let f(x)=3x+5 and g(x)=x^2.


find (f+g)(x)

i need the answer now plese and thack you

Answers

Answer 1

Answer:  x² + 3x + 5

Step-by-step explanation:

f(x) = 3x + 5       g(x) = x²

(f + g)(x) = f(x) + g(x)

             = 3x + 5 + x²

             = x² + 3x + 5


Related Questions

The pentagonal area is 20 cm square. Point A located in the pentagon and equidistant from all sides of the pentagon about 5 cm. What is the perimeter of the pentagons.

Answers

Answer:

  about 8 cm

Step-by-step explanation:

The formula for the area of a regular polygon is ...

  A = 1/2Pa . . . . where P is the perimeter and "a" is the apothem, the distance from the center to a side

Filling in your numbers, we have ...

  20 cm^2 = (1/2)P(5 cm)

Dividing by the coefficient of P, we find ...

  2×(20 cm^2)/(5 cm) = P = 8 cm

The perimeter of the pentagon is about 8 cm.

_____

Comment on the problem

This calculation makes use of the area formula, as apparently intended. A regular pentagon with an apothem of about 5 cm will have an area of about 90.8 cm^2. The given geometry is impossible, as the pentagon is nearly 10 cm across. It cannot have a perimeter of only 8 cm.

Since BC is parallel to DE, triangles ABC and ADE are similar. What are the lengths of the unknown sides?

A. AC = 6 in.; CE = 18 in.
B. AC = 15 in.; CE = 5 in.
C. AC = 18 in.; CE = 6 in.
D. AC = 5 in.; CE = 15 in.

Answers

Answer:

Since we have BC ║ DE, we know that:

AB/AD = BC/DE

12/(12 + 4) = BC/12

12/16 = BC/12

BC = (12 · 12)/16 = 9 (in)

Applying the pythagorean, we have:

AB² + BC² = AC²

12² + 9²     = AC²

225           = AC²

AC             = √225 = 15 (in)

Using the information about the parallel lines again, we have:

AC/CE = AB/BD

15/CE = 12/4

CE = (15 · 4)/12 = 5 (in)

So the answer is B

The answer is gonna be: (B)

Please help me find the area of this polygon

Answers

Answer:

The area of the polygon = 216.4 mm²

Step-by-step explanation:

* Lets talk about the regular polygon

- In the regular polygon all sides are equal in length

- In the regular polygon all interior angles are equal in measures

- When the center of the polygon joining with its vertices, all the

 triangle formed are congruent

- The measure of each vertex angle in each triangle is 360°/n ,

  where n is the number of its sides

* Lets solve the problem

- The polygon has 9 sides

- We can divide it into 9 isosceles triangles all of them congruent,

 if we join its center by all vertices

- The two equal sides in each triangle is 8.65 mm

∵ The measure of the vertex angle of the triangle = 360°/n

∵ n = 9

∴ The measure of the vertex angle = 360/9 = 40°

- We can use the area of the triangle by using the sine rule

∵ Area of the triangle = 1/2 (side) × (side) × sin (the including angle)

∵ Side = 8.65 mm

∵ The including angle is 40°

∴ The area of each triangle = 1/2 (8.65) × (8.65) × sin (40)°

∴ The area of each triangle = 24.04748 mm²

- To find the area of the polygon multiply the area of one triangle

 by the number of the triangles

∵ The polygon consists of 9 congruent triangles

- Congruent triangles have equal areas

∵ Area of the 9 triangles are equal

∴ The area of the polygon = 9 × area of one triangle

∵ Area of one triangle = 24.04748 mm²

∴ The area of the polygon = 9 × 24.04748 = 216.42739 mm²

* The area of the polygon = 216.4 mm²

Answer

[tex]216.4 {mm}^{2} [/tex]

Explanation

The regular polygon has 9 sides.

Each central angle is

[tex] \frac{360}{n} = \frac{360}{9} = 40 \degree[/tex]

The area of each isosceles triangle is

[tex] \frac{1}{2} {r}^{2} \sin( \theta) [/tex]

We substitute the radius and the central angle to get:

[tex] \frac{1}{2} \times {8.65}^{2} \times \sin(40) = 24.05 {mm}^{2} [/tex]

We multiply by 9 to get the area of the regular polygon

[tex]9 \times 24.05 = 216.4 {mm}^{2} [/tex]

A commercial aircraft gets the best fuel efficiency if it operates at a minimum altitude of 29,000 feet and a maximum altitude of 41,000 feet. Model the most fuel-efficient altitudes using a compound inequality.

x ≥ 29,000 and x ≤ 41,000
x ≤ 29,000 and x ≥ 41,000
x ≥ 41,000 and x ≥ 29,000
x ≤ 41,000 and x ≤ 29,000

Answers

Answer:

[tex]x\geq 29,000[/tex]  and  [tex]x\leq 41,000[/tex]

Step-by-step explanation:

Let

x -----> the altitude of a commercial aircraft

we know that

The expression " A minimum altitude of 29,000 feet" is equal to

[tex]x\geq 29,000[/tex]

All real numbers greater than or equal to 29,000 ft

The expression " A maximum altitude of 41,000 feet" is equal to

[tex]x\leq 41,000[/tex]

All real numbers less than or equal to 41,000 ft

therefore

The compound inequality is equal to

[tex]x\geq 29,000[/tex]  and  [tex]x\leq 41,000[/tex]

All real numbers greater than or equal to 29,000 ft and less than or equal to 41,000 ft

The solution is the interval ------> [29,000,41,000]

Answer:

A

Step-by-step explanation:

3(2x-4)- 4x+7<9 solve fr x

Answers

Answer:

x < 7

Step-by-step explanation:

Simplify ...

6x -12 -4x +7 < 9

2x < 14 . . . . . . . . . . . add 5

x < 7 . . . . . . . . . . . . . divide by 2

The population of a city in 2000 was 400,000 while the population of the suburbs of that city in 2000 was 900,000. Suppose that demographic studies show that each year about 5% of the city's population moves to the suburbs (and 95% stays in the city), while 4% of the suburban population moves to the city (and 96% remains in the suburbs). Compute the population of the city and of the suburbs in the year 2002. For simplicity, ignore other influences on the population such as births, deaths, and migration into and out of the city/suburban region.

Answers

Answer: 900,000 for the city/2,304,000

Step-by-step explanation:

I used the exponential growth formula with initial population rate of growth and time passed.

Final answer:

In 2002, the population of the city was 416,000 and the population of the suburbs was 884,000.

Explanation:

In 2000, the city's population was 400,000 and the suburban population was 900,000. Each year, 5% of the city's population moves to the suburbs (and 95% stays in the city), and 4% of the suburban population moves to the city (and 96% remains in the suburbs). To calculate the population of the city in 2002, we need to subtract 5% of the city's population in 2000 from the 2000 city population and add 4% of the suburban population. To calculate the population of the suburbs in 2002, we need to subtract 4% of the suburban population in 2000 from the 2000 suburban population and add 5% of the city population.

Population of city in 2002 = (City population in 2000) - 5% of (City population in 2000) + 4% of (Suburban population in 2000)

Population of suburbs in 2002 = (Suburban population in 2000) - 4% of (Suburban population in 2000) + 5% of (City population in 2000)

By substituting the given values, we can calculate the population of the city and suburbs in 2002.

Population of city in 2002 = 400,000 - 0.05 * 400,000 + 0.04 * 900,000

Population of city in 2002 = 400,000 - 20,000 + 36,000

Population of city in 2002 = 416,000

Population of suburbs in 2002 = 900,000 - 0.04 * 900,000 + 0.05 * 400,000

Population of suburbs in 2002 = 900,000 - 36,000 + 20,000

Population of suburbs in 2002 = 884,000

Learn more about Population calculation here:

https://brainly.com/question/2894353

#SPJ3

Form the perfect square trinomial in the process of completing the square. What is the value of c?

x²+3x+c=7/4+c

C = ?

Could you explain?

No "spam" answers, please!

Thank you!

Answers

Answer:

9/4

Step-by-step explanation:

For a perfect square trinomial x² + bx + c, the value of c is the square of half of b.

c = (b/2)²

Here, b = 3.

c = (3/2)²

c = 9/4

Paula's paycheck varies directly with the number of hours she works. If she earns $52.50 for 6h of work, how much will she earn for 11 h of work? Round your answer to the nearest cent

Answers

Answer:

$96.25

Step-by-step explanation:

I just got done with the test...

What integer is equal to 8^ 2/3 ?

Answers

Simplifying it, convert it to a radical form, and evaluate it.. Either way it all equals to a simple whole number, which is '4',

well, except when you convert the expression to radical form using the formula 'a^x/n=n√a^x' then it'll be '^3√8^2'.

____

I hope this helps, as always. I wish you the best of luck and have a nice day, friend..

Answer:

4

Step-by-step explanation:

8 ^ (2/3)

The 2 means squared and the 3 means root

8^2  ^ (1/3)

Rewriting 8 as 2^3

2^3 ^ (2/3)

We know a^ b^c = a^ (b*c)

2 ^ (3*2/3)

2^ 2

4

OR

8 ^ (2/3)

The 2 means squared and the 3 means root

8^2  ^ (1/3)

64 ^ 1/3

We know 4*4*4 = 64

(4*4*4)^ 1/3

4

Test the number -7 to determine if it is a solution to the equation 4p - (p + 9) = 5p + 5.

Answers

Plug -7 in for where ever you see the variable p if the final answer is equal to each other then -7 is a solution to the equation

4 × (-7) - (-7 + 9) = 5 × (-7) + 5

Use the rules of PEMDAS (Parentheses, Exponent, Multiplication, Division, Addition, Subtraction)

Parentheses

4 × (-7) - (-7 + 9) =  5 × (-7) + 5

4 × (-7) - 2 =  5 × (-7) + 5

There are no exponents so go to the next step

Multiplication (apply this from left to right)

4 × (-7) - 2 =  5 × (-7) + 5

-28 - 2 = 5 × (-7) + 5

-28 - 2 = 5 × (-7) + 5

-28 - 2 = -35 + 5

There is no division so go to the next step

Addition

-28 - 2 = -35 + 5

-28 - 2 = -30

Subtraction

-28 - 2 = -30

-30 = -30

-30 = -30

-7 is a solution to this equation because when evaluated both sides equals -30

Hope this helped!

~Just a girl in love with Shawn Mendes

Will mark the brainliest.

Paula makes stained-glass windows and sells them to boutique stores. If her costs total $12,000 per year plus $4 per window for the frame. How many windows must she produce to earn a profit of at least $48,000 in one year if she sells the windows for $28 each?

Answers

Answer:

Paula must sell at least 2,500 windows in a year to earn a profit of at least $48,000.

Step-by-step explanation:

Let [tex]x[/tex] be the number of windows that Paula sells in a year.

Paula's revenue is the number of windows that she sell times the price that she charge for each window. That is:

[tex]\text{Revenue} = \text{Price}\times \text{Quantity} = \$\;28x[/tex].

Paula's cost comes in two parts:

[tex]\begin{aligned}\text{Cost} = \text{Total Cost}&= \text{Fixed Cost} + \text{Marginal Cost}\\ & = \$\;12,000 +\$\; 4x \\ & = \$\;(12,000 + 4x)\end{aligned}[/tex].

Consider the inequality in the picture:

[tex]\text{Revenue} - \text{Cost} \ge \text{Profit}\\ \$\; 28x - \$\; (12,000 + 4x)\ge 48,000\\\$\; 24x \ge 60,000[/tex].

Multiply both sides with 1/24. It is important that this number is positive. Otherwise, the direction of the inequality operator will flip.

[tex]\displaystyle x \ge \frac{\$\;60,000}{\$\; 24}[/tex].

[tex]x\ge 2,500[/tex].

In other words, Paula must sell at least 2,500 windows in a year to earn a profit of at least $48,000.

According to the SMART goals method, goals should be

A. Clearly defined.
B. Easy to achieve
C. Similar to your peers' goals.
D. Flexible.

Answers

Final answer:

According to the SMART goals method, goals should be clearly defined, aligning with the "Specific" attribute of the SMART acronym. This means having a clear and direct aim for the goal, which is essential for effective goal-setting.

Explanation:

According to the SMART goals method, goals should be clearly defined. SMART is an acronym that stands for Specific, Measurable, Attainable, Relevant, and Time-bound. Each of these attributes plays a crucial role in the formulation of effective and actionable goals.

Specific means the goal should be clear and direct, detailing exactly what is expected to be achieved. A goal that is Measurable has quantifiable criteria to indicate progress or completion. Attainable refers to the goal being realistic and possible to achieve given current resources and constraints.

Being Relevant means the goal aligns with broader objectives and makes sense within the greater plan. Lastly, Time-bound means there is a specific deadline or period within which the goal should be accomplished.

Therefore, the correct choice is A. Clearly defined, as a SMART goal must be specific and this inherently means the goal should have a clear definition.

GEOMETRY - PLEASE HELP - WILL MARK BRAINLIEST

1. Are the following slopes Parallel, Perpendicular or Neither?

y = -1/3x + 2

y = 3x - 5

2. How are Squares and Rhombi different?

3. Find the slope and distance between these two points.

A(0,11)
B(-5,2)

Answers

Answer:

see below

Step-by-step explanation:

1.  y = mx+b where m is the slope

The first slope is -1/3

The second slope is 3

m1 = m2 means they are parallel  False

m1*m2 = -1  means they are perpendicular

-1/3 *3 = -1  True

2.  Squares and rhombi have all 4 sides with the same length.  Squares however, have 4 angles that must equal 90 degrees.  Squares are a special form of rhombi

3.  To find the slope

m = (y2-y1)/(x2-x1)

   = (2-11)/(-5-0)

   =-9/-5

   = 9/5

The distance is found by

d = sqrt( (x2-x1)^2 + (y2-y1)^2)

  = sqrt( (-5-0)^2 + (2-11)^2)

  = sqrt( 5^2 + (-9)^2)

  = sqrt( 25+81)

  = sqrt( 106)

Answer:

See below

Step-by-step explanation:

y = -1/3x + 2

y = 3x - 5

Slopes are -1/3 and 3, they are opposite-reciprocal, it means the lines are perpendicular

2. Difference between squares and rhombus:

The sides of a square are perpendicular to each other whereas the sides of a rhombus are not perpendicular to each other. All the angles of a square are equal whereas only the opposite angles of a square are equal. The two diagonals of a square are always equal in length while the two diagonals of a rhombus are unequal

3. points A(0,11)  and B(-5,2)

Slope:

m= (y2-y1)/(x2-x1)= (2-11)/(-5-0)= -11/-5= 11/5

Distance between points:

√(x2-x1)²+(y2-y1)²= √ 25+121= √146 ≈ 12

Which set of ordered pairs has point symmetry with respect to the origin (0, 0)? (-12, 5), (-5, 12) (-12, 5), (12, -5) (-12, 5), (-12, -5) (-12, 5), (12, 5)

Answers

Answer:

  (-12, 5), (12, -5)

Step-by-step explanation:

Reflection across the origin is the transformation ...

   (x, y) ⇒ (-x, -y)

Look for coordinates that are the opposites of their counterparts. You will find the appropriate answer choice is ...

  (-12, 5), (12, -5)

Answer:

(-12, 5), (12, -5)

Step-by-step explanation:

Since, the rule of point symmetry with respect to the origin is,

[tex](x,y)\rightarrow (-x, -y)[/tex]

That is, the mirror image of the point (x, y) with respect to the origin is (-x,-y),

Thus, in the point symmetry with respect to the origin,

[tex](-12, 5)\rightarrow (-(-12), -5))[/tex]

So, the mirror image of point (-12,5) with respect to the origin is (12, -5),

Hence, the set of ordered pairs has point symmetry with respect to the origin is,

(-12, 5), (12, -5)

Second option is correct.

PLS HELP BRAINLIET WILL BE GIVEN :D

Answers

b)

A - wins at both games

[tex]P(A)=0.3\cdot0.4=0.12[/tex]

c)

A - wins at just one of the games

[tex]P(A)=0.3\cdot0.6+0.7\cdot0.4=0.18+0.28=0.46[/tex]

The cost of a long-distance phone call, in cents, can be modeled by the ceiling function whose graph is shown. How much does it cost to talk for 3.1 minutes? 2 cents 3 cents 4 cents 5 cents

Answers

The cost for talking 3.1 minutes, according to the graph, would be  Option C) 4 cents due to rounding up to nearest minute.

1. Understanding the ceiling function: The ceiling function takes a number as input and rounds it up to the nearest whole number. For example, the ceiling of 2.3 is 3, because 3 is the next whole number greater than 2.3.

2. Analyzing the graph: The graph provided represents the cost of a long-distance phone call in cents based on the duration of the call in minutes. The x-axis represents the minutes of the call, and the y-axis represents the cost in cents.

3. Identifying the jumps: From the graph, we can observe that the cost increases in steps or jumps at specific points along the x-axis. These jumps indicate where the cost increases by 1 cent.

4. Determining the cost for 3.1 minutes: Since 3.1 minutes fall between 3 and 4 minutes on the x-axis, we need to find out which whole number the ceiling function would round 3.1 up to. Since it rounds up to the nearest whole number, 3.1 would be rounded up to 4.

5. Conclusion: Therefore, the cost of talking for 3.1 minutes would be the same as talking for 4 minutes according to the graph. Looking at the y-axis corresponding to the point where x = 4, we see that the cost is 4 cents.

So, to answer the question, the cost to talk for 3.1 minutes would be 4 cents. Option C)

Complete Question:

Which equation can be used to represent three minus the difference of a number and one equals one-half of the difference of three times the same number and four”?

Answers

Answer:

  3 - (n -1) = (1/2)(3n -4)

Step-by-step explanation:

three minus the difference of a number and one: 3 - (n -1)

one-half of the difference of three times the same number and four: (1/2)(3n -4)

These two expressions are said to be equal, so the equation is ...

  3 - (n -1) = (1/2)(3n -4)

Answer:

Step-by-step explanation:

D

Which is greater, 7 P 5 or 7 C 5? 7P5 7C5

Answers

[tex]_7P_5=\dfrac{7!}{(7-5)!}=\dfrac{7!}{2!}=3\cdot4\cdot5\cdot6\cdot7=2520\\_7C_5=\dfrac{7!}{5!2!}=\dfrac{6\cdot7}{2}=21\\\\\\_7P_5> {_7C_5}[/tex]

--------------------------------------------

[tex]_nP_k[/tex] is always greater than [tex]_nC_k[/tex]. And it's greater [tex]k![/tex] times.

[tex]\dfrac{_nP_k}{_nC_k}=\dfrac{\dfrac{n!}{(n-k)!}}{\dfrac{n!}{k!(n-k)!}}=\dfrac{n!}{(n-k)!}\cdot \dfrac{k!(n-k)!}{n!}=k![/tex]

98 POINTS!!!!!!!!!!!!!!!!!!

Answers

Answer:

a = 13 and b = 12-5i

Step-by-step explanation:

We need a common denominator

3+2i         5-i

---------- + ---------

3-2i          2+3i

(3+2i) (2+3i)         (5-i)(3-2i)

------------------ + --------------------

(3-2i) (2+3i)          (2+3i) (3-2i)

Foil the numerators

6 +4i+9i+6i^2 +15-3i-10i+2i^2        

------------------ --------------------

         (2+3i) (3-2i)

Combine like terms

21 +8i^2          

------------------

(2+3i) (3-2i)

We know that i^2 = -1

21 +8(-1)        

------------------

(2+3i) (3-2i)

21 -8        

------------------

(2+3i) (3-2i)

13        

------------------

(2+3i) (3-2i)

Foil the denominator

13

---------------

6 +9i -4i -6i^2

Combine like terms

13

----------------

6+ 5i -6(-1)

13

----------

12 +5i

We know have

13

-------------

12 + 5i

Multiply by the conjugate

13               ( 12-5i)

------------- * -------------

12 + 5i         12 -5i

13 (12-5i)

--------------

144 +25

13(12-5i)

-------------

169

12-5i

------------

13

The parentheses are (12-5i)/13

We need the reciprocal to make the equation become 1

which is 13/ 12-5i

a = 13 and b = 12-5i

Answer:

a = 13

b= 12-5i

Step-by-step explanation:

Simplify the values and i squared will be -1

20 da is equal to A. 2,000 cm. B. 2 m. C. 20,000 cm. D. 20,000 mm

Answers

Answer:

B. 2 m

Step-by-step explanation:

20 da is equal to 2 m.

URGENT PLEASE HELP I can not figure this out ive gotten it wrong 3 times pleae

Answers

Answer:

  see below for a graph

Step-by-step explanation:

Each of the functions:

y = -xy = x+2y = 5

will only be graphed in the specified domain. You know that ...

  y = -x

is a line with slope -1 through the origin. It won't go through the origin on your graph, because it stops at x = -2. f(x) is not defined as -(-2) at x=-2, so there will be an open circle at the end of this portion of the graph.

__

You know that

  y = x+2

is a line with slope +1 through the y-intercept (0, 2). It will only be part of your graph for x-values between -2 and 2, inclusive. Because f(x) is defined as x+2 at the end points of this segment, those points will be shown as solid dots.

__

You know that

  y = 5

is a horizontal line. It will be part of your graph for x > 2, and will have an open circle on the end at x=2. f(2) is not defined as 5, but is defined as 4 (see above), which is why the circle is open.

The height of a kicked football can be represented by the polynomial –16t2 + 32t + 3 where t is the time in seconds. Find the height (in feet) of the football after 1.2 seconds. A. 18.75 feet B. 18.25 feet C. 18.36 feet D. 18.05 feet

Answers

Final answer:

To find the height of the football after 1.2 seconds, we substitute t with 1.2 in the polynomial −16t2 + 32t + 3, simplifying to 18.36 feet, which corresponds to answer option C.

Explanation:

The student asked to find the height of a kicked football after 1.2 seconds, with the height given by the polynomial −16t2 + 32t + 3, where t is the time in seconds. To solve for the height after 1.2 seconds, we substitute t with 1.2 in the polynomial, which gives us:

−16(1.2)2 + 32(1.2) + 3

Calculating this gives:

−16(1.44) + 38.4 + 3

−23.04 + 38.4 + 3

15.36 + 3

18.36 feet.

Therefore, after 1.2 seconds, the height of the football is 18.36 feet, making the correct answer option C.

The distance a car travels at a rate of 65 mph is a function of the time, t, the car travels. Express this function and evaluate it for f(3.5).

Answers

Distance = rate * time

Replace D with f. Instead of writing D(t), write f(t).

f(t) = 65t

Let t = 3.5

f(3.5) = 65(3.5)

f(3.5) = 227.5

Did you follow?

Final answer:

The distance a car travels at 65 mph is a function of time, expressed as f(t) = 65t. Evaluating it for 3.5 hours, the car would travel 227.5 miles.

Explanation:

The distance a car travels at a rate of 65 mph is a function of the time, t, the car travels. This can be expressed mathematically as f(t) = 65t, where f(t) is the distance in miles and t is the time in hours. To evaluate this function for f(3.5), we multiply 65 miles/hour by 3.5 hours.

f(3.5) = 65 miles/hour × 3.5 hours = 227.5 miles

Therefore, a car traveling at a constant speed of 65 mph for 3.5 hours will have traveled 227.5 miles.

Please answer this question correctly for 24 points and brainliest!!

Answers

Answer:

  $110

Step-by-step explanation:

Let a, b, and c represent the earnings of Alan, Bob, and Charles. The problem statement tells us ...

  a + b + c = 480 . . . . . . the combined total of their earnings

  -a + b = 40 . . . . . . . . . . Bob earned 40 more than Alan

  2a - c = 0 . . . . . . . . . . . Charles earned twice as much as Alan

Adding the first and third equations, we get ...

  (a + b + c) + (2a - c) = (480) + (0)

  3a + b = 480

Subtracting the second equation gives ...

  (3a +b) - (-a +b) = (480) -(40)

  4a = 440 . . . . . . . . simplify

  a = 110 . . . . . . . . . . divide by the coefficient of a

Alan earned $110.

_____

Check

Bob earned $40 more, so $150. Charles earned twice as much, so $220.

The total is then $110 +150 +220 = $480 . . . . as required

HELP PLEASE!! WILL MARK BRAINLIEST!

What is the product of the polynomials? (2x^2-x+1)( x-3)

PLEASE EXPLAIN CORRECTLY!!

Answer Choices:

A) 2x^3-7x^2+4x-3
B) 2x^3-7x^2+3x-3
C) 2x^3-6x^2+3x-3
D) 2x^3-6x^2+4x-3

Answers

[tex] (2x^2 - x + 1)(x - 3) [/tex]

We multiply 2x^2 - x + 1 by x and by -3 and add it all up:

[tex] (2x^2 - x + 1)(x - 3) = 2x^3 - x^2 + x - 6x^2 + 3x - 3 [/tex]

[tex] = 2x^3 - 7x^2 + 4x - 3 [/tex]

Answer: A

Answer:

2x^3 - 7x^2 + 4x - 3.

Step-by-step explanation:

(2x^2-x+1)( x-3)

= x(2x^2 - x + 1) - 3(2x^2 - x + 1)

= 2x^3 - x^2 + x - 6x^2 + 3x - 3

= 2x^3 - 7x^2 + 4x - 3.

Carl's Candies has determined that a candy bar measuring 3 inches long has a z-score of +1 and a candy bar measuring 3.75 inches long has a z-score of +2. What is the standard deviation of the length of candy bars produced at Carl's Candies?

Answers

Answer:

0.75 inches

Step-by-step explanation:

The value that has z=2 is 2 standard deviations from the mean. The value that has z=1 is 1 standard deviation from the mean. The difference between these two values is 1 standard deviation:

1 standard deviation = 3.75 in - 3 in = 0.75 in

Answer:

0.75

Step-by-step explanation:

6.03
#4
Which system of equations is represented by the graph?

#5
Which system of equations is represented by the graph?

Answers

Answer:

Ques 4)

The system is:

                      [tex]y=x-4[/tex]

                     [tex]y=\dfrac{x-4}{x+2}[/tex]

Ques 5)

The system is:

                         [tex]6x+y=-27[/tex]

             and     [tex]y=x^2+5x+3[/tex]  

Step-by-step explanation:

Ques 4)

After looking at the graph we observe that :

The first graph is a line which passes through (4,0) and (0,-4)

Hence, the equation of such a line is:

                y=x-4

and the second graph is a curve such that the vertical asymptote is at x= -2

and also x= 4 is a root of the rational function.

Since, the graph passes through (4,0)

Hence, the system equation which best represents the graph is:

                           [tex]y=x-4[/tex]

                     [tex]y=\dfrac{x-4}{x+2}[/tex]

Ques 5)

One of the curve is :

a line that passes through (-5,3) and (-6,9)

Hence, the equation of line is given by:

[tex]y-3=\dfrac{9-3}{-6-(-5)}\times (x-(-5))\\\\i.e.\\\\y-3=\dfrac{6}{-6+5}\times (x+5)\\\\i.e.\\\\y-3=\dfrac{6}{-1}\times (x+5)\\\\i.e.\\\\y-3=-6(x+5)\\\\i.e.\\\\y-3=-6x-30\\\\i.e.\\\\y=-6x-30+3\\\\i.e.\\\\y=-6x-27[/tex]

i.e. Equation of line is:

[tex]6x+y=-27[/tex]

While the other graph is a upward facing parabola such that the vertex is in third quadrant this means that the coefficient of x^2 must be positive and that of x must also be positive.

Hence, the system in which the equation of line satisfies is:

                          [tex]6x+y=-27[/tex]

             and     [tex]y=x^2+5x+3[/tex]  

Need help with a math question

Answers

Answer:

27%

Step-by-step explanation:

take the number of times it is at 2 cars (16) and divide by the number of surveyed times in total (60). multiply by 100 to show answer as a percent

Answer:

27%

Step-by-step explanation:

We are given the results of survey of one thousand families to determine the distribution of families by their size.

We are to find the probability (to the near percent) that a line has exactly 2 cars in it.

Frequency of 2 cars in a line = 16

Total frequency = 2 + 9 + 16 + 12 + 8 + 6 + 4 + 2 + 1 = 60

P (2 cars in line) = (16 / 60) × 100 = 26.6% ≈ 27%

Annual high temperatures in a certain location have been tracked for several years. Let
X represent the year and Y the high temperature. Based on the data shown below, calculate the regression line (each value to two decimal places).

y=________
x=________

Answers

Answer:

Y= 19.86 - 0.42b

Step-by-step explanation:

Step 1: Write the formula

Regression Line: Y = a + bx

a=(Total Y) x (Total X^2) - (Total X) x (Total XY)

                    n x (total X^2) - (Total X)^2

b= n x (Total XY) - (Total X) x (Total Y)

             n x (total X^2) - (Total X)^2    

Step 2: Make a table to find all values

X  Y          X^2    Y^2               XY

5 17.19 25 295.4961       85.95

6 19.12 36 365.5744       114.72

7 16.75 49 280.5625      117.25

8 15.58 64 242.7364       124.64

9 16.21 81 262.7641        145.89

10 14.14 100 199.9396        141.1

11 14.97 121 224.1009        164.67

12 16.2         144 262.44            194.4

68 130.16     620  2133.614       1088.62              TOTAL

Step 3: Substitute all values in the equation to find a and b

a=(Total Y) x (Total X^2) - (Total X) x (Total XY)

                    n x (total X^2) - (Total X)^2

a= (130.16 x 620) - (68 x 1088.62)

                     8 x (620) - (68)^2

a = 80699.2 - 74026.16

                336

a = 19.86

b = n x (Total XY) - (Total X) x (Total Y)

             n x (total X^2) - (Total X)^2    

b = 8 x (1088.62) - (68 x 130.16)

             8 x (620) - (68)^2

b = 8708.96 - 8850.88

                336

b = -0.42

Step 4 : Apply values of a and b in the formula of the regression line.

Regression Line: Y = a + bx

Y= 19.86 + b (-0.42)

Y= 19.86 - 0.42b

Final answer:

The regression line is calculated using the 'least squares method'. The formula is Y=a+bX, where a is the Y-intercept and b is the slope. These are calculated from the X and Y data values using specific formulas.

Explanation:

To calculate the regression line from the given X (year) and Y (high temperature) values, we first need to know the specific data. Unfortunately, the data isn't provided in the question. However, I can explain the process to you.

A regression line, also known as the line of best fit, is a straight line that best represents the data on a scatter plot. This line can be calculated using the 'least squares method'. This method minimizes the sum of the squares of the residuals (the differences between the actual and predicted Y values).

The formula for the regression line is Y=a+bX, where:

a is the Y-intercept, calculated as (average of Y Values) - b * (average of X Values) b is the slope of the line, calculated as [N * (sum of XY) - (sum of X) * (sum of Y)] / [N * (sum of X²) - (sum of X)²]. Note that N is the number of data points.

You can plug in your X and Y data values into these equations to find your regression line.

Learn more about Regression Line here:

https://brainly.com/question/29753986

#SPJ2

Which is correct regarding the statement: "If x is an odd integer, then the median of x, x + 2, x + 6, and x + 10 is an odd number" the statement is always false the statement is always true the statement is sometimes true there is not enough information provided to answer the question

Answers

Answer:

I believe it's the statement is always true.

Step-by-step explanation:

test it by substituting x = an odd number:

x=1

so

x = 1 odd number

x + 2 = 1+2 = 3 odd

x + 6 = 1 + 6 = 7 odd

x + 10 = 1+10=11 odd

Answer:

the statement is always true.

Other Questions
What type of viral infection occurs gradually over a long period of time?a. acute b. latent c. persistent In a republic , represent territories and citizens in government Why are wealthy parents more likely than poor parents to socialize their children toward creativity and problem solving?Wealthy parents are socializing their children toward the skills of white-collar employment.Wealthy parents are not concerned about their children rebelling against their rules.Wealthy parents never engage in repetitive tasks.Wealthy parents are more concerned with money than with a good education. During prohinition to obtain liquor illegally, drinkers went underground to hidden nightclubs know as Discuss the conclusions of the Kerner Commission, and explain why many people found it controversial. The isosceles triangle has a perimeter of 7.5m. Which equation can be used to find the value of X if the shortest side,y, measures 2.1m? A. 2x-2.1=7.5 B. 4.2+y=7.5 C. y-4.2=7.5 D. 2.1+2x=7.5 For the following reaction, 4.31 grams of iron are mixed with excess oxygen gas . The reaction yields 5.17 grams of iron(II) oxide . iron ( s ) + oxygen ( g ) iron(II) oxide ( s ) What is the theoretical yield of iron(II) oxide ? 21.6 grams What is the percent yield for this reaction ? 85 % Organic solidarity is most likely to exist in which of the following types of societies?Hunter-gathererIndustrialAgriculturalFeudal For f (x) = 3x +1 and g(x) = x2 - 6, find (f 3)(x) Temperatures in ponds and lakes vary by season.Please select the best answer from the choices providedTF Would the following be considered a purpose of the Digital Millennium Copyright Act? Select Yes or No. To outline penalties for bypassing or providing tools to bypass protection mechanisms built into copyrighted software. the Zealots were for A:the teaching of JesusB:temple and sacrifices C:faith and law D:the military overthrow of roman rulers H.E.L.P ASAP I'M TAKING A TEST Which kind of weather usually forms over the northwest United States in the summer because of maritime polar air masses?1 )fog2)dry heat3) heavy snow4) heavy rain in a relation, the input is the number of people and the output is the number of watchesis this relation a function? why or why not What is tan(61)?. 1.80B. 0.49C. 0.61D. 0.87 Two angles are supplementary if their sum is 180 degrees. One angle measures three times the measure of a smaller angle. If X represents the measure of the smaller. Angle and these two angles are supplementary, find the measure of each angle. How do you solve the questions for the probability Multiply or divide as indicated. x^-8/x^-7 Which of the following is true about the relationship between the slopes of the lines whose equations are 8x - 9y = 5 and 9x - 8y = 1?They are equal.They are reciprocals.They are opposites. A charge q = 2.00 C is placed at the origin in a region where there is already a uniform electric field E = (100 N/C) i . Calculate the flux of the net electric field through a Gaussian sphere of radius R = 10.0 cm centered at the origin. ( 0 = 8.85 10-12 C2/N m2)