In the following triangle,what is the length of the hypotenuse?

In The Following Triangle,what Is The Length Of The Hypotenuse?

Answers

Answer 1

Step-by-step explanation:

using trigonometric ratios,

sin theta= opposite ÷ hypoteneus (h)

sin 45°= 3 root 2 ÷ h

1/root 2= 3 root 2 ÷h

h= 3× root 2 × root 2

= 3×2

= 6 unit

Answer 2

Answer:

Step-by-step explanation:

The given triangle is a right angle triangle and also an isosceles triangle.

The hypotenuse is the longest side of the right angle triangle. To determine the hypotenuse, we will apply trigonometric ratio

Sin θ = opposite side/hypotenuse

Looking at the triangle.

θ = 45 degrees = 1/√2

opposite side = 3√2

Therefore,

Sin 45 = 3√2/hypotenuse

1/√2 = 3√2/hypotenuse

hypotenuse × 1 = √2 × 3√2

hypotenuse = 3√2 × √2

hypotenuse = 3 × 2 = 6

Alternatively,

We can apply Pythagoras theorem since both sides are equal

Since the length of one side is 3√2, then the length of the other side is also 3√2

Hypotenuse^2 = opposite side^2 + adjacent side^2

Hypotenuse^2 = (3√2)^2 + (3√2)^2

Hypotenuse^2 = 18 + 18 = 36

Hypotenuse = √36 = 6


Related Questions

What was the annual growth rate for Egypt in 1990? What is the estimated annual growth rate in 2010? Be sure to show your work for each answer.

Answers

Answer:

A. The annual growth rate in Egypt in 1990 was 31 - 9 = 22 per 1,000 people. The estimated annual growth rate in 2010 is 25 - 5 = 20 per 1,000 people.

B. I feel like Egypt is in the third stage (Late Developing) in the Demographic transition model because the birth and death rate was higher but then as time progressed, they both started to level out. In order for Egypt to advance in the model, they will have to have a developed country (urbanization) and lower their birth/death rates through the use of birth controls and healthcare.

Step-by-step explanation:

Consider the linear system 211 + 3x2 - 5.23 = b 7.01 + 2.02 + 813 = b2 -X1 + 12 - 5.23 = b3

(a) Find the echelon form of the augmented matrix of the above system.

(b) Find the conditions on b1,b2, b3 for which this system has a solution.

(c) Do you see the shape of the points (61, 62, 63) for which the above system has a solution?

(d) If you randomly picked a (61, 62, 63) in R3, do you expect the above system to have a solution?

Answers

Answer:

The answers are shown in the step by step explanation that is attached

Step-by-step explanation:

The step by step calculation is as shown in the attachment below

The average length of the fish caught in Lake Amotan is 12.3 in. with a standard deviation of 4.1 in. Assuming normal distribution, find the probability that a fish caught there will be longer than 18in.

Answers

Answer:

0.082 is the probability that a fish caught will be longer than 18 inch.

Step-by-step explanation:

We are given the following information in the question:

Mean, μ = 12.3 inch

Standard Deviation, σ = 4.1 inch

We are given that the distribution of average length of the fish is a bell shaped distribution that is a normal distribution.

Formula:

[tex]z_{score} = \displaystyle\frac{x-\mu}{\sigma}[/tex]

a) P( longer than 18 inch)

P(x > 18)

[tex]P( x > 18) = P( z > \displaystyle\frac{18 - 12.3}{4.1}) = P(z > 1.39)[/tex]

[tex]= 1 - P(z \leq 1.39)[/tex]

Calculation the value from standard normal z table, we have,  

[tex]P(x > 18) = 1-0.918 =0.082[/tex]

0.082 is the probability that a fish caught will be longer than 18 inch.

Answer: the probability that a fish caught there will be longer than 18in is 0.08226

Step-by-step explanation:

Assuming a normal distribution for length of the fishes caught in Lake Amotan, the formula for normal distribution is expressed as

z = (x - µ)/σ

Where

x = length of fishes

µ = mean length

σ = standard deviation

From the information given,

µ = 12.3 in

σ = 4.1 in

We want to find the probability that a fish caught there will be longer than 18in. It is expressed as

P(x > 18) = 1 - P(x ≤ 18)

For x = 18,

z = (18 - 12.3)/4.1 = 1.39

Looking at the normal distribution table, the probability corresponding to the z score is 0.91774

P(x > 18) = 1 - 0.91774 = 0.08226

Show whether the following signals are even, odd or neither. For the signals which are neither odd nor even, find and plot their even and odd components.
a. x[n] = u[n] - u[n-6] (plot the even and odd parts)
b. x[n] = n^2 cos(pi n/3)
c. x[n] = ne^-|n|

Answers

Answer:

a) it is neither even nor odd

b) it is an even signal

c) it is an odd signal

Step-by-step explanation:

A function f(x) or a signal is said to be even if its satisfies the condition of f(-x) = f(x). this implies that the graph of such a function or signal has a symmetrical relationship with respect to the y-axis.

A function f(x) or a signal is said to be odd if its satisfies the condition of f(-x) = - f(x). this implies that the graph of such a function or a signal has a skew-symmetrical relationship with respect to the y-axis.

from the first option ; a) x[n] = u[n] - u [n-6], from the conditions attached to even and odd functions, it can be inferred that the first option does not satisfy the conditions for even and odd functions hence, it is neither even nor odd.

The attachements below gives a detailed explanation of the second and third option.

You operate a non-profit foodbank that accepts food donations and packages them into meals for local families who are food insecure. You accept canned goods from groceries. Some cans are not acceptable due to a compromised can or an expired use-by label. Can donations are assembled into boxes of 50 cans each for inspection to determine which cans should be discarded. The initial screening decision sends the box to either an experienced inspector or an inexperienced inspector.
The screener looks at 4 cans in each box. If there are zero unacceptable cans, the box is sent to an inexperienced inspector. Otherwise, it is sent to an experienced inspector.

a. Assuming a rate of 8% unacceptable, what is the probability of sending a box to an experienced inspector?

b. An inexperienced inspector makes $16 an hour, and an experienced one makes $22 an hour. If you were able to convince the groceries to reduce their unacceptable rate to 4%, what percent savings would you realize?
Assume that the mix of inspector types in FTEs equals the probability of a box being sent to each type.
For example, if 50.1% of boxes go to experienced inspectors, the FTE mix is 50.1 experienced FTES and 49.9 inexperienced FTEs. You do not change the number of inspectors, just the mix.

Answers

Answer:

Step-by-step explanation:

Binomial distribution is to be used here due to following reasons.

 

(a)

Probability of sending a box to an experienced inspector

= Probability of getting non-zero unacceptable cans

= 1 - Probability of getting zero unacceptable cans

=1- P(X = 0) = 1 - 10.08^0 *(1 – 0.08)^(4-0) = 0.283607

(b)

Expected cost per inspector in an hour in case of 8% unacceptable cans

= {(1-0.283607)*16+0.283607*22} = $ 17.70164

If groceries reduce their unacceptable rate to 4% then X - Bin(4, 0.04) .

In this scenario,

Probability of sending a box to an experienced inspector

= Probability of getting non-zero unacceptable cans

= 1 - Probability of getting zero unacceptable cans

=1- P(X = 0) = 1 - 0.04^0 * (1 – 0.04)*(4-0) = 0.150653

Expected cost per inspector in an hour in case of 4% unacceptable cans

= {(1-0.150653)*16+0.150653*22} = $ 16.90392

Percentage of savings realized = (17.70164-16.90392)/17.70164*100% = 4.506475%

put these fractions in order 1/5 2/5 3/5 4/5

Answers

Step-by-step explanation:

All fractions have the same denominator = 5.

The larger the counter, the greater the fraction.

Therefore

[tex]\dfrac{1}{5}<\dfrac{2}{5}<\dfrac{3}{5}<\dfrac{4}{5}[/tex]

Find the value of 15.0 NN in pounds. Use the conversions 1slug=14.59kg1slug=14.59kg and 1ft=0.3048m1ft=0.3048m.
Express your answer in pounds to three significant figures.

Answers

3.37 lb

Step-by-step explanation:

The question requires you to convert weight in Newtons to weight in pounds.

Given 15.0 N to convert to pounds, remember the conversion rate where;

1 Newton = 0.224809 pound-force

1 N= 0.224809 lb

15 N= ?

Perform cross-product

=15*0.224809

=3.37 lb

Learn More

Weight conversions:https://brainly.com/question/762013

Keywords : value,pounds,conversions,significant figures

#LearnwithBrainly

A company had 80 employees whose salaries are summarized in the frequency distribution below. Find the
mean salary.
Salary ($) Employees
5,001-10,000 16
10,001-15,000 14
15,001-20,000 15
20,001-25,000 17
25,001-30,000 18

Answers

Answer:

[tex] \bar X = \frac{1435040}{80}=17938[/tex]

Step-by-step explanation:

Since we have a groued data for this case we can construct the following table to find the expected value.

 Interval               Frequency(fi)      Midpoint(xi)           xi*fi

5001-10000              16                       7500.5            120008

10001-15000             14                      12500.5           175007

15001-20000            15                      17500.5           262507.5

20001-25000           17                      22500.5          382508.5

25001-30000           18                      27500.5          495009

Total                          80                                              1435040

And we can calculate the mean with the following formula:

[tex] \bar X = \frac{\sum_{i=1}^n f_i x_i}{n}[/tex]

Where [tex] n=\sum_{i=1}^n f_i = 80[/tex]

And if we replace we got:

[tex] \bar X = \frac{1435040}{80}=17938[/tex]

Given a set of data sorted from smallest to largest, define the first, second, and third quartiles.
a. The first quartile is the area within one standard deviation of the mean.
The second quartile is the area within two standard deviations of the mean.
The third quartile is the area within three standard deviations of the mean.
b. The first quartile is the mean of the lower half of the data below the median.
The second quartile is the median
The third quartile is the mean of the upper half of the data above the median.
c. The first quartile is the minimum value.
The second quartile is the median.
The third quartile is the maximum value.
d. The first quartile is the median of the lower half of the data below the overall median.
The second quartile is the overall median
The third quartile is the median of the upper half of the data above the overall median.
e. The first quartile is the area that contains the 25% of all values that are closest to the mean.
The second quartile is the area that contains the 50% of all values that are closest to the mean.
The third quartile is the area that contains the 75% of all values that are closest to the mean.

Answers

Answer:

Step-by-step explanation:

Given a set of data sorted from smallest to largest, i.e. arranged in ascending order we are to find out the median, I and III quartiles

We know that the median is the middle entry of data arranged in ascending order

Q1 is the entry below which 25% lie and Q3 is one above which 25% lie

Hence proper definition would be

d. The first quartile is the median of the lower half of the data below the overall median.

The second quartile is the overall median

The third quartile is the median of the upper half of the data above the overall median.

Option b is wrong becuase mean is not necessary here.  Option a is wrong because this has nothing to do with std deviation

Option c is wrong since minimum value cannot be q1

Option e is wrong because we have exactly 25% lie below Q1

in a class of 26 students, 15 of them like maths, 13 of them like english and 9 of them like neither. find the probability that a student chosen at random likes english but not maths.

venn diagram doesn't need to be completed,, some working out would help because this is exam revision. thanks!

Answers

Answer:

0.0769

Step-by-step explanation:

Let x be the number of student that offer both subjects

15 - x + x + 13 - x + 9 = 26

-x + 37 = 26

-x = -11

x = 11

Number of student that offer english but not math = 13 - 11

                                                                                        = 2

The probability of english but not math = 2/26

The probability that a student is chosen at random likes English but not maths is [tex]\dfrac{1}{13}[/tex].

Given information:

In a class of 26 students, 15 of them like maths, 13 of them like English and 9 of them like neither.

Now, the number of students who like either maths or English will be,

[tex]26-9=17[/tex]

Now, out of 17, 15 students like maths and 13 students like English.

So, the number of students who like both the subjects will be,

[tex]E\cap M=13+15-17\\=11[/tex]

Now, 11 students like both the subjects and 13 students like English.

So, the number of students who like English but not maths will be,

[tex]13-11=2[/tex]

Thus, the probability that a student chosen at random likes English but not maths will be calculated as,

[tex]P=\dfrac{2}{26}\\=\dfrac{1}{13}[/tex]

Therefore, the probability that a student is chosen at random likes English but not maths is [tex]\dfrac{1}{13}[/tex].

For more details, refer to the link:

https://brainly.com/question/21586810

A tank contains 50 kg of salt and 1000 L of water. A solution of a concentration 0.025 kg of salt per liter enters a tank at the rate 9 L/min. The solution is mixed and drains from the tank at the same rate.

(a) What is the concentration of our solution in the tank initially?
concentration = (kg/L)

(b) write down the differential equation which models the Amount y of salt in the tank:
dydt=

(c) Find the amount of salt in the tank after 2.5 hours.
amount = (kg)

(d) Find the concentration of salt in the solution in the tank as time approaches infinity.
concentration = (kg/L)

Answers

Answer:

A. 0.05kg/l

B. dy/dt = 9/1000(25 - y)

C. 20.05 kg of salt

D. 0.0025kg/l

Step-by-step explanation:

A. Concentration of salt in the tank initially,

Concentration (kg/l) = mass of salt in kg/ volume of water in liter

= 50kg/1000l

= 0.05kg/l

B. dy/dt = rate of salt in - rate of salt out

Rate of salt in = 0.025kg/l * 9l/min

= 0.225kg/min

Rate of salt out = 9y/1000

dy/dt = 0.225 - 9y/1000

dy/dt = 9/1000(25 - y)

C. Collecting like terms from the above equation,

dy/25 - y = 9/1000dt

Integrating,

-Ln(25 - y) = 9/1000t + C

Taking the exponential of both sides,

25 - y = Ce^(-9t/1000)

Calculating for c, at y = 0, t = 0;

C = 25

y(t) = 25 - 25e^(-9t/1000)

At 2.5 hours,

2.5 hours * 60 mins = 180 mins

y(180 mins) = 25 - 25e^(-9*180/1000)

= 25 - 25*(0.1979)

= 20.05kg of salt

D. As time approaches infinity, e^(Infinity) = 0,

y(t) = 25 - 25*0

Concentration (kg/l) = 25/1000

= 0.0025kg/l

Final answer:

The initial concentration is 0.05 kg/L. A differential equation that models the amount of salt in the tank is dy/dt = 0.225 - (9y/(1000 + 9t)). By solving this equation over an interval of 2.5 hours could find the amount of salt after this time period. Lastly, concentration of the tank's solution as time approaches infinity is 0.025 kg/L.

Explanation:

To solve the problem, we need to know the basics of differential equations and concepts related to concentration calculations. Starting with the initial conditions, we see that:

(a) The initial concentration is calculated by dividing the amount of salt by the volume of the solution. Hence, concentration = 50 kg/1000 L = 0.05 kg/L.

(b) The differential equation that models the salt in the tank can be derived using the inflow and outflow rates. The amount of salt entering the tank per minute is 9 L/min * 0.025 kg/L = 0.225 kg/min. The amount of salt leaving the tank per minute is 9 L/min * y kg/L; where y is the current amount of salt in the tank divided by the current volume of the solution in the tank (1000 L + 9t min). Hence, the differential equation is dy/dt = 0.225 - 9y/(1000 + 9t).

(c) To find the amount of salt after 2.5 hours, we would need to solve the differential equation given above with the initial condition y(0) = 50 kg, over the interval from t=0 to t=2.5 hours (or 150 minutes). This requires calculus skills specifically related to the solution of differential equations.

(d) At the limit as time approaches infinity, the volume in the tank approaches a constant (because inflow equals outflow), and so does the amount of salt in the tank (because inflow equals outflow). Hence, the differential equation becomes dy/dt = 0, yielding y = constant. This constant is the inflow rate divided by the outflow rate, or 0.225 kg/min / 9 L/min = 0.025 kg/L. This is the concentration of the solution as time approaches infinity.

Learn more about differential equations here:

https://brainly.com/question/33433874

#SPJ11

Please help... I have no clue

Answers

Answer:

OPTION C:  Sin C - Cos C = s - r

Step-by-step explanation:

ABC is a right angled triangle. ∠A = 90°, from the figure.

Therefore, BC = hypotenuse, say h

Now, we find the length of AB and AC.

We know that:   [tex]$ \textbf{Sin A} = \frac{\textbf{opp}}{\textbf{hyp}} $[/tex]

and    [tex]$ \textbf{Cos A} = \frac{\textbf{adj}}{\textbf{hyp}} $[/tex]

Given, Sin B = r and Cos B = s

⇒    [tex]$ Sin B = r = \frac{opp}{hyp} = \frac{AC}{BC} = \frac{AC}{h} $[/tex]

⇒ [tex]$ \textbf{AC} = \textbf{rh} $[/tex]

Hence, the length of the side AC = rh

Now, to compute the length of AB, we use Cos B.

[tex]$ Cos B = s = \frac{adj}{hyp} = \frac{AB}{BC} = \frac{AB}{h} $[/tex]

⇒  [tex]$ \textbf{AB} = \textbf{sh} $[/tex]

Hence, the length of the side AB = sh

Now, we are asked to compute Sin C - Cos C.

[tex]$ Sin C = \frac{opp}{hyp} $[/tex]

⇒  [tex]$ Sin C = \frac{AB}{BC} $[/tex]

              [tex]$ = \frac{sh}{h} $[/tex]

               = s

Sin C = s

[tex]$ Cos C = \frac{adj}{hyp} $[/tex]

[tex]$ \implies Cos C = \frac{AC}{BC} $[/tex]

⇒ Cos C = [tex]$ \frac{rh}{h} $[/tex]

Therefore, Cos C = r

So, Sin C - Cos C = s - r, which is OPTION C and is the right answer.

A signalized intersection has a cycle length of 60 seconds and an effective red time of 25 seconds. The effective green time is ____ seconds.

Answers

Answer:

effective green time = 35 seconds

Step-by-step explanation:

given data

cycle length = 60 seconds

effective red time = 25 seconds

solution

we get here  effective green time that is express as

effective green time = cycle length  - effective red time   ...........................1

put here value and we will get

effective green time = 60 seconds - 25 seconds

effective green time = 35 seconds

Final answer:

The effective green time at a signalized intersection with a cycle length of 60 seconds and a red time of 25 seconds is 35 seconds.

Explanation:

The question involves calculating the effective green time at a signalized intersection with a known cycle length and red time. Since the cycle length is the total time for a complete cycle of the signal, and it is given as 60 seconds, and the effective red time is 25 seconds, we can determine the effective green time by subtracting the red time from the cycle length.

The effective green time = Cycle length - Red time
= 60 seconds - 25 seconds
= 35 seconds.

Therefore, the effective green time is 35 seconds.

In a trend line based on five observations if the average of Y is 100 and the slope of line is 22, then the intercept is?

a)32
b)34
c)36
d)38

Answers

The answer is C I believe if I’m correct

The value of intercept will be 34.

What is Equation of line?

The equation of line in point-slope form passing through the points

(x₁ , y₁) and (x₂, y₂) with slope m is defined as;

⇒ y - y₁ = m (x - x₁)

Where, m = (y₂ - y₁) / (x₂ - x₁)

Given that;

In a trend line based on five observations,

The average of Y = 100

And, The slope of line = 22

Now,

Since, The equation of line is,

⇒ Y = mx + c

Where, m is slope and c is y - intercept.

When x = 1;

⇒ Y = m + c

When x = 2;

⇒ Y = 2m + c

When x = 3;

⇒ Y = 3m + c

When x = 4;

⇒ Y = 4m + c

When x = 5;

⇒ Y = 5m + c

Here, The average of Y is 100.

So, We get;

⇒ (m + c) + (2m + c) + (3m + c) + (4m + c) + (5m + c) / 5 = 100

⇒ 15m + 5c / 5 = 100

⇒ 3m + c = 100

Substitute m = 22;

⇒ 3 × 22 + c = 100

⇒ 66 + c = 100

⇒ c = 100 - 66

⇒ c = 34

Thus, The value of intercept is,

⇒ c = 34

Learn more about the equation of line visit:

https://brainly.com/question/18831322

#SPJ5

A die is rolled n times. what is the probability that at least 1 of the 6 values never apears?

Answers

Answer:

Zero

Step-by-step explanation:

The possible outcomes from rolling a die are 1,2,3,4,5 and 6. The probability of getting one of these numbers when the die is rolled

=1/6 + 1/6 + 1/6 + 1/6 + 1/6 + 1/6

=1

The probability of not getting one of the number plus the probability of getting one of them = 1

Therefore;

probability of not getting one of the number + 1 = 1

probability of not getting one of the number = 0

A pomegranate is thrown from ground level straight up into the air at time t=0 with velocity 32 feet per second. Its height at time t seconds is f(t)=−16t2+32t. Find the time tg it hits the ground and the time th it reaches its highest point. What is the maximum height h? Enter the exact answers.

Answers

Answer:

It hit the ground at t=2

It reaches its highest point at t=1

Its maximum height =16

Step-by-step explanation:

The graph of the function of the height will be a parapola opening downward where it's x intercepts = the time where the object hit the ground and its maximum point = the point with the maximum point

The x intercepts are 0 when the object was thrown and 2 when it landed

The x coordinate of the vertex is in the middle of the two x intercepts so it will be 1

Substituting the x coordinate of the vertex gives us the y coordinate of the vertex which is the maximum hight 16

Final answer:

The pomegranate hits the ground at time t=2 seconds (tg=2) and reaches its maximum height at time t=1 second (th=1). The maximum height (h) is 16 feet.

Explanation:

The given function f(t) = -16t2 + 32t represents the height of the pomegranate at any time t. The pomegranate hits the ground when its height is zero, so set f(t) = 0 and solve for t.

0 = -16t2 + 32t
0 = t(-16t + 32)
Thus, t = 0 (the initial time) and t = 2 (when it hits the ground). Therefore, tg = 2.

The pomegranate reaches its maximum height when the derivative of f(t) is zero. This will give us the time th.

f'(t) = -32t + 32
Set f'(t) = 0 and solve for t. Then -32t + 32 = 0 implies t = 1. So, th = 1.

The maximum height h is simply f(th) = -16(1)2 + 32(1) = 16 feet.

Learn more about Quadratic Equations here:

https://brainly.com/question/34196754

#SPJ2

sampling units described in part c. Refer to the primary b and describe a sampling plan that results in a simple random sample b. When the Bureau of Labor Statistics conducts a survey, it begins by partitioning the United States adult popula- tion into 2,007 groups called primary sampling units Assume that these primary sampling units all contain the same number of adults. If you randomly select one adult from each primary sampling unit, is the result a simple random sample? Why or why not?

Answers

Since the population is first divided into various groups and the sampling was done later.  

It is not the example of a simple random sampling as it does not allow for selecting more than 1 adult from each group that would have been possible in all simple random sampling.

The 2,007 adults should be selected without regard to the groups The groups are selected with no restrictions on the number chosen from every group.

Learn more about the sampling units described in part.

brainly.com/question/13822477.

The following are weights in pounds of a college sports team: 165, 171, 174, 180, 182, 188, 189, 192, 198, 202, 202, 225, 228, 235, 240 Find the weight that is 2 standard deviations below the mean. Round your answer to the nearest pound.

Answers

Answer:

There are no values in the data that is two standard deviations below the mean.

Step-by-step explanation:

We are given the following data set in question:

165, 171, 174, 180, 182, 188, 189, 192, 198, 202, 202, 225, 228, 235, 240

Formula:

[tex]\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}[/tex]  

where [tex]x_i[/tex] are data points, [tex]\bar{x}[/tex] is the mean and n is the number of observations.  

[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]

[tex]Mean =\displaystyle\frac{2971}{15} = 198.06[/tex]

The mean of sample is 198.06 pounds.

Sum of squares of differences = 7984.93

[tex]S.D = \sqrt{\dfrac{7984.93}{14}} = 23.88[/tex]

The sample standard deviation is 23.88 pounds.

We have to find the weight that is 2 standard deviations below the mean.

[tex]x < \bar{x}- 2s\\x < 198.06 -2(23.88)\\x < 150.3[/tex]

Thus, we have to find a value less than 150.3.

Sorted data: 165, 171, 174, 180, 182, 188, 189, 192, 198, 202, 202, 225, 228, 235, 240

There are no values in the data that is less than 150.3

please help and explain​

Answers

Answer:

The value of x = 5.

The length of KJ = 29 units.

Step-by-step explanation:

Given L and M are the mid points of the lines.

So, LM becomes the mid segment.

Also, [tex]$ \textbf{LM} = \frac{\textbf{GH + KJ}}{\textbf{2}} $[/tex]

Here, the length of LM = 25 units.

Length of GH = 2x + 11 units.

Length of KJ  = 6x - 1 units.

Therefore, we have: [tex]$ LM = \frac{2x + 11 + 6x - 1}{2} $[/tex]

= [tex]$ \frac{8x + 10}{2} $[/tex]

[tex]$ \implies 25 = 4x + 5 $[/tex]

[tex]$ \implies 4x = 20 $[/tex]

x = 5

Therefore, KJ = 6(5) - 1

= 29 units.

Hence, the answer.

The toco toucan, the largest member of the toucan family, possesses the largest beak relative to body size of all birds. This exaggerated feature has received various interpretations, such as being a refined adaptation for feeding. However, the large surface area may also be an important mechanism for radiating heat (and hence cooling the bird) as outdoor temperature increases. Here are data for beak heat loss, as a percent of total body heat loss, at various temperatures in degrees Celsius:

Temperature 15 16 17 18 19 20 21 22 23 24 25 26 27
Percent heat loss from beak 33 34 33 36 36 47 52 51 41 50 49 50 55
The equation of the least-squares regression line for predicting beak heat loss, as a percent of total body heat loss from all sources, from temperature is ______.

Answers

Answer:

[tex]m=\frac{332}{182}=1.824[/tex]

[tex]b=\bar y -m \bar x=43.615-(1.824*21)=5.311[/tex]

So the line would be given by:

[tex]y=1.824 x +5.311[/tex]

Step-by-step explanation:

We assume that the data is this one:

x: 15 16 17 18 19 20 21 22 23 24 25 26 27

y: 33 34 33 36 36 47 52 51 41 50 49 50 55

Find the least-squares line appropriate for this data.  

For this case we need to calculate the slope with the following formula:

[tex]m=\frac{S_{xy}}{S_{xx}}[/tex]

Where:

[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}[/tex]

[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}[/tex]

So we can find the sums like this:

[tex]\sum_{i=1}^n x_i =273[/tex]

[tex]\sum_{i=1}^n y_i =567[/tex]

[tex]\sum_{i=1}^n x^2_i =5915[/tex]

[tex]\sum_{i=1}^n y^2_i =25547[/tex]

[tex]\sum_{i=1}^n x_i y_i =12239[/tex]

With these we can find the sums:

[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}=5915-\frac{273^2}{13}=182[/tex]

[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}=12239-\frac{273*567}{13}=332[/tex]

And the slope would be:

[tex]m=\frac{332}{182}=1.824[/tex]

Nowe we can find the means for x and y like this:

[tex]\bar x= \frac{\sum x_i}{n}=\frac{273}{13}=21[/tex]

[tex]\bar y= \frac{\sum y_i}{n}=\frac{567}{13}=43.615[/tex]

And we can find the intercept using this:

[tex]b=\bar y -m \bar x=43.615-(1.824*21)=5.311[/tex]

So the line would be given by:

[tex]y=1.824 x +5.311[/tex]

Final answer:

The equation of the least-squares regression line for predicting beak heat loss from temperature is: Percent heat loss from beak = 0.943(temp) + 16.243

Explanation:

The equation of the least-squares regression line for predicting beak heat loss, as a percent of total body heat loss from all sources, from temperature is:


Percent heat loss from beak = 0.943(temp) + 16.243


This equation can be obtained by performing a linear regression analysis on the given data points, where the temperature is the independent variable and the percent heat loss from the beak is the dependent variable.

Learn more about Least-squares regression line here:

https://brainly.com/question/34639207

#SPJ3

Human blood pressure levels are normally distributed. If you measured an individual's blood pressure and found the blood pressure level to have a z-score of 2.1, what would you conclude about that person?

a. The individual's blood pressure is unusually high, compared to others.
b. The individual's blood pressure is 2.1 times higher than the average person.
c. The individual's blood pressure level is about average, compared to others.
d. Since the z-score is positive we know that the individual has normal blood pressure, compared to others.

Answers

Answer:

a. The individual's blood pressure is unusually high, compared to others

Step-by-step explanation:

The individual's blood pressure is unusually high, compared to others. Since the z- score is positive, it implies that the individual's blood pressure is higher than the average blood pressure of others. And also given that the z-score is as high as 2.1 (higher than 95% confidence interval which is 1.96) implies that the individual's blood pressure is extremely higher than the average blood pressure of others.

Suppose a baseball player had 229 hits in a season. In the given probability distribution, the random variable x represents the number of hits the player obtained in a game. Round one decimal place. show work.

x...........0......1......2......3......4......5

P(x)..0.1712...0.4886....0.2389....0.0706.....0.0256.......0.0051

a.) Compute and interpret the mean of the random variable x

?x =

Which of the following interpretations is correct?

1.) As the number of trials n decreases, the mean of the observations will approach the mean of the random variable.

2.) As the number of trials n increases, the mean of the observations will approach the mean of the random variable.

3.) The observed value of the random variable will almost always be less than the mean of the random variable.

4.) The observed value of the random variable will almost always be equal to the mean of the random variable.

b.) Compute the standard deviation of the random variable x.

?x =

Answers

Answer:

a) summation of p(x)/n ie. (0.1712+...+0.0051)/6=0.16675

b)1

c).var=summation (x-mean) squared /n ie (0.1712-0.16675)squared +...+(0.0051-0.16675)squared/n=0.027351948

SD =square root of variance =0.16538

Step-by-step explanation:

A certain process for manufacturing integrated circuits has been in use for a period of time, and it is known that 12% of the circuits it produces are defective. A new process that is supposed to reduce the proportion of defectives is being tested. In a simple random sample of 100 circuits produced by the new process, 12 were defective. a. One of the engineers suggests that the test proves that the new process is no better than the old process, since the proportion of defectives in the sample is the same. Is this conclusion justified? Explain. b. Assume that there had been only 11 defective circuits in the sample of 100. Would this have proven that the new process is better? Explain. c. Which outcome represents stronger evidence that the new process is better: finding 11 defective circuits in the sample, or finding 2 defective circuits in the sample?

Answers

Answer:

(a) No the conclusion is not justified.

b. No

c. Two defective circuits in the sample

Step-by-step explanation:

Ans: (a) No the conclusion is not justified. What is important is the percentage population of defectives;

the sample proportion is only an approximation. The population proportion

for the new process may be more than or less than that of the old process.  We can  decide to pick two hundred samples and discover that the number of defects is greater than the previous process

(b)

.For the defectives, the population proportion for the new process may be 0.12 or more,

although the sample of defectives is just 11 out of 100

(c) Two defective circuits in the sample. This is because the probability of having two defects from the 100n samples is less than having 11 defects

Final answer:

a. The engineer's conclusion is not justified. A hypothesis test is needed to compare the proportions. b. Finding 11 defective circuits would not prove the new process is better. c. Finding 2 defective circuits represents stronger evidence that the new process is better.

Explanation:

a. The engineer's conclusion is not justified. To determine if the new process is better, we need to perform a hypothesis test. We can compare the proportion of defectives in the sample to the proportion of defectives in the known population for the old process using a hypothesis test for a proportion. If the p-value is small (less than the chosen significance level), we can reject the null hypothesis and conclude that the new process is better.

b. No, finding 11 defective circuits in the sample would not prove that the new process is better. We still need to perform a hypothesis test as mentioned in part a. If the p-value is small (less than the chosen significance level), we can reject the null hypothesis and conclude that the new process is better.

c. Finding 2 defective circuits in the sample represents stronger evidence that the new process is better. A smaller proportion of defectives in the sample suggests that the new process is more effective at reducing defects.

Learn more about Hypothesis Testing here:

https://brainly.com/question/34171008

#SPJ3

4-It has been a bad day for the market, with 70% of securities losing value. You are evaluating a portfolio of 20 securities and will assume a binomial distribution for the number of securities that lost value.

a- What assumptions are made when using this distribution.

b- Find the probability that all 20 securities lose value.

c- Find the probability that at least 15 of them lose value.

d- Find the probability that less than 5 of them gain value.

Answers

a) When using the binomial distribution for the number of securities that lost value, the following assumptions are made.

b) The probability that all 20 securities lose value is approximately \(0.0008\).

c) The probability that at least 15 of them lose value is the sum of the probabilities of having 15, 16, 17, 18, 19, or 20 securities losing value.

d) Probability that less than 5 of them gain value: Approximately 0.995872.

a) When using the binomial distribution for the number of securities that lost value, the following assumptions are made:

1. Each security in the portfolio has a fixed probability of losing value.

2. The outcomes of different securities are independent of each other.

3. There are only two possible outcomes for each security: it either loses value or it doesn't.

4. The probability of losing value remains constant for each security throughout the evaluation.

b) The probability that all 20 securities lose value can be calculated using the binomial probability formula:

[tex]\[ P(X = 20) = \binom{20}{20} \times 0.7^{20} \times (1 - 0.7)^0 \]\[ P(X = 20) = 1 \times 0.7^{20} \times 1 \]\[ P(X = 20) \approx 0.0008 \][/tex]

c) To find the probability that at least 15 of them lose value, we calculate the cumulative probability from 15 to 20:

[tex]\[ P(X \geq 15) = P(X = 15) + P(X = 16) + P(X = 17) + P(X = 18) + P(X = 19) + P(X = 20) \]\[ P(X \geq 15) \approx 0.9570 \][/tex]

d) Probability that Less Than 5 of Them Gain Value:

Replace k with the desired number and calculate the probabilities for X < k using the binomial probability formula.

For X < 5:

P(X < 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)

P(X < 5) ≈ 0.995872

In a two-tailed 2-sample z-test you find a P-Value of 0.0278. At what level of significance would you choose to reject the null hypothesis?

Answers

Answer:

5% or 0.05

Step-by-step explanation:

The null hypothesis will be rejected if p-value is less than significance level.

The null hypothesis can be rejected on 5% and 10% level of significance, but 5% level of significance is a suitable choice because when the 5% significance level is used the confidence level is 95% where as in case of 10% the confidence level is 90%. In short, the significance level indicates the probability of rejection of null hypothesis when the null hypothesis is true and the lesser probability of taking that risk will be better.

So, the scenario indicates the suitable significance level as 0.05.

Final answer:

With a P-value of 0.0278 in a two-tailed 2-sample z-test, the null hypothesis would be rejected at the 0.05 level of significance but not at the stricter 0.01 level.

Explanation:

When you find a P-value of 0.0278 in a two-tailed 2-sample z-test, the level of significance at which you would reject the null hypothesis depends on the predetermined alpha (α) level you have set for your test.

Since the P-value is less than the common significance levels of 0.05 and 0.10, you would reject the null hypothesis at these levels.

However, if your significance level was set at 0.01, which is stricter, you would not reject the null hypothesis because 0.0278 is greater than 0.01.

In summary, you would reject the null hypothesis at the 0.05 level of significance but not at the 0.01 level, given the P-value of 0.0278.

On a 60 point written assignment, the 80th percentile for the number of points earned was 49. Interpret the 80th percentile in the context of this situation.

Answers

Answer:

In 80% of the tests the number of points scored was less than 49 and in 20% of the tests the number of points scored was higher than 49.

Step-by-step explanation:

When a value V is said to be in the xth percentile of a set, x% of the values in the set are lower than V and (100-x)% of the values in the set are higher than V.

On a 60 point written assignment, the 80th percentile for the number of points earned was 49. Interpret the 80th percentile in the context of this situation.

The interpretation is that in 80% of the tests the number of points scored was less than 49 and in 20% of the tests the number of points scored was higher than 49.

Final answer:

The 80th percentile indicates a student scored higher than 80 percent of peers, with a score of 49 out of 60 on the assignment.

Explanation:

The 80th percentile for a 60-point written assignment, where the score was 49, means that 80 percent of the students earned 49 points or less on the assignment. Conversely, it also means that 20 percent of the students earned more than 49 points. Therefore, a student who scored 49 points on this assignment performed better than 80 percent of their peers.

World grain production was 1241 million tons in 1975 and 2048 million tons in 2005, and has been increasing at an approximately constant rate.

Answers

Answer:

The equation of line is [tex]P(t)=26.9t+1241[/tex]

Step-by-step explanation:

Consider the provided information.

World grain production was 1241 million tons in 1975 and 2048 million tons in 2005,

We need to find the linear function.

The difference of the year is: 2005-1975=30

The function represents the world grain production at time t years after 1975, Thus, the first points is (0,1241) and the second points is (30,2048)

Find the slope of the line by using the formula: [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Substitute the respective values in the above formula.

[tex]m=\dfrac{2048-1241}{30-0}\\\\m=\dfrac{807}{30}\\\\m=26.9[/tex]

The slope of the linear function is 26.9

The slope intercept form is: [tex]y=mx+b[/tex]

Where b is the y intercept. y intercept is a point where the value of x is 0.

Therefore y intercept of the linear function is 1241 because the first points is (0,1241).

Hence, the equation of line is [tex]P(t)=26.9t+1241[/tex]

Final answer:

Given the data, the approximated rate of increase in world grain production from 1975 to 2005 is about 32.28 million tons per year. Increases might be driven by population growth and rising food demands. Future food supply forecasts point to significant increases by 2050.

Explanation:

The subject of your question appears to be related to linear growth over time, specifically in the context of world grain production. Given the data provided, we can calculate the approximate rate of increase in grain production by taking the difference in amounts (2048 million tons in 2005 minus 1241 million tons in 1975) and divide it by the difference in years (2005 minus 1975). This calculation results in approximately 32.28 million tons increase per year.

It's also noteworthy to consider that grain production increases might be driven by the increasing global population and rising food demands. Additionally, future projections for food supply such as milk and meat production, estimated to face significant increases by 2050, might also apply to grain production, further emphasizing the importance of understanding and managing these growth rates for global food security.

Learn more about Grain Production here:

https://brainly.com/question/32966005

#SPJ3

What is the forecast for this year using exponential smoothing with trend if alpha=0.5 and alpha=0.3?

Assume the forecast for last year was 21,000 and the forecast for two years ago was 19,000, and that the trend estimate for last years forecast was 1,500.

a)18,750

b)19,500

c)21,000

d)22,650

e)22,800

Answers

Answer:

i.  the forecast for this year using alpha = 0.5 is 11250

ii.   using alpha = 0.3 is 7350

Step-by-step explanation:

using exponential smoothing,the formula is given as: F(t+1) =αAt + (1-α)Ft, where F(t+1) is the new forecast or required forecast, α is the alpha, At is the each date or observation and Ft is the current trend.

i. using alpha= 0.5, the year forecast = (0.5 x 21000) + (1-0.5) x 1500 = 11250

ii. using alpha = 0.3,the year forecast = (0.3 x 21000) + (1-0.3) x 1500 = 7350.

this year forecast using alpha = 0.5 and 0.3 are 11250 and 7350 respectively

Find the intersection of the line through (0, 1) and (4.3, 2) and the line through (2.1, 3) and (5.3, 0).

Answers

Answer: The intersection of the line through (0, 1) and (4.3, 2) and the line through (2.1, 3) and (5.3, 0) is (3.392, 1.789).

Step-by-step explanation:

We know that the equation of a line that passes through two points (a,b) and (c,d) is given by :-

[tex](y-b)=\dfrac{d-b}{c-a}(x-a)[/tex]

Similarly , the equation of line that passes through (0, 1) and (4.3, 2)  would  be:

[tex](y-1)=\dfrac{2-1}{4.3-0}(x-0)[/tex]

[tex](y-1)=\dfrac{1}{4.3-}(x)[/tex]

[tex]4.3(y-1)=x[/tex]

[tex]4.3y-4.3=x-----(1)[/tex]

Equation of line that passes through (2.1, 3) and (5.3, 0) would  be:

[tex](y-0)=\dfrac{3-0}{2.1-5.3}(x-5.3)[/tex]

[tex]y=\dfrac{3(x-5.3)}{-3.2}-----(2)[/tex]

To find the intersection point (x,y) , we substitute the value of y from (2)in (1) , we get

[tex]4.3(\dfrac{3(x-5.3)}{-3.2})-4.3=x[/tex]

[tex]-4.03125(x-5.3)-4.3=x[/tex]

[tex]-4.03125x+21.365625-4.3=x[/tex]

[tex]-4.03125x+17.065625=x[/tex]

[tex]x+4.03125x=17.065625[/tex]

[tex]5.03125x=17.065625[/tex]

[tex]x=\dfrac{17.065625}{5.03125}\approx3.392[/tex]

Put value of x in (2) , we get

[tex]y=\dfrac{3(3.392-5.3)}{-3.2}[/tex]

[tex]y=\dfrac{3(-1.908)}{-3.2}\approx1.789[/tex]

Hence, the intersection of the line through (0, 1) and (4.3, 2) and the line through (2.1, 3) and (5.3, 0) is (3.392, 1.789).

Final answer:

This solution involves finding the equations of the two lines using the slope and y-intercept, setting the equations equal to each other to find the x-coordinate of the intersection, and substituting the x-value into one of the equations to find the corresponding y-coordinate of the intersection.

Explanation:

To find the intersection of the two lines, first we need to find the equations of these lines. We can use the formula y = mx + c, where m is the slope and c is the y-intercept.

For the line passing through (0, 1) and (4.3, 2), we find the slope (m) first: m = (2-1) / (4.3-0) = 1/4.3. The line passes through the y-axis at (0,1), so c = 1. Thus, the equation is y = (1/4.3)x + 1.

For the line passing through (2.1, 3) and (5.3, 0), the slope m = (0-3) / (5.3-2.1) = -3/3.2. This line does not pass through the y-axis, so c is not 0. Substituting one of the points into the equation y = mx + c, we can find c: 3 = -3/3.2*2.1 + c, yields c = 3.984375. So, the equation is y = -3/3.2*x + 3.984375.

Now, we set these two equations equal to each other and solve for x: (1/4.3)x + 1 = -3/3.2*x + 3.984375. This will yield the x-coordinate of the intersection. Substitute the x-coordinate into any of the line equations to get the y-coordinate. These coordinates give us the intersection point of the two lines.

Learn more about Intersection of Lines here:

https://brainly.com/question/32797114

#SPJ3

when selcting from a set of 10 distinct integersif sampling is done with replacement, how many samples of 5 are possible

Answers

Answer:

10⁵ = 100,000

Step-by-step explanation:

Data provided in the question:

Number of available choices = 10

for the sample of 5 i.e n = 5

Repetition is allowed

Thus,

Total samples of 5 that are possible = ( Number of available choices )ⁿ

thus,

Total samples of 5 that are possible = 10⁵

Hence,

The Total samples of 5 that are possible = 100,000

Other Questions
The general strategy for solving an equation of the form x/a = b is toOA. divide both sides by bOB. multiply both sides by aOc. multiply both sides by bD. divide both sides by aE. divide both sides by x As a pharmaceutical firm researching and developing new pharmaceuticals, what type of conflict do you think is most common at GlaxoSmithKline? Dawson and Emily go to the same high school. Emily is very attractive and outgoing. On seeing her, Dawson assumes that she is also smart and popular. In this scenario, Dawsons assumption is an example of _____. Coyne Corporation is evaluating a capital investment opportunity. This project would require an initial investment of $30,000 to purchase equipment. The equipment will have a residual value at the end of its life of $2,000. The useful life of the equipment is 4 years. The new project is expected to generate additional net cash inflows of S24 000 per year for each of the four years. o nes required rate of return is 14% The net present value of this project is closest to: EEB (Click the icon to view the present value of $1 table.) EEB (Click the icon to view the present value of annuity of $1 table.) A. $41,120. B. $39,936 C. $53,360. D. $20,450 The human reproductive systemA) is as essential to the survival of an individual as all other anatomic systems.B) remains functional throughout the life of an individual.C) ensures the continued existence of the human species.D) stores but does not produce gametes.E) None of the answers are correct. One of the basic facts of life is that people must make choices as they try to attain their goals. This unavoidable fact comes from a reality an economist calls. Which equation has the same solution as x26x14=0 Kim Jones works for an hourly rate of 7.50. This week kim worked 39 hours. What is Kims gross pay for this week? A state of mental balance in which people are not confused because they can use their existing thought processes to understand current experiences and ideas is called _________. hcl A solution of sodium thiosulfate (Na2S2O3) in water is 12.00 % sodium thiosulfate by mass. Its density is 1.1003 g cm-3 at 20 C. Compute its molarity, mole fraction, and molality at this temperature. What are some early pregnancy symptoms? You have found a new organism and need to classify it. It has no nucleus and was found living several feet below in an ice sample. This organism would most likely be classified as:_________. One inch of rain on a square foot of land weights 5.2 pounds. About how many ghallons of rain are there? round your answer to the nearest tenth A college bookstore marks up the price that it pays the publisher for a book by 40 %. If the selling price of a book is $ 81.00 comma how much did the bookstore pay for this book? MARKING BRAINLIST | What is the value of y? Help!!!!!!!!!!!!!!!! How would you describe the first meeting betweenColumbus and the American Indians ofHispaniola, as shown in this quote?Answer: friendly Kyle swan 450 yards in 5 minutes. What is the average number of yards he swam per minute? What is the volume of the figure below? _________ is the jellylike solution within a cell that contains everything between the nucleus and the plasma membrane. Steam Workshop Downloader