Johannes Kepler used decades of Tycho Brahe's observational data to formulate an accurate description of planetary motion. Kepler spent almost 30 years of his life trying to develop a simple description of planetary motion based on a heliocentric model that fit Tycho's data. What conclusion did Kepler eventually come to that revolutionized the heliocentric model of the solar system?

Answers

Answer 1

Explanation:

Johannes Kepler, working with the data carefully collected by Tycho Brahe without the help of a telescope, especially those related to the retrograde motion of Mars, realized that the motion of the planets could not be explained by his model of perfect polyhedra. Coming to the conclusion that all the planets move in elliptical orbits, with the Sun in one of the foci.


Related Questions

When two point charges are a distance dd part, the electric force that each one feels from the other has magnitude F.F . In order to make this force twice as strong, the distance would have to be changed to _____

Answers

Answer:

In order to make this force twice as strong, F' = 2 F, the distance would have to be changed to half i.e. r' = r/2.

Explanation :

The electric force between two point charges is directly proportional to the product of charges and inversely proportional to the square of the distance between charges. It is given by :

[tex]F=\dfrac{kq_1q_2}{r^2}[/tex]

r is the separation between charges  

[tex]F\propto \dfrac{1}{r^2}[/tex]

[tex]r=\sqrt{\dfrac{1}{F}}[/tex]

If F'= 2F

[tex]r'=\dfrac{1}{\sqrt{2F} }[/tex]

In order to make this force twice as strong, F' = 2 F, the distance would have to be changed to half i.e. [tex]r'=\dfrac{1}{\sqrt{2F} }[/tex]. Hence, this is the required solution.                                                                                    

When running your engine, you cause debris, rocks and propeller blast to be directed towards people or other aircraft. Is this considered reckless operation of an aircraft? Explain.

Answers

Answer:

Yes, it is reckless. This is because it is the responsibility of the pilot to make sure that the direction of the propeller blast is away from people or other aircraft and in a safe direction.

Explanation:

Yes, it is reckless to let the propeller blast face people and other aircraft. This is because it is the responsibility of the pilot to make sure that the direction of the propeller blast is away from people or other aircraft and in a safe direction. People and other aircraft can be injured by the debris and the rocks that are scattered by the engine of the aircraft.

Final answer:

Causing debris and propeller blast to endanger others can be deemed reckless operation of an aircraft, akin to dangerous driving, and can be punishable by aviation law.

Explanation:

The operation of an aircraft in a manner that causes debris, rocks, and propeller blast to be directed towards people or other aircraft can indeed be considered reckless operation. For perspective, consider that landing an aircraft is described as an ultimate challenge and must ensure safety as if it were a casual drive to a golf course. Pilots are responsible for maintaining control of their aircraft and ensuring the safety of both passengers and bystandiles at all times, much like drivers on the road.

Reckless operation of an aircraft can endanger lives and property, and is typically prohibited by aviation law and regulations. If a pilot operates an aircraft without regard to the potential harm it could cause others, this could be construed as reckless. The key is the intent and awareness of the pilot; if they are knowingly causing potential harm, it is indeed reckless.

A spring has a force constant of525.6 N/m. Find the potential energy stored in thespring when thespring is...

a) stretched 4.08 cm fromequilibrium. Answer in units of J
b)compressed 2.17 cm from equilibrium. Answer in units ofJ
c) unstretched. Answer in units ofJ

Answers

B compressed 2.17 cm from equilibrium. Answer in units of j

The Vehicle Assembly Building at the Kennedy Space Center in Florida has a volume of 3,666,500 m3. Convert this volume to liters and express the result in standard exponential notation?

Answers

Volume of vehicle Assembly Building at the Kennedy Space Center in Florida = 3.67 x 10⁹ L

Explanation:

The Vehicle Assembly Building at the Kennedy Space Center in Florida has a volume of 3,666,500 m³.

Volume = 3,666,500 m³

1 m³ = 1000 L

So volume = 3,666,500 x 1000 = 3666500000 L

Volume of vehicle Assembly Building at the Kennedy Space Center in Florida = 3666500000 L

Volume of vehicle Assembly Building at the Kennedy Space Center in Florida = 3.67 x 10⁹ L

The volume in liters and in exponential notation is [tex]3.67\times10^{23}[/tex].

To convert the given volume to liters it is necessary to use the following relation of values:

                                                    [tex]dm^{3} = L\\ m ^{3} = 1000L[/tex]

Therefore, the following calculation must be performed:

                                   [tex]3,666,500m^{3} \times 1000= xL[/tex]

                                        [tex]x = 3,666,500,000 L[/tex]

Now, to convert to scientific notation, leave the number different from the power of 10 between 1 and 10, so that:

                                  [tex]3,666,500,000 = 3.67 \times 10^{9} L[/tex]

So, the volume in liters and in exponential notation is [tex]3.67\times10^{23}[/tex]

Learn more about measurement conversion in: brainly.com/question/24022002

Two technicians are discussing voltage drop testing. Technician A says that the voltmeter should be connected in series with the circuit you are testing. Technician B says that the voltmeter should be connected in parallel with the circuit you are testing. Who is correct?

Answers

Final answer:

Technician B is correct. A voltmeter should be connected in parallel with the component or section of a circuit that is being tested, while an ammeter should be connected in series.

Explanation:

Technician B is correct when it comes to assessing the method of connecting a voltmeter. A voltmeter is designed to measure the voltage across elements of a circuit and is placed in parallel with the component or section of the circuit that is being tested. In this configuration, the voltmeter receives the full voltage.

On the other hand, Technician A is confusing a voltmeter with an ammeter. An ammeter, which measures the current flowing through a given branch of an electric circuit, should be connected in series in order to get a measure of the full current passing through that branch. The ammeter has a small resistance to limit its impact on the circuit.

By contrast, a voltmeter has to have a large resistance as it is connected in parallel and thus should have minimal impact on the circuit being tested.

Learn more about Using a Voltmeter here:

https://brainly.com/question/34076661

#SPJ12

Stacy travels 5 times as fast as Eric. Traveling in opposite directions, they are 336 miles apart after 4 hours. Find their rates of travel.

Answers

Final answer:

To find their rates of travel, represent Eric's rate as E and Stacy's as 5E. Since together they cover 336 miles in 4 hours, the equation 4E + 20E = 336 leads to Eric's rate of 14 mph and Stacy's rate of 70 mph.

Explanation:

Stacy and Eric travel in opposite directions and collectively cover 336 miles in 4 hours. Since Stacy travels 5 times as fast as Eric, we can set up equations to represent their speeds and use these to find the rates of travel for both.

Let E represent Eric's rate of travel. Then 5E represents Stacy's rate of travel. Since distance equals rate times time, we can set up the equation E x 4 hours + 5E x 4 hours = 336 miles.

Combining terms, we get 4E + 20E = 336, which simplifies to 24E = 336. Dividing both sides by 24 gives us E = 14. So, Eric travels at 14 miles per hour, and Stacy travels at 5 times that rate, which is 70 miles per hour.

What are we calculating when we calculate expected frequencies? What is the reason for calculating expected frequencies the way we do? In laymen’s terms, what do expected frequencies tell us?

Answers

Answer:

1. What we calculate when we calculate expected frequency is the predicted frequency that can be obtained from an experiment whose outcome is expected to be true.

2. The reason for using expected frequency is because it is a tool used for doing complex probability calculations and predictions. Also, it serves as a working tool that can be used in place of the observed frequency,when the observed frequency is not available.

3. In probability, expected frequency tell us the possible outcomes of an event.

Say, for example rolling of a fair die.

The probability of getting 1,2....,6 as the outcome is 1/6 but that doesn't mean that when we roll a fair die 6 times, we'll get outcomes of 1-6.

So, the essence of expected frequency is to tell us what to expect in an event (this may or may not turn out to be true).

Final answer:

Expected frequencies estimate how often an event should occur based on a probability distribution, providing a basis for comparing actual outcomes in a data set to determine consistency with expected probabilities.

Explanation:

When we calculate expected frequencies, we are determining how often we anticipate an event will occur based on a probability distribution. To find the expected frequency, one typically multiplies the expected percentage by the total number of observations or the sample size. For instance, if an event has a 10% chance of occurring out of 600 trials, the expected frequency would be 0.10 * 600 = 60.

The reason for calculating expected frequencies in this manner is to provide a basis for comparison with the actual frequencies that occur in a data set. This comparison allows us to determine if the outcomes observed are consistent with the expected probabilities, which can be particularly useful in statistical hypothesis testing, such as the chi-square test.

Expected frequencies give us insight into what we might predict to occur over a long period of trials or observations. They are theoretical estimates that can be appraised against actual outcomes to understand the probability distribution of a given scenario.

Michael opens his eyes in the morning to see the alarm clock on his dresser. At that point, his eyes are receiving light energy, which they change into neural messages for the brain. This conversion of one form of energy into another is called _____.

Answers

Answer:

Transduction.

Explanation:

Transduction is actually a process which involves the conversion of energies or messages from one kind to another. So in this case the transfer of light energy received by the eyes into the message for the brain is also called as transduction.

In a typical coal-fired power plant, 2,460kWh of electricity can be produced per ton of coal burned. Calculate how many tons of coal would have to be burned in a typical coal-fired power plant to provide the electricity for a typical house in the United States for a year. Show your work.

Answers

4.472 tonnes of coal burned

Explanation:

The electricity consumption for a typical house in the United States for a year is approximated as 11,000 kWh.

Given that a typical coal-fired power plant produces 2,460 kWh of electricity  per ton of coal burned then;

2460 kWh = 1 ton of coal burned

11,000 kWh =?

cross-product

(11,000*1)÷ 2460 = 4.472 tonnes of coal burned

Learn More

Performing multiplication :https://brainly.com/question/834661

Keywords: coal-fired plant, electricity,tons, typical house, United States

#LearnwithBrainly

The amount of coal required to be  burned in a typical coal-fired power plant to provide the electricity for a typical house in the United States for a year will be 4.472 tonnes.

Given data:

The electricity produced per ton of coal burn is, E = 2,460 kWh.

The given problem is based on the Energy consumption. The energy consumption is the energy utilized to perform various actions such as manufacturing, welding, inhabiting, and many more.

The electricity consumption for a typical house in the United States for a year is approximated as 11,000 kWh.

And as per the given question,

2460 kWh = 1 ton of coal burned

So for 11,000 kWh, the amount of coal need to be burned is,

= 11000/2460

= 4.472 tonnes of coal  

Thus, we can conclude that amount of coal required to be  burned in a typical coal-fired power plant to provide the electricity for a typical house in the United States for a year will be 4.472 tonnes.

Learn more about the energy consumption here:

https://brainly.com/question/16025398


The Goodyear blimp Spirit of Akron is 62.6m long and contains 7023m^3 of helium. When the temperature of the helium is 285 K, its absolute pressure is 112 kPa. Find the mass of the helium in the blimp.

Answers

Answer:

1328.7032 kg

Explanation:

P = Pressure = 112 kPa

T = Temperature = 285 K

V = Volume = 7023 m³

R = Gas constant = 8.314 J/mol K

From the ideal gas law we have

[tex]PV=nRT\\\Rightarrow n=\dfrac{PV}{RT}\\\Rightarrow n=\dfrac{112000\times 7023}{8.314\times 285}\\\Rightarrow n=331960.04203\ moles[/tex]

The mass of gas is given by

[tex]m=n\times MW_{He}\\\Rightarrow m=331960.04203\times 4.0026\times 10^{-3}\\\Rightarrow m=1328.70326\ kg[/tex]

The mass of helium in the blimp is 1328.7032 kg

Final answer:

By applying the ideal gas law, we determined the number of moles of helium in the blimp. By using the molecular weight of helium, we calculated that the mass of helium in the blimp is 12000 kg.

Explanation:

We can use the ideal gas law to solve this problem. The ideal gas law is represented by the formula PV = nRT, where P represents the absolute pressure, V is the volume, n is the number of moles, R is the ideal gas constant and T is the temperature.

Based on the given values, we have P = 112 kPa, V = 7023 m^3, R = 8.31 (J/mol.K), and T = 285 K. We need to calculate n (number of moles) first.

Transforming the formula, we get n = PV/RT. Substituting the given values, n = (112,000 Pa * 7023 m^3) / (8.31 J / (mol. K) * 285 K) which gives us n = 3.0 * 10^6 moles.

Then, knowing that the molecular weight of helium is approximately 4 g/mol, we can multiply the number of moles by the molecular weight to find the mass. So, the mass is m = n * Molecular weight = 3.0 * 10^6 moles * 4 g/mol = 12 * 10^6 g or 12000 kg.

Therefore, the mass of the helium in the blimp is 12000 kg.

Learn more about Ideal Gas Law here:

https://brainly.com/question/30458409

#SPJ11

The speed of a certain electron is 995 km s−1 . If the uncertainty in its momentum is to be reduced to 0.0010 per cent, what uncertainty in its location must be tolerated?

Answers

Answer:

The uncertainty in the location that must be tolerated is [tex]1.163 * 10^{-5} m[/tex]

Explanation:

From the uncertainty Principle,

Δ[tex]_{y}[/tex] Δ[tex]_{p}[/tex] [tex]= \frac{h}{2\pi }[/tex]

The momentum P[tex]_{y}[/tex] = (mass of electron)(speed of electron)

                                = [tex](9.109 * 10^{-31}kg)(995 * 10^{3} m/s)[/tex]

                                = [tex]9.0638 * 10^{-25}kgm/s[/tex]

If the uncertainty is reduced to a 0.0010%, then momentum

                              = [tex]9.068 * 10^{-30}kgm/s[/tex]

Thus the uncertainty in the position would be:

                              Δ[tex]_{y} = \frac{h}{2\pi } * \frac{1}{9.068 * 10^{-30} }[/tex]

                              Δ[tex]_{y} \geq 1.163 * 10^{-5}m[/tex]

Final answer:

The uncertainty in location of the electron can be calculated using Heisenberg's Uncertainty Principle, which stipulates a product of the uncertainties in position and momentum to be at least half of reduced Planck's constant. Uncertainty in momentum is given as 0.0010% of the electron's momentum. Careful consideration of quantities and units is essential.

Explanation:

This question revolves around Heisenberg's Uncertainty Principle. According to this principle, the product of the uncertainty in the position, denoted by Δx, and the uncertainty in momentum, denoted by Δp, has a minimum value dictated by Planck's constant, h. Mathematically, it is represented as Δx * Δp ≥ ħ/2, where ħ is the reduced Planck's constant, ħ=h/(2π). The speed of the electron, v, is related to its momentum, p, through mass, m, as p=mv. Therefore, the uncertainty in momentum, Δp, can be calculated as 0.0010% of p. Once we find Δp, using the Uncertainty Principle, we can find the minimum required uncertainty in the electron's location, Δx. In such problems, considering mass and speed of electron and appropriate units for constants are crucial for

correct computation

. Make sure to consider them appropriately.

Learn more about Heisenberg's Uncertainty Principle here:

https://brainly.com/question/30402752

#SPJ3

Both a gage and a manometer are attached to a gas tank to measure its pressure. If the reading on the pressure gage is 80 kPa, determine the distance between the two fluid levels of the manometer if the fluid is

(a) mercury (r 5 13,600 kg/m3) or
(b) water (r 5 1000 kg/m3).

Answers

Final answer:

To determine the distance between the two fluid levels of the manometer, we use the equation P = ρgh. For mercury, the density is 13,600 kg/m3, and for water, the density is 1000 kg/m3.

Explanation:

To determine the distance between the two fluid levels of the manometer, we need to consider two cases: one with mercury and one with water.

(a) For mercury, we can use the equation P = ρgh, where P is the pressure difference, ρ is the density of mercury, g is the acceleration due to gravity, and h is the height difference between the two fluid levels. Rearranging the equation, we have h = P / (ρg). Plugging in the values of P = 80 kPa, ρ = 13,600 kg/m3, and g = 9.8 m/s2, we can calculate the value of h in meters.

(b) For water, we can use the same equation P = ρgh, but with the density of water. Plugging in the values of P = 80 kPa, ρ = 1000 kg/m3, and g = 9.8 m/s2, we can calculate the value of h in meters.

Learn more about Pressure in Manometer here:

https://brainly.com/question/36603450

#SPJ2

A particular brand of gasoline has a density of 0.737 g/mLg/mL at 25 ∘C∘C. How many grams of this gasoline would fill a 14.9 galgal tank ( 1US gal=3.78L1US gal=3.78L )?

Answers

Answer:

The answer to your question is Mass = 41230.7 g  or 41.23 kg    

Explanation:

Data

density = 0.737 g/ml

mass = ?

volume = 14.9 gal

1 gal = 3.78 l

Process

1.- Convert gallons to liters

                                   1 gal ---------------- 3.78 l

                                  14.8 gal -------------  x

                                    x = 55.94 l

2.- Convert liters to milliliters

                                  1 l -------------------  1000 ml

                              55.94 l ---------------   x

                                   x = (55.94 x 1000) / 1

                                   x = 55944 ml

3.- Calculate the mass

Formula

density = [tex]\frac{mass}{volume}[/tex]

Solve for mass

Mass = density x volume

Substitution

Mass = 0.737 x 55944

Simplification and result

Mass = 41230.7 g  or  41.23 kg    

A sealed tank containing seawater to a height of 10.7 m also contains air above the water at a gauge pressure of 3.20 atm. Water flows out from the bottom through a small hole. How fast is this water moving?

Answers

The water was moving out from the bottom at a velocity of 29 m/s

Applying Bernoulli's equation:

P + ρgh + (1/2)ρv² = constant

P is pressure, g is acceleration due to gravity, h is height, v is velocity, ρ is density.

At top:

P = 3.20 atm = 3.20 * 101300 Pa, ρ = 1025 kg/m³, v = 0, g = 9.81 m/s, h = 10.7 m, hence:

P + ρgh + (1/2)ρv² = ( 3.20 * 101300) + (1025 * 9.81 * 10.7) + 0

At bottom:

h = 0, P = 0

P + ρgh + (1/2)ρv² = 0 + 0 + (1/2* 1025)v²

Equating top and bottom:

( 3.20 * 101300) + (1025 * 9.81 * 10.7) = (1/2* 1025)v²

v = 29 m/s

The water was moving out from the bottom at a velocity of 29 m/s

Find out more at: https://brainly.com/question/23841792

Final answer:

To calculate the speed of the water flowing out of the tank, we can use Bernoulli's equation. Plugging in the given values and solving for the final velocity, we can determine the speed of the water.

Explanation:

To determine how fast the water is moving, we can use Bernoulli's equation which relates the pressure, velocity, and height of a flowing fluid.

Bernoulli's equation:

P1 + 1/2 ρv12 + ρgh1 = P2 + 1/2 ρv22 + ρgh2

Where:

P1 = initial pressure of the waterv1 = initial velocity of the water (0 m/s, since it is at rest)ρ = density of the waterg = acceleration due to gravity (9.8 m/s2)h1 = initial height of the water (10.7 m)P2 = gauge pressure (3.20 atm)v2 = final velocity of the water (unknown)h2 = final height of the water (0 m)

Plugging in the values, we can solve for v2:

3.20 atm + 0 + (1000 kg/m3)(9.8 m/s2)(10.7 m) = 1 atm + 1/2(1000 kg/m3)v22 + (1000 kg/m3)(9.8 m/s2)(0 m)

Simplifying the equation, we can solve for v2:

v22 = 2[(3.20 atm - 1 atm) / (1000 kg/m3)]

v2 = √[2(3.20 atm - 1 atm) / (1000 kg/m3)]

Using the equation, we can calculate v2 to find the speed at which the water is flowing.

Learn more about Calculating the speed of water flow here:

https://brainly.com/question/23247136

#SPJ11

A small ball is attached to one end of a spring that has an un- strained length of 0.200 m. The spring is held by the other end, and the ball is whirled around in a horizontal circle at a speed of 3.00 m/s. The spring remains nearly parallel to the ground during the motion and is observed to stretch by 0.010 m. By how much would the spring stretch if it were attached to the ceiling and the ball allowed to hang straight down, motionless?

Answers

Answer:

[tex]\Delta x=0.002287\ m=2.287\ mm[/tex]

Explanation:

Given:

un-stretched length of the spring, [tex]l=0.2\ m[/tex]speed of revolution of the ball in horizontal plane, [tex]v=3\ m.s^{-1}[/tex]length stretch during the motion, [tex]\Delta l=0.01\ m[/tex]

Now the radius of revolution of the ball:

[tex]r=l+\Delta l[/tex]

[tex]r=0.2+0.01[/tex]

[tex]r=0.21\ m[/tex]

Now in this case the centrifugal force is equal to the spring force:

[tex]F_c=F_s[/tex]

[tex]m.\frac{v^2}{r} =k.\Delta l[/tex]

where:

m = mass of the ball

k = spring constant

[tex]m\times \frac{3^2}{0.21} =k\times 0.01[/tex]

[tex]k=(4285.714\times m)\ N.m^{-1}[/tex]

Now the extension in the spring upon hanging the ball motionless:

[tex]m.g=k.\Delta x[/tex]

[tex]9.8\times m=(4285.714\times m)\times \Delta x[/tex]

[tex]\Delta x=0.002287\ m=2.287\ mm[/tex]

A 6.0-cm-diameter horizontal pipe gradually narrows to 4.5 cm. When water flows through this pipe at a certain rate, the gauge pressure in these two sections is 31.0 kPa and 24.0 kPa, respectively. What is the volume rate of flow?

Answers

Answer:

0.0072 m³/s

Explanation:

Using Bernoulli's law

P₁ + 1/2ρv₁² = P₂ + 1/2ρv₂ since the pipe is horizontal

1/2ρv₂² - 1/2ρv₁² = P₁ - P₂

flow rate is constant

A₁v₁ = A₂v₂

A₁ = πr₁² = π (0.06/2)² = 0.0028278 m²

A₂ = πr₂² = π (0.0225)² = 0.00159 m²

v₁  = (A₂ / A₁)v₂

v₁  = (0.00159 m²/ 0.0028278  m²) v₂ = 0.562  v₂

substitute v₁  into the Bernoulli's equation

1/2ρv₂² - 1/2ρv₁² = P₁ - P₂

500 ( 1 - 0.3161 ) v₂²  = (31.0 - 24 ) × 10³ Pa

341.924 v₂² = 7000

v₂² = 20.472

v₂ = √ 20.472 = 4.525 m/s

volume follow rate = 0.00159 m² ×  4.525 m/s = 0.0072 m³/s

[tex]0.0072 \;\rm m^{3}/s[/tex]The volume flow rate at the exit of the pipe is [tex]0.0072 \;\rm m^{3}/s[/tex].

Given data:

The  initial diameter of horizontal pipe is, d = 6.0 cm.

The final diameter of pipe is, d' = 4.5 cm.

The gauge pressure at inner section is, P = 31.0 kPa.

The gauge pressure at outer section is, P' = 24.0 kPa.

Applying the Bernoulli's concept, which says the total pressure energy and kinetic energy throughout the flow remains constant .

So, for the horizontal pipe, the expression is,

[tex]P + \dfrac{1}{2} \rho v^{2} = P' + \dfrac{1}{2} \rho v'^{2}[/tex] ............................................(1)

Here, [tex]\rho[/tex] is the density of water throughout the flow, which remains constant.

Now, apply the continuity equation as,

[tex]A\times v = A' \times v'\\\\(\pi/4 \times d^{2}) \times v = (\pi/4 \times d'^{2}) \times v'\\\\ d^{2} \times v = d'^{2} \times v'\\\\v/v' = 0.045^{2}/0.006^{2}\\\\v = 0.5625\times v'[/tex]

Now substitute the value in equation (1) as,

[tex]P -P' = \dfrac{1}{2} \rho v'^{2} - \dfrac{1}{2} \rho v^{2}\\\\(31 -24) \times 10^{3} \;\rm Pa = \dfrac{1}{2} \times 1000 v'^{2} - \dfrac{1}{2} \times 1000 (0.5625 v')^{2}\\v' = 4.52 \;\rm m/s[/tex]

Then the flow rate is calculated as,

[tex]Q' = A' \times v'\\\\Q' = (\pi /4) d'^{2} \times v'\\Q' = (\pi /4) \times 0.06'^{2} \times 4.52\\\\Q' = 0.0072 \;\rm m^{3}/s[/tex]

Thus, the required value of volume flow rate is, [tex]0.0072 \;\rm m^{3}/s[/tex].

Learn more about the Bernoulli's theorem here:

https://brainly.com/question/23841792

A particle with a mass of 9.00 ✕ 10-20 kg is vibrating with simple harmonic motion with a period of 3.00 ✕ 10-5 s and a maximum speed of 7.00 ✕ 103 m/s. (a) Calculate the angular frequency of the particle. rad/s (b) Calculate the maximum displacement of the particle.

Answers

Answer:

(a) [tex]\omega=2.09*10^{5}\frac{rad}{s}[/tex]

(b) [tex]A_{max}=0.033m[/tex]

Explanation:

(a) The angular frequency is defined as:

[tex]\omega=2\pi f[/tex]

Here f is the frequency of the particle, which is inversely proportional to its period:

[tex]f=\frac{1}{T}[/tex]

Replacing, we have:

[tex]\omega=\frac{2\pi}{T}\\\omega=\frac{2\pi}{3*10^{-5}s}\\\omega=2.09*10^{5}\frac{rad}{s}[/tex]

(b) The maximum displacement is given by:

[tex]A_{max}=\frac{v_{max}}{\omega}\\A_{max}=\frac{7*10^3\frac{m}{s}}{2.09*10^5\frac{rad}{s}}\\A_{max}=0.033m[/tex]

The total electric flux through a closed cylindrical (length = 1.2 m , diameter = 0.20 m) surface is equal to −5 0. Nm / C^2. Determine the net charge within the cylinder in pC? (εo = 8.85z10^-12)
a) – 71
b) – 62
c) – 53
d) – 44
e) –16

Answers

Final answer:

The net charge within the cylinder, given the electric flux of -50 Nm²/C² and the permittivity of free space, is -44 picocoulombs (pC).

Explanation:

The question asks to determine the net charge within a cylindrical surface given the total electric flux and the electrical permittivity of free space. According to Gauss's law, the electric flux (φ) through a closed surface is equal to the net charge (Q) enclosed by the surface divided by the permittivity of free space (ε0). The formula is φ = Q / ε0. Given the electric flux is -50 Nm2/C2 and ε0 = 8.85 x 10-12 C2/Nm2, we can solve for Q:

Q = φ x ε0

Q = (-50 Nm2/C2)(8.85 x 10-12 C2/Nm2)

Q = -4.425 x 10-10 C

To convert this to picocoulombs (pC), we multiply by 1012 pC/C:

Q = -4.425 x 10-10 C x 1012 pC/C = -442.5 pC

The closest answer to -442.5 pC is -44 pC, so the correct answer is (d) -44.

An ornament of mass 42.0 g is attached to a vertical ideal spring with a force constant (spring constant) of 33.9 N/m. The ornament is then lowered very slowly until the spring stops stretching. How much does the spring stretch?

Answers

Answer:

Extension is 12.14m

Explanation:

mass of ornament=42g,weight of ornament=mg=42*9.8=411.6

Force constant(k)= 33.9N/m

F=ke

e=F/k

F is force, e is extension

F=weight of ornament

e=411.6/33.9

e=12.14m

Jaclyn plays singles for South's varsity tennis team. During the match against North, Jaclyn won the sudden death tiebreaker point with a cross-court passing shot. The 57.5-gram ball hit her racket with a northward velocity of 26.7 m/s. Upon impact with her 331-gram racket, the ball rebounded in the exact opposite direction (and along the same general trajectory) with a speed of 29.5 m/s.
A. Determine the pre-collision momentum of the ball.
B. Determine the post-collision momentum of the ball.
C. Determine the momentum change of the ball.
D. Determine the velocity change of the racket.

Answers

Answer:

A) pbin = 1.535 Kgm/s (+)

B) pbf = 1.696 Kgm/s (-)

C) Δp = 3.3925 Kgm/s

D) Δvr = 10.249 m/s

Explanation:

Given

Mass of the ball: m = 57.5 g = 0.0575 Kg

Initial speed of the ball: vbi = 26.7 m/s

Mass of the racket: M = 331 g = 0.331 Kg

Final speed of the ball: vbf = 29.5 m/s

A) We use the formula

pbin = m*vbi = 0.0575 Kg*26.7 m/s = 1.535 Kgm/s (+)

B) pbf = m*vbf = 0.0575 Kg*29.5 m/s = 1.696 Kgm/s (-)

C) We use the equation

Δp = pbf - pbin = 1.696 Kgm/s - (-1.535 Kgm/s) = 3.3925 Kgm/s

D) Knowing that

Δp = 3.3925 Kgm/s

we can say that

Δp = M*Δvr

⇒  Δvr = Δp / M

⇒  Δvr = 3.3925 Kgm/s / 0.331 Kg

⇒  Δvr = 10.249 m/s

You find a featureless black slab. There are two arms marked In and OUT. You find that moving the IN arm 20 inches causes the OUT arm to move 5 inches. You find that a 10 lb. pull on IN lifts 30 lbs. on OUT. What is the AMA?a. 1
b. 4
c. 3
d. 1/3

Answers

Answer:

c. 3

Explanation:

Given:

displacement in the input arm, [tex]d_i=20\ in[/tex]corresponding displacement in the output arm, [tex]d_o=5\ in[/tex]load on the output arm, [tex]F_o=30\ lbs[/tex]corresponding load on the input arm, [tex]F_i=10\ lbs[/tex]

Since AMA i.e. actual mechanical advantage is defined as the ratio of the output force to the input force on a simple machine. This takes into account the losses occurred.

Now, mathematically:

[tex]AMA=\frac{F_o}{F_i}[/tex]

[tex]AMA=\frac{30}{10}[/tex]

[tex]AMA=3[/tex]

Answer:

kuh

Explanation:

When Earth catches up to a slower-moving outer planet and passes it in its orbit the planet

a.exhibits retrograde motion.
b. slows down because it feels Earth's gravitational pull.
c. decreases in brightness as it passes through Earth's shadow.
d. moves into a more elliptical orbit.

Answers

Answer:

a. exhibits retrograde motion.

Explanation:

When earth catches up to a slower moving outer planets like for example Saturn and jupitar they seems to show the retrograde motion which is actually an illusion but there exits the real retrograde motion too in some cases. In retrograde motion planets appears to move in the backward direction like from east to west rather then from west to east in the sky.

If you ignore air resistance after an initial force launches a projectile, name all forces acting on it as it moves through the air. What does this force cause the object to do?

Answers

Answer:

Neglecting air resistance, the only force acting on a projectile is gravity.

This force causes the object to accelerate.

Explanation:

As a projectile moves upward, there is a downward force and a downward acceleration due to force of gravity. That is, as the object is moving upward, force of gravity acting on the projectile is causing a steady slowing down of the projectile.

Hence, Gravity is the downward force upon a projectile that influences its vertical motion and causes the parabolic trajectory that is characteristic of projectiles.

From Newton's law of motion, it suggest that force is required to cause an acceleration and not motion. Therefore, force of gravity causes the object to accelerate downwards.

A closed system consists of 0.4 kmol of propane occupying a volume of 10 m3 . Determine
(a) the weight of the system, in N, and
(b) the mass-based specific volume, in m3 /kmol and m3 /kg respectively. Let g = 9.81 m/s2 .

Answers

Answer:

Kinetic

Explanation:

Final answer:

The weight of the closed system of propane is 173.04 N. The mass-based specific volume is 25 m³/kmol and 0.567 m³/kg.

Explanation:

To answer the student's question about the weight and the mass-based specific volume of a closed system of propane:

To find the weight of the system in Newtons, we first need to calculate the mass of the propane.

Propane has a molar mass of approximately 44.1 kg/kmol. Since the system has 0.4 kmol of propane, the mass (m) is:

m = 0.4 kmol × 44.1 kg/kmol = 17.64 kg

Now, the weight (W) in Newtons can be calculated using the gravitational acceleration (g = 9.81 m/s2):

W = m × g = 17.64 kg × 9.81 m/s2 = 173.04 N

For the mass-based specific volume in m3/kmol and m3/kg:

The specific volume (vsp) in m3/kmol is simply the volume divided by the number of kmols:

vsp = V / n = 10 m3 / 0.4 kmol = 25 m3/kmol

For m3/kg, we divide the specific volume by the molar mass of propane:

vsp = 25 m3/kmol ÷ 44.1 kg/kmol = 0.567 m3/kg

What should the Architect do to ensure Field-Level Security is enforced on a custom Visualforce page using the Standard Lead Controller?

Answers

Answer:

the Architect should use {!$FieldType.lead.accessible} expression within the Visualforce page.

Explanation:

Visualforce is a framework that allows developers to build complex,  user friendly interfaces that can be hosted primarily on the Lightning Platform

Controllers provide access to the data that should be displayed in a page, and can modify component behavior. a number of standard controllers are provided by The Lightning platform that contain  functionality and logic that which are used for standard Salesforce pages

The Architect should Use the expression {!$FieldType.lead.accessible}  within the Visualforce page.

Final answer:

To enforce Field-Level Security on a custom Visualforce page using the Standard Lead Controller, the Architect should define the page with the 'standardController' attribute set to 'Lead' and the 'extensions' attribute set to the appropriate Lead Controller extension. The 'with sharing' keyword should be used in the extension to enforce field-level security.

Explanation:

To ensure Field-Level Security is enforced on a custom Visualforce page using the Standard Lead Controller, the Architect should define the Visualforce page with the 'standardController' attribute set to 'Lead' and the 'extensions' attribute set to the appropriate Lead Controller extension. Within the extension, the Architect can use the 'with sharing' keyword to enforce field-level security.

For example:

<apex:page standardController='Lead' extensions='LeadControllerExtension'>...</apex:page>public with sharing class LeadControllerExtension { ... }

The 'with sharing' keyword ensures that the Visualforce page adheres to the Org-wide default settings and user's record-level access. This means that any field-level security restrictions defined for the Lead object will be enforced on the page.

A cone-shaped drinking cup is made from a circular piece of paper of radius R by cutting out a sector and joining the edges CA and CB. Find the maximum capacity of such a cup.

Answers

Answer:

The maximum capacity of such cup is

2 × 3.142R^3/9×squareroot3

Explanation:

From the diagram in the attachment,

h= height of the cone, r= radius of the cone,R= radius of the original circular piece of paper

Using pythagorean theorem, we get

r^2+h^2=R^2 => r^2=R^2-h^2

Formular for the volume of a cone is given as V=1/3×(3.142)^2h

Substituting for r^2 when R is a constant

V=1/3(3.142)(R^2-h^2)h

V=1/3(3.142)(R^2-h^3)

V'=0=1/3(3.142)R^2-3h^2)

0=R^2-3h^2

h^2=R^2/3 => h=R/squareroot of 3

V"=1/3(3.142)(0-6)=-2×3.142×h

Negative shows that v is concave

V(R/squareroot of 3)=1/3(3.142)[R^2×R/squareroot 0f 3-(R/squareroot of 3)^3

V=2×3.142×R^3/9× squareroot of 3

Final answer:

To find the maximum capacity of a cone-shaped drinking cup made from a circular piece of paper of radius R, you need to use differential calculus to maximize the volume of the cone, derived from the formula V = (1/3)π*r²h, where r = R*(1- θ/2π) is the radius of the cone and h = sqrt[R² - r²] is its height.

Explanation:

The subject of this question is finding the maximum capacity of a cone-shaped drinking cup made from a circular piece of paper of radius R. To find the maximum capacity or volume of such a cup, we need to formulate the problem in terms of mathematical geometry. The volume of a cone, which in this case represents our drinking cup, is given by the formula V = (1/3)π*r²h, where r is the radius of the base circle (which will also be our R), and h is the height of the cone.

The cone is created by cutting out a sector and joining edges CA and CB on the leftover part of the circular paper. Let θ denote the angle of the sector that is cut out (in radians). Since we have subtracted this sector, the circumference of the top circle of the cone is now 2πR*(1-(θ/2π)) = 2πR*(1 - θ/2π) = 2πR - R*θ.

Setting this equal to the circumference of the top of the cone (2πR - R*θ = 2πr, where r is now the radius of the cone), we can solve for r in terms of R and θ: r = R*(1- θ/2π).

The slant height of the cone will be equal to the radius of the initial circular piece of paper, R. Using Pythagorean theorem, the height h of the cone can be expressed as h = sqrt[(R² - r²)] = sqrt[R²(1 - (1- θ/2π)²)].

Substituting the expressions for r and h into the cone volume formula, we get V = (1/3)π[R²(1- θ/2π)]²*sqrt[R²(1 - (1- θ/2π)²)]

This is an expression for the volume V of the cone-shaped drinking cup in terms of R and θ. The task now is to utilize differential calculus to find the maximum of this function V(θ), i.e., we need to find the value of θ (between 0 and 2π) that maximizes the volume V.

Learn more about Finding Maximum Capacity of a Cone here:

https://brainly.com/question/31803738

#SPJ12

The power output, P, of a solar panel varies with the position of the sun. Let P = 10sinθ watts, where θ is the angle between the sun's rays and the panel, 0 ≤ θ ≤ π. On a typical summer day in Ann Arbor, Michigan, the sun rises at 6 am and sets at 8 pm and the angle is θ = πt/14, where t is time in hours since 6 am and 0 ≤ t ≤ 14. (a) Write a formula for a function, f(t), giving the power output of the solar panel (in watts) t hours after 6 am on a typical summer day in Ann Arbor. (b) Graph the function f(t) in part (a) for 0 ≤ t ≤ 14. (c) At what time is the power output greatest? What is the power output at this time? (d) On a typical winter day in Ann Arbor, the sun rises at 8 am and sets at 5 pm. Write a formula for a function, g(t), giving the power output of the solar panel (in watts) t hours after 8 am on a typical winter day.

Answers

Final answer:

The function for the power output of a solar panel in Ann Arbor on a summer day is f(t) = 10sin(πt/14), and on a winter day, the function is g(t) = 10sin(π(t+2)/9). The power output is greatest at 1 pm during summer with 10 watts. Graphing reveals the variation of power throughout the day.

Explanation:

Writing a Function for Solar Panel Power Output:

To answer part (a), we start by incorporating θ = πt/14 into the original power output equation P = 10sinθ, leading to a new function f(t) = 10sin(πt/14).

For part (b), graphing f(t) between 0 ≤ t ≤ 14 will show a sinusoidal curve that represents the power output throughout the day.

For part (c), the power output is greatest when θ = π/2, which occurs when t = 7 (1 pm), and the power output at this time is P = 10 watts.

Regarding part (d), for a typical winter day with sunlight from 8 am to 5 pm, the angle for t hours after 8 am needs to be adjusted. We can denote it as θ1 = π(t+2)/9. Thus, a new function g(t) = 10sin(π(t+2)/9) represents the power output on a typical winter day.

If your front lawn is 18.0 feet wide and 20.0 feet long, and each square foot of lawn accumulates 1050 new snowflakes every minute, how much snow, in kilograms, accumulates on your lawn per hour? Assume an average snowflake has a mass of 2.10 mg.

Answers

Answer:

47628 kg/hr

Explanation:

Total area = 18*20 =360 ft^(2)

no .of snowflakes per minute = 1050*360 =378000

mass of snowflakes per minute = 378000*2.1*10^(-3) =793.8 kg/min

mass accumulated per hour = 793.8kg/min * 60min/hr =47628 kg/hr

Which of the following was NOT considered a key characteristic of the genetic material even before nucleic acids were identified as the genetic material?
Genetic material must encode the phenotype.
Genetic material must encode complex information.
Genetic material must be copied accurately.
Genetic material must have a complex structure.
These are all key characteristics of genetic material.

Answers

Answer:

D:Genetic material must have a complex structure.

Final answer:

Before DNA was identified as the genetic material, a complex structure was not considered a key characteristic of genetic material. Proteins, with their diverse amino acids, were initially thought to be the genetic carriers due to their apparent structural complexity compared to DNA's four nucleotides.

Explanation:

The one characteristic that was NOT considered a key attribute of the genetic material before nucleic acids were identified is that the genetic material must have a complex structure. Historically, even though DNA does have a complex structure, early scientific thought leaned towards proteins as the biomolecules with sufficient complexity to encode genetic information. This belief was due to proteins being composed of 20 different amino acids, allowing for a high degree of variability and complexity, while DNA, composed of only four nucleotides, seemed too simple to account for the vast genetic diversity observed in living organisms.

It wasn't until the transformative experiments of Avery, McCarty, McLeod, and eventually the definitive work of Hershey and Chase, that DNA was confirmed to be the genetic material. The initial complexity perceived in proteins overshadowed the abstract concept of steep structural complexity in DNA. Afterward, it was understood that through the processes of replication and expression, DNA's arrangement of four bases could indeed encode and express the complexity necessary for life.

What equation gives the position at a specific time for an object with constant acceleration?

Answers

Answer:

[tex]x = x_{0}+v_{0}t+\frac{1}{2}at^{2}[/tex] equation gives the position at a specific time for an object with constant acceleration

Explanation:

[tex]x = x_{0}+v_{0}t+\frac{1}{2}at^{2}[/tex] equation gives the position at specific time for an object having constant acceleration. Constant acceleration is referred as the change of velocity with respect to the time is known as the acceleration, but when the velocity changes occurs at constant rate this rate is termed as the constant acceleration. The constant acceleration can never be zero. The velocity changes but that change occurs in the consistently. The acceleration is affected by the mass.

Other Questions
"Cost accounting information developed for managers to use in making decisions must comply with generally accepted accounting principles (GAAP) and international financial reporting standards (IFRS)."A. TrueB. False PLEASE HELP FOR 50 POINTS AND IF YOU DO ALL QUESTIONS YOU GET BRAINLEYIST AWNSER. At an election there are 5 candidates and 3 members are to be elected. A voter is entitled to vote for any number of candidates not greater than the number to be elected. In how many ways a voter can vote? 19. An organism's gametes have_________________the number of chromosomes foundin the organism's body cells. (In Biology) An object accelerates 3.0 m/s2 when a force of 6.0 Newtons is applied to it. What is the mass of the object? How many people have to be in a room in order that the probability that at least two of them celebrate their birthday on the same day is at least 0.06? (Ignore leap years, and assume that all outcomes are equally likely.) Square root of 3/2=19.5/c explain why an economy in which airlines charge different passangers different prices for the same flight ticket will not achieve echomic efficiency ? is first order in NO2 and first order in F2. If the concentration of NO2 was increased by half and the concentration of F2 was increased by four, by what factor would the reaction rate increase? You are a financial manager in a public corporation. One of your engineers says that they can increase the profit margin on your flagship product by using a lower quality vendor. However, the product is likely to fail more often and will generally not last as long. Will taking your engineer's suggestion necessarily make shareholders better off? Why or why not? The estimator determines who is responsible for what cost portion of supplying the temporary utilities.A. True.B. False A researcher wants to observe the social structure of a youth gang. When collecting data, she is most likely to use what type of method? In a crash test, a truck with mass 2100 kg traveling at 22 m/s smashes head-on into a concrete wall without rebounding. The front end crumples so much that the truck is 0.62 m shorter than before. (a) What is the average speed of the truck during the collision (that is, during the interval between first contact with the wall and coming to a stop)? vavg = ______ m/s (b) About how long does the collision last? (That is, how long is the interval between first contact with the wall and coming to a stop?) t = ______ s (c) What is the magnitude of the average force exerted by the wall on the truck during the collision? Fwall, avg = ______ N (d) It is interesting to compare this force to the weight of the truck. Calculate the ratio of the force of the wall to the gravitational force mg on the truck. This large ratio shows why a collision is so damaging. Fwall, avg / mg = (e) What approximations were necessary in making this analysis? (Select all that apply.) Neglect the horizontal component of the force of the road on the truck tires. Assume a nearly constant force exerted by the wall, so the speed changes at a nearly constant rate. The deceleration of the truck is approximately equal to g. A diet high in _____ is considered unhealthy, since this type of material is largely found in animal tissues. which was a fundamental element of supply-side economics?A. corporate tax hikesB. marginal tax cutsC. economic regulationD. wage increases Which is a correct first step in solving the inequality 4(2x 1) > 5 3x? Five more than the product of a number and 3 is equal to 8 A computer password consists of eight characters. How many different passwords are possible if each character may be any lowercase letter or digit? How many different passwords are possible if each character may be any lowercase letter or digit, and at least one character must be a digit? A computer system requires that passwords contain at least one digit. If eight characters are generated at random, and each is equally likely to be any of the 26 letters or 10 digits, what is the probability that a valid password will be generated? A toy car is moving along with 0.40 joules of kinetic energy if its speed is double then its new kinetic energy will be ? The answer to x + 3 5/8 equals 7 1/4 Steam Workshop Downloader