack these traits. Thus he concluded that nature must have selected these organisms with certain traits(genes) than others, He tagged his findings theory if evolution by natural selection.
However both scientists believed that present organisms are products of Gradual evolutionary changes of million of years ago.
Answer: Option B.
Gradual evolutionary chnges explain why organisms are well suited for their environment.
Explanation:
Lamarck and Darwin are both naturalist that formulate theories. Lamarck theory was called theory of acquired characteristics and Darwin theory was called theory of evolution by natural selection. The two scientist agree that gradual evolutionary changes I.e change in trait and characteristics explain why organisms are well suited in their environment. Lamarck theory describe changes that happen to organisms in their life time and how these changes are passed to their offsprings and Darwin theory supported these that organisms arise from natural selection and inherited variations which help them survive and reproduce in their environment.
Each of two parents has the genotype , which consists of the pair of alleles that determine , and each parent contributes one of those alleles to a child. Assume that if the child has at least one allele, that color will dominate and the child'swill be .
Answer:
Here is the full question:
Each of two parents has the genotype blond divided by red, which consists of the pair of alleles that determine hair color, and each parent contributes one of those alleles to a child. Assume that if the child has at least one blond allele, that color will dominate and the child's hair color will be blond.
a. List the different possible outcomes. Assume that these outcomes are equally likely.
b. What is the probability that a child of these parents will have the red divided by red genotype?
c. What is the probability that the child will have blond hair color?
Explanation:
a.) Remember that the pair of allele determines the hair color. So, each of the two parents have the genotype red/blond. Therefore, the possible outcomes are blond/blond, blond/red, red/blond, and red/red.
b.) Since there are four outcomes, We calculate this as P(red/red) = (1/1)/(1/4) = 0.25
c.) There are three outcomes of the child having a blond hair which are blond/blond, blond/red, and red/blond. The probability is therefore P(outcome of blond/total outcome) = 3/4 =0.75
In all of these phylogenetic trees, the gain or loss of a trait is represented by a red trait mark. These marks are a way of showing change---that is, evolution. Which tree does the best job of showing which branches are evolving?
The tree with the most red trait marks best shows which branches are evolving.
Explanation:In phylogenetic trees, the gain or loss of a trait is represented by a red trait mark, which shows evolution. The tree that best shows which branches are evolving is the one with the most red trait marks. This indicates that those branches have undergone the most changes in traits over time.
Learn more about Phylogenetic trees here:https://brainly.com/question/31419981
#SPJ11
Suppose that the narrow-sense heritability of wool length in a breed of sheep is 0.92, and the narrow-sense heritability of body size is 0.87. The genetic correlation between wool length and body size is –0.84. If a breeder selects for sheep with longer wool, what will be the most likely effects on wool length and body size?
Answer:
There is an increase in wool length and a little decrease in body size
Explanation:
Given that:
the narrow-sense heritability of wool length in a breed of sheep is 0.92; &
the narrow-sense heritability of body size is 0.87.
As these traits approaches 1, the higher the rate that helps them to provide a positive feedback for selection.
The question proceeds by stating that " The genetic correlation between wool length and body size is –0.84."
You see, the functionality of this negative (-0.84) genetic correlation tends to create an imbalance between these heritable traits. As such, there is a shift in the paradigm in which one traits tends to increase and the other trait to decrease.
Now, if a breeder selects a sheep with longer wool, there is an increase in wool length since he selects it although there will be a little decrease in body size due to the negative genetic correlation effect between the two heritable traits.
A dehydration reaction starting with 3.1 g cyclohexanol produces 2.2 g cyclohexene. Calculate the theoretical yield for this reaction. Report your answer with two significant figures.
Answer:
2.54 g
Explanation:
Equation for the reaction was followed by the dehydration of:
Cyclohexanol ----> Cyclohexene
Given that:
mass of cyclohexanol = 3.1 g
mass of cyclohexene = 2.2 g &
the standard molar mass of cyclohexanol is known to be = 100.16 g/mol
Also, the standard molar mass for cyclohexene = 82.14 g/mol
From what we have above, we can calculate for their respective numbers of moles;
By the formula which say;
number of moles = [tex]\frac{mass(g)}{molar mass}[/tex]
number of moles of cyclohexanol = [tex]\frac{3.1(g)}{100.16g/mol}[/tex]
= 0.03095 moles
From the equation for the dehydration reaction above;
one mole of cyclohexanol gives one mole of cyclohexene
∴ 0.03095 moles of cyclohexanol is said to be equal to 0.03095 moles of cyclohexene
Thus, having gotten that; we can proceed to calculate for our theoretical yield of cyclohexene.
Theoretical yield of cyclohexene = (number of moles × molar mass) of cyclohexene
= (0.03095 g × 82.14 g/mol)
= 2.542233 g of cyclohexene
≅ 2.54 g to two significant figures.
Following the balanced equation and converting g to mol and back, we find that the theoretical yield for the dehydration reaction of cyclohexanol to cyclohexene is 2.54 g.
Explanation:Firstly, we need to calculate the molar masses of cyclohexanol and cyclohexene. The molar mass of cyclohexanol (C6H12O) is approximately 100.16 g/mol while the molar mass of cyclohexene (C6H10) is about 82.14 g/mol. We then convert the masses of cyclohexanol and cyclohexene into moles. This is done by dividing the given mass of each compound by its respective molar mass. So, for cy Convert this theoretical yield in moles back to grams by multiplying by the molar mass of cyclohexene. So, the theoretical yield is 0.0309 mol x 82.14 g/mol = 2.54 g.
Learn more about Theoretical Yield here:https://brainly.com/question/31468539
#SPJ3