In a reaction vessel, 17.6 g of solid chromium(III) oxide, Cr2O3, was allowed to react with excess carbon tetrachloride in the following reaction.
Cr2O3(s) + 3 CCl4(l) → 2 CrCl3(s) + 3 COCl2(aq)
Determine the percent yield of the reaction, given that the actual yield of chromium chloride, CrCl3, was 26.6 g. (The molar mass of Cr2O3 is 152.00 g/mol and the molar mass of CrCl3 is 158.35 g/mol.)

Answers

Answer 1

Answer:

72.53% is the yield of CrCl3

Explanation:

Given

Reaction:

Cr2O3(s) + 3 CCl4(l) → 2 CrCl3(s) + 3 COCl2(aq)

CCl4 is in excess and 17.6g  Cr2O3 present

The reaction yields 26.6g of CrCl3

To Find:

% yields of the reaction

Also given

Molar mass of CrCl3 = 158.35g/mol

Molar mass of Cr2O3 = 152.00 g/mol

By the stoichiometry of the reaction

1 mole of Cr2O3 gives  2 moles of CrCl3

0r

1 x1 52 g of Cr2O3 gives 2x 158.35 g of CrCl3

= 1 52 g of Cr2O3 gives 316.70 g of CrCl3

    17.6 g of Cr2O3 gives  (17.6÷152) × 316.70 g CrCl3

= 36.67 g CrCl3

but actual yield is only 26.6g

so % yield is (26.6 ÷÷ 36.67) × 100

= 72.53% is the yield of CrCl3

Answer 2

Final answer:

To calculate the percent yield, the number of moles of chromium(III) oxide used was first determined, which was then used to find the theoretical yield of chromium chloride. The actual yield of chromium chloride is compared to this theoretical yield to find that the percent yield of the reaction is approximately 72.48%.

Explanation:

The student asked to calculate the percent yield of a chemical reaction involving chromium(III) oxide (Cr2O3) and carbon tetrachloride (CCl4). To find the percent yield, we need to compare the actual yield to the theoretical yield. First, we calculate the number of moles of Cr2O3 that react. With a molar mass of 152.00 g/mol, 17.6 g of Cr2O3 is equivalent to 0.1158 moles. According to the stoichiometry of the balanced equation, 1 mole of Cr2O3 produces 2 moles of CrCl3, which suggests that 0.1158 moles of Cr2O3 would yield 0.2316 moles of CrCl3. Using the molar mass of CrCl3 (158.35 g/mol), the theoretical yield of CrCl3 can be found as 0.2316 moles × 158.35 g/mol = 36.7 g.

Now, we calculate the percent yield using the actual yield (26.6 g) and the theoretical yield (36.7 g).

Percent Yield = (Actual Yield / Theoretical Yield) × 100 = (26.6 g / 36.7 g) × 100 ≈ 72.48%

Therefore, the percent yield of chromium chloride in the reaction is approximately 72.48%.


Related Questions

Methane gas is produced from the reaction of solid carbon and hydrogen gas: C(s)+2H2(g)→CH4(g) . How many liters of hydrogen gas at standard temperature and pressure (STP) are required to produce 40 liters of methane?

Answers

Answer:

80 liters

Explanation:

At STP, 1 mole of ideal gas has a volume of 22.4 liters.

Therefore, since liters and moles are directly proportional, we can use stoichiometry directly.

40L CH₄ × (2L H₂ / 1L CH₄) = 80L H₂

A 50/50 blend of engine coolant and water (by volume) is usually used in an automobile's engine cooling system. If a car's cooling system holds 4.90 gal, what is the boiling point of the solution?

Answers

Answer:

108.25 ºC

Explanation:

The boiling point elevation for a given solute in water is given by the expression:

ΔTb = i Kbm

where ΔTb is the boiling point elevation

           i is the van´t Hoff factor

           Kb the boiling constant which for water is 0.512 ºC/molal

           m is the molality of the solution

The molality of the solution is the number of moles per kilogram of solvent. Here we run into a problem since we are not given the identity of the coolant, but a search in the literature tells you that the most typical are ethylene glycol and propylene glycol. The most common is ethylene glycol and this it the one we will using in this question.

Now the i factor in the equation above is 1 for non ionizable compounds such as ethylene glycol.

Our equation is then:

ΔTb =  Kbm

So lets calculate the molality and then ΔTb:

m = moles ethylene glycol / Kg solvent

Converting gal to L

4.90 g x 3.785 L/gal = 18.55 L

in a 50/50 blend by volume we have 9.27 L of ethylene glycol, and 9.27 L of water.

We need to convert this 9.27 l of ethylene glycol to grams assuming a solution density of 1 g/cm³

9.27 L x 1000 cm³ / L = 9273.25 cm³

mass ethylene glycol = 9273.25 cm³ x 1 g/cm³ = 9273.25 g

mol ethylene glycol = 9273.25 g/ M.W ethylene glycol

                                 = 9273.25 g / 62.07 g/mol =149.4mol

molality solution =  149.4 mol / 9.27 Kg H₂O = 16.12 m

( density of water 1 kg/L )

Finally we can calculate ΔTb:

ΔTb =  Kbm = 0.512  ºC/molal x 16.12 molal = 8.25 ºC

boiling point = 100 º C +8.25 ºC = 108.25 ºC

( You could try to solve for propylene glycol the other popular coolant which should give around 106.7 ºC )

Compared to the atomic radius of a sodium atom, the atomic radius of a potassium atom is larger. The larger radius is primarily a result of the potassium atom having:______________.

Answers

Final answer:

The larger atomic radius of potassium, as compared to sodium, is due to the increase in the principal quantum number, n, as you move down a group in the periodic table. This denotes an increase in electron shells, which increases the atomic radius. A less effective nuclear charge on more distant electrons also contributes to the larger size.

Explanation:

Compared to sodium, the atomic radius of a potassium atom is larger primarily because of the increase in the principal quantum number, n, which leads to larger radii. Potassium, like other elements in its group, has more electron shells than sodium, which causes its size to be larger.

As one moves down the groups in the periodic table, the number of electron shells increases. This means that the principal quantum number (n), which denotes the electron shell number (energy level), increases. As a result, the atomic radius also increases. In the case of potassium and sodium, Potassium is placed below Sodium on the periodic table, thus it has a higher principal quantum number, i.e., more electron shells, which increases the atomic radius.

This phenomenon can also be explained using the concept of effective nuclear charge. This refers to the pull exerted by the nucleus on the outermost electrons. As you move down a group, more shells of electrons are being added and hence the outermost electrons are not as strongly pulled by the nucleus, thus increasing the atomic radius.

Learn more about Atomic Radii here:

https://brainly.com/question/3588338

#SPJ11

Which of the following is NOT possible? a. compressing 10 liters of oxygen gas into a 1-liter volume b. compressing 2 liters of water into a 1-liter volume c. filling a balloon using helium gas from a pressurized tank d. allowing 5 liters of compressed air to expand to a volume of 100 liters

Answers

Answer:b

Explanation:

Answer: B. Compressing 2 liters of water into a 1 liter volume.

Explanation: Liquids have little compressibility as compared to gases. Their molecules are quite near each other compared to gases which far apart. When liquids are compressed up to their capacity it will begin to resist. But gases have higher compressibility rate than liquids.

PLEASE SHOW YOUR WORK!!
6. Using the following equation: 2 NaOHH2SO4 --> 2 H2O+Na2SO4
How many grams of sodium sulfate will be formed if you start with 200 grams of sodium hydroxide and you have an excess of sulfuric acid?

7. Using the following equation: Pb(SO4)2+4 LiNO3 --> Pb(NO3)4+2 LiSO4
How many grams of lithium nitrate will be needed to make 250 grams of lithium sulfate, assuming that you have an adequate amount of lead (IV) sulfate to do the reaction?

Answers

Answer:

6. 355.1 g of Na₂SO₄ can be formed.

7. 313 g of LiNO₃ were needed

Explanation:

Excersise 6.

The reaction is:  2 NaOH + H₂SO₄ --> 2 H₂O + Na₂SO₄

2 moles of sodium hydroxide react with 1 mol of sulfuric acid to produce 2 moles of water and 1 mol of sodium sulfate.

If we were noticed that the acid is in excess, we assume the NaOH as the limiting reactant. Let's convert the mass to moles (mass / molar mass)

200 g / 40 g/mol = 5 moles.

Now we apply a rule of three with the ratio in the reaction, 2:1

2 moles of NaOH produce 1 mol of sodium sulfate.

5 moles of NaOH would produce (5 .1)/2 = 2.5 moles

Let's convert these moles to mass (mol . molar mass)

2.5 mol . 142.06 g/mol = 355.1 g

Excersise 7.

The reaction is:

Pb(SO₄)₂+ 4 LiNO₃ → Pb(NO₃)₄  +  2Li₂SO₄

As we assume that we have an adequate amount of lead (IV) sulfate, the limiting reactant is the lithium nitrate.

Let's convert the mass to moles (mass / molar mass)

250 g / 109.94 g/mol = 2.27 moles

Let's make a rule of three. Ratio is 2:4.

2 moles of lithium sulfate were produced by 4 moles of lithium nitrate

2.27 moles of Li₂SO₄ would have been produced by ( 2.27 .4) / 2 = 4.54 moles.

Let's convert these moles to mass (mol . molar mass)

4.54 mol . 68.94 g/mol = 313 g

Many classic experiments have given us indirect evidence of the nature of the atom. Which of the experiments listed below did not give the results described?

A. The Rutherford experiment proved the Thomson "plum-pudding" model of the atom to be essentially correct.
B. The Rutherford experiment was useful in determining the nuclear charge on the atom.
C. Millikan's oil-drop experiment showed that the charge on any particle was a simple multiple of the charge on the electron.
D. The electric discharge tube proved that electrons have a negative charge.
E. All of the above experiments gave the results described.

Answers

Answer:

Option A, The Rutherford experiment proved the Thomson "plum-pudding" model of the atom to be essentially correct.

Explanation:

Thomson's plum pudding model:

Plum pudding model was proposed by J.J Thomson. In Thomson's model, atoms are proposed as sea of positively charge in which electrons are distributed through out.

Result of Rutherford experiment:

As per Rutherford's experiment:

Most of the space inside the atom is empty.

Positively charge of the atom are concentrated in the centre of the atom known as nucleus.

Electrons are present outside the nucleus and revolve around it.

As it is clear that, result of Rutherford experiment did not supported the Thomson model.

Final answer:

The Rutherford experiment did not prove the Thomson 'plum-pudding' model of the atom to be essentially correct. Instead, it disproved this model by showing that atoms have a small, dense, positively charged nucleus.

Explanation:

The statement 'The Rutherford experiment proved the Thomson 'plum-pudding' model of the atom to be essentially correct.' (option A) is not accurate. In fact, the Rutherford experiment disproved the Thomson 'plum-pudding' model of the atom. Rutherford's experiment revealed that atoms have a small, dense, positively charged nucleus, contradicting Thomson's model which proposed that positive charge was spread evenly throughout the atom. All other listed experiments (options B, C, and D) did indeed provide the results described.

Learn more about Rutherford experiment here:

https://brainly.com/question/14996029

#SPJ3

NEED HELP A 25.0 mL solution of nitric acid (HNO3) with an unknown concentration is titrated with 12.5 mL of a 1.0x10-4 M solution of lithium hydroxide (LiOH). Calculate the molar concentration of the HNO3.

3.80x10-10 M HNO3

5.00x10-5 M HNO3

2.80x10-3 M HNO3

2.30x10-5 M HNO3

2.50x10-5 M HNO3

Answers

Final answer:

To calculate the molar concentration of HNO3 in the solution, use the balanced chemical equation to determine the mole ratio and then calculate the moles of HNO3 used. Finally, divide the moles of HNO3 by the volume of the solution to get its molar concentration.

Explanation:

To calculate the molar concentration of HNO3, we first need to use the balanced chemical equation to determine the mole ratio between HNO3 and LiOH. The balanced equation is 2HNO3 + 2LiOH → 2LiNO3 + H2O. From the equation, we can see that 2 moles of HNO3 react with 2 moles of LiOH. Since we know the molar concentration of LiOH and the volume used, we can calculate the moles of LiOH used: (12.5 mL)(1.0x10^-4 M) = 0.00125 moles of LiOH. Since the mole ratio is 1:2, the moles of HNO3 used would be half of that, which is 0.000625 moles of HNO3. Now, we can use the volume of the HNO3 solution to calculate its molar concentration:



Molar concentration of HNO3 = (0.000625 moles) / (25.0 mL) = 0.025 M HNO3

Final answer:

The molar concentration of HNO3 is 5.00x10-5 M.

Explanation:

To calculate the molar concentration of HNO3, we first need to determine the number of moles of LiOH used in the titration. The molarity of the LiOH solution is given as 1.0x10-4 M, and the volume used is 12.5 mL (0.0125 L).

moles of LiOH = Molarity x Volume = (1.0x10-4 M) x (0.0125 L) = 1.25x10-6 mol

Since the balanced chemical equation shows a 1:1 ratio between LiOH and HNO3, the number of moles of HNO3 is also 1.25x10-6 mol.

To find the molar concentration of HNO3, we use the volume of the HNO3 solution, which is 25.0 mL (0.025 L).

Molarity of HNO3 = moles of HNO3 / Volume = (1.25x10-6 mol) / (0.025 L) = 5.00x10-5 M HNO3

What type of chemical bond joins a functional group to the carbon skeleton of a large molecule?

Answers

Answer:

Covalent bond

Explanation:

Functional groups can be defined as a group of atoms or ions responsible for the properties particular to a certain group of organic compounds. What we are saying in essence is that it is the functional groups that decides the behavior of the organic compound in question.

Covalent linkages are the mechanism through which these functional groups are linked to the carbon skeleton of the compound to which they belong. Covalent bonding is a type of chemical bonding which in there is sharing of electrons between atoms

Covalent bond

Aliphatic hydrocarbons are divided into three main groups according to the types of bonds they contain: alkanes, alkenes, and alkynes. Alkanes have only single bonds, alkenes contain a carbon-carbon double bond, and alkynes contain a carbon-carbon triple bond.A covalent bond is a chemical bond that involves the sharing of electron pairs between atoms. Carbon skeletons are the backbones of organic molecules. They are composed of carbon-carbon atoms that form chains to make an organic compound.

Learn more:

brainly.com/question/14237231

Which of the following precautions is important when using a Bunsen burner or Meker burner?a. Set up your work space so that wires and cables cannot accidentally make contact with the flame or hot glassware and meltb. Set up your work space with the burner in a secure location away from the edge of the benchc. Set up the work space so that flammable materials are away from the burnerd. Never leave an open flame unattendede. Remember that any glassware heated by the burner will look the same when hot as cold, and it will take a while to coolf. Always tie back hair

Answers

Answer:

Never leave an open flame unattended

Explanation: if an open flame is left unattended it can cause a fire outbreak so we have to watch it at all times to prevent the fire outbreak

A sample of TNT, C7H5N3O6 , has 8.94 × 1021 nitrogen atoms. How many hydrogen atoms are there in this sample of TNT?

Answers

Answer:

1.49×10²² atoms of H are contained in the sample

Explanation:

TNT → C₇H₅N₃O₆

1 mol of this has 7 moles of C, 5 moles of H, 3 moles of N and 6 moles of O

Let's determine the mass of TNT.

Molar mass is = 227 g/mol

As 1 mol has (6.02×10²³) NA atoms, how many moles are 8.94×10²¹ atoms.

8.94×10²¹ atoms / NA = 0.0148 moles

So this would be the rule of three to determine the mass of TNT

3 moles of N are in 227 g of compound

0.0148 moles of N are contained in (0.0148 .227) / 3 = 1.12 g

Now we can work with the hydrogen.

227 grams of TNT contain 5 moles of H

1.12 grams of TNT would contain (1.12 .5) / 227 = 0.0247 moles

Finally let's convert this moles to atoms:

0.0247 mol . 6.02×10²³ atoms / 1 mol = 1.49×10²² atoms

The number of Hydrogen atoms in the TNT is 1.51×10²² atoms.

We'll begin by calculating the number of mole of nitrogen that contains 8.94×10²¹ atoms of nitrogen.

From Avogadro's hypothesis,

6.02×10²³ atoms = 1 mole of N

Therefore,

8.94×10²¹ atoms = 8.94×10²¹ / 6.02×10²³  

8.94×10²¹ atoms = 0.015 mole of N

Next, we shall determine the number of mole of TNT (C₇H₅N₃O₆) that contains 0.015 mole of N

3 moles of N are present in 1 mole of TNT (C₇H₅N₃O₆).

Therefore,

0.015 mole of N will be present in = 0.015 / 3 = 0.005 mole of TNT (C₇H₅N₃O₆).

Next, we shall determine the number of mole of H in 0.005 mole of TNT (C₇H₅N₃O₆).

1 mole of TNT (C₇H₅N₃O₆) contains 5 moles of H.

Therefore,

0.005 mole of TNT (C₇H₅N₃O₆) will contain = 0.005 × 5 = 0.025 mole of H

Finally, we shall determine the number of atoms in 0.025 mole of H.

From Avogadro's hypothesis,

1 mole of H = 6.02×10²³ atoms

Therefore,

0.025 mole of H = 0.025 × 6.02×10²³

0.025 mole of H = 1.51×10²² atoms.

Thus, the number of atoms of Hydrogen in the sample of the TNT is 1.51×10²² atoms.

Learn more about Avogadro's number:

https://brainly.com/question/21050442

Find the total number of atoms in a sample of cocaine hydrochloride, C17H22CINO4 of mass 23.0 mg

Answers

Answer:

The answer to your question is 4.07 x 10²² atoms

Explanation:

Process

1.- Get the molecular weight of Cocaine hydrochloride

C = 12 x 17 = 204 g

H = 22 x 1 = 22 g

Cl = 36 x 1 = 36 g

N = 14 x 1 = 14 g

O = 16 x 4 = 64 g

Molecular mass = 340 g

2.- Calculate the moles of the mass given

                             340 g -------------------  1 mol

                               23 g -------------------  x

                              x = (23 x 1) / 340

                              x = 0.068 moles of Cocaine

3.- Calculate the atoms

                            1 mol -------------------- 6 .023 x 10 ²³ atoms

                   0.068 moles -------------  x

                              x = (0.068 x 6.023 x 10²³) / 1

                              x = 4.07 x 10²² atoms

At pressures greater than 60,000 [tex]k_{Pa}[/tex], how does the volume of a real gas compare with the volume of an ideal gas under the same conditions?
A. It is much greater.
B. It is much less.
C. There is no difference.
D. It depends on the type of gas.

Answers

Answer: option A. It is much greater

Explanation:


Identify the true statements about colloids.

a.) Emulsions are a type of colloid
b.) The particals of a colloid are larger than the particles of a solution
c.) The particles of a colloid will settle over time
d.) Many colloids scatter light (tyndal effect)

Answers

Answer : The true statements are:

(a) Emulsions are a type of colloid

(b) The particles of a colloid are larger than the particles of a solution

(d) Many colloids scatter light (tyndal effect)

Explanation :

Colloid : It is defined as the solution in which the one substance is insoluble in another solution that means the insoluble substance rotating in the solution.

The particles of a colloid are larger than the particles of a solution.

Colloid do not separate on standing.

Cannot be separated by filtration.

Scatter light (Tyndall effect).

For example :

Milk is considered as a colloid because various substances (fats, proteins etc..) are present in milk which are suspended in a solution.

Suspension : It is a heterogeneous mixture in which some of the particles are settle down in the mixture on standing or over time.

The particles in a suspension are far larger than those of a solution.

Emulsion : It is a mixture of two or more liquids that are normally immiscible.

Emulsions are a type of colloid.

The noble gases are inert. This means they a. exist as gases at room temperature. b. undergo many chemical reactions. c. lose and gain electrons easily. d. undergo very few chemical reactions.

Answers

Final answer:

The noble gases undergo very few chemical reactions. They are stable and unreactive due to their full valence electron shells.

Explanation:

The noble gases d. undergo very few chemical reactions. The noble gases, such as helium, neon, and argon, are characterized by their high stability and low reactivity. They have full valence electron shells, which makes them unreactive and unlikely to form compounds with other elements. Because of their stable electron configurations, noble gases do not readily lose or gain electrons, meaning they do not undergo many chemical reactions.

Learn more about Chemistry here:

https://brainly.com/question/36629312

#SPJ6

Final answer:

Noble gases are elements that are chemically very stable and undergo very few chemical reactions due to their complete outer electron shell. They do not easily give or accept electrons, thereby making them generally nonreactive. However, under extreme conditions, some noble gases like xenon can form compounds.

Explanation:

The noble gases are elements in group 18 of the periodic table including helium, neon, argon, krypton, xenon, and radon. They're named 'noble' due to their unique characteristics of being largely inert, or unreactive. Their outer electron shell is completely filled, which makes them high in ionization energy and resistant to forming compounds under normal conditions. This means that they do not readily give or accept electrons - hence they are chemically very stable, or in other words, they undergo very few chemical reactions.

However, there are a few exceptions to the rule. For example, under high pressure and temperature conditions, some noble gases like xenon can be forced to create compounds such as xenon hexafluoride (XeF6).

Despite their general chemical inactivity, noble gases have various practical applications. They are used in neon signs, as inert atmospheres in certain industrial processes, and as coolants due to their low boiling and melting points compared to other substances of similar atomic or molecular masses.

Learn more about Noble Gases here:

https://brainly.com/question/11764545

#SPJ3

What is the molality of a solution made up of 43.6 mol of CACI₂ dissolved in 13.5 kg of water? Please Show work

Answers

Answer:

The answer to your question is m = 3.2

Explanation:

Molality is defined as the number of moles of a solute dissolved in a mass of solvent (kg).

Data

moles of solute = 43.6

mass of solvent = 13.5 kg

Formula

Molality = [tex]\frac{number of moles}{Kg of solvent}[/tex]

Substitution

Molality = [tex]\frac{43.6}{13.5}[/tex]

Simplification and result

Molality = 3.2

A hydrogen atom in an excited state emits a photon of frequency ν = 3.084 x 1015 s-1. If the electron returns to the ground state, in which level was it before the photon was emitted?

Answers

The Rydberg formula can calculate the wavelengths of light emitted by hydrogen atoms. However, with some modifications, it can also be used to calculate the wavelengths of light emitted by atoms of other elements. Hence, the initial energy level is n = 3

Rydberg equation:

1/λ = f/c = R(1/m² - 1/n²)

where c is the speed of light, f is frequency, λ is the wavelength, R is Rydberg constant, and n and m are the quantum numbers of the energy levels.

The initial energy level has quantum number n.

The final energy level is a ground state with the quantum number m = 1.

2.924 x 1015/2.998 x 108 = 1.097 x 107 x (1/12 - 1/n²)

(1/12 - 1/n²) = 0.8891

1/n² = 0.1109

=> n²

= 9

=> n = 3

Thus, the initial energy level is n = 3

To know more about the Rydberg formula:

https://brainly.com/question/34014380

#SPJ12

Final answer:

The electron in the hydrogen atom was in the 9th energy level (n = 9) before emitting the photon.

Explanation:

When a hydrogen atom transitions from an excited state to the ground state, it emits a photon with a certain frequency. In this case, the frequency is given as ν = 3.084 x 10^15 s^-1. We can use the equation ν = E/h, where E is the energy of the photon and h is Planck's constant, to find the energy of the emitted photon. Once we have the energy, we can determine the energy level the electron was in before the photon was emitted.

Using the energy-frequency relationship and Planck's constant, we have:

E = hν = (6.626 x 10^-34 J s)(3.084 x 10^15 s^-1) ≈ 2.041 x 10^-18 J

From this energy, we need to find the corresponding energy level. The energy levels of hydrogen are given by the formula: E = -13.6 eV/n^2, where E is the energy of the level and n is the principal quantum number. Rearranging the formula, we have:

n^2 = -13.6 eV/E ≈ -13.6 eV/(2.041 x 10^-18 J) ≈ -6.662 x 10^17

Taking the square root of both sides, we find:

n ≈ -8.159 x 10^8

Since n must be a positive integer, we can conclude that the electron was in the 9th level (n = 9) before emitting the photon.

When the equation, ___O2 + ___C 2H 6 → ___CO2 + ___H2O is balanced, the coefficient of O2 is: When the equation, ___O2 + ___C 2H 6 ___CO2 + ___H2O is balanced, the coefficient of O2 is:

Answers

Final answer:

To balance the equation C₂H₆ + O₂ → CO₂ + H₂O, we end up with a balanced chemical equation of 2C₂H₆ + 7O₂ → 4CO₂ + 6H₂O, where the coefficient of O₂ is 7.

Explanation:

The question concerns the balancing of a chemical equation involving ethane (C₂H₆) and oxygen (O₂) to produce carbon dioxide (CO₂) and water (H₂O). Balancing chemical equations requires ensuring that the number of atoms of each element is the same on both sides of the equation. Starting with the unbalanced equation C₂H₆ + O₂ → CO₂ + H₂O, we first balance the carbons (C) and hydrogens (H) by adjusting the coefficients of the products. For example, the equation can be balanced by placing a coefficient of 3 before H₂O and 2 before CO₂, resulting in C₂H₆ + O₂ → 2CO₂ + 3H₂O. However, this leads to seven oxygen atoms on the product side. We need an even number of oxygen atoms to balance them with the O₂ reactant, so we use a fractional coefficient of 3.5 (which is 7/2) in front of O₂.

To remove the fractional coefficient, we can multiply all coefficients by 2, resulting in the balanced chemical equation: . Thus, the coefficient of O₂ when the equation is balanced is 7.


Calculate the number of moles of potassium permanganate (KMnO4) corresponding to 230.8 g of the substance.

Answers

Answer:

The answer to your question is 1.46 moles of KMnO₄

Explanation:

Data

number of moles = ?

mass = 230.8 g

molecular mass of KMnO₄ = 39 + 55 + (16 x 4) = 158 g

Process

1.- Use proportions and cross multiplication to answer this problem.

                          158 g of KMnO₄ ----------------  1 mol

                           230.8 g of KMnO₄ -----------    x

                           x = (230.8 x 1) / 158

2.- Simplifying

                           x = 230.8 / 158

3.- Result

                          x = 1.46 moles

A 1.50 g sample of a compound containing only C, H and O was burned in an attempt to determine its simplest formula. 3.00 g of CO2 and 1.23 g of H2O were collected. Find the simplest formula for the compound.

Answers

Explanation:

The mass of carbon and hydrogen is calculated from the mass of their oxides ([tex]CO_{2}[/tex] and [tex]H_{2}O[/tex]) as follows.

    Mass of C = [tex]3.00 g CO_{2} \times \frac{12.01 g C}{44.0 g CO_{2}}[/tex]

                      = 0.818 g C

    Mass of H = [tex]1.23 g CO_{2} \times \frac{2.016 g H}{18.02 g H_{2}O}[/tex]

                      = 0.137 g H

So, the mass of C + mass of H is as follows.

                        0.818 g + 0.137 g = 0.955 g

This mass is actually less than the mass of sample. And, the missing mass must be caused by O. Hence, the mass of O will be calculated as follows.

            Mass of O = 1.50 g - 0.955 g

                              = 0.545 g

Now, we convert masses to moles and find their moles and ratio as follows.

  Element     Mass/g      Moles    Ratio    [tex]\times 2[/tex]     Integers

       C             0.818       0.068       1        2              2

       H             0.137        0.068      1        2               2

       O             0.545       0.0340    0.5   1                1

Thus, we can conclude that simplest formula for the given compound is [tex]C_{2}H_{2}O[/tex].

Answer:

C2H4O (ut quest)

The solubility of barium fluoride in water is 1.32 grams per liter. If a barium fluoride solution had a concentration of 1.32 grams per liter, it would be said to be:________.

Answers

Final answer:

A barium fluoride solution with a concentration of 1.32 grams per liter, equivalent to its solubility, would be considered saturated. This means that no more barium fluoride can be dissolved in the water at the same temperature.

Explanation:

The solubility of barium fluoride in water is 1.32 grams per liter. Therefore, if a barium fluoride solution had a concentration of 1.32 grams per liter, it would be referred to as being saturated. A saturated solution is a solution in which no more solute can be dissolved in the solvent at a given temperature. In this case, the maximum amount of barium fluoride that can be dissolved in water at the given temperature has been reached.

Learn more about Solubility here:

https://brainly.com/question/31493083

#SPJ3

Calculate the amount of water (in grams) that must be added to (a) 5.00 g of urea (NH2)2CO in the preparation of a 16.2 percent by mass solution, and (b) 26.2 g of MgCl2 in the preparation of a 1.5 percent by mass solution.

Answers

Answer:

a. 25.8 g of water

b. 1720.4 g of water

Explanation:

A percent by mass, means the grams of solute in 100 g.  of solution. So, 16.2 g of urea are contained in 100 g of solution.

Then, solute mass + solvent mass = solution mass

16.2 g of urea + solvent mass = 100 g

solvent mass = 100 g - 16.2 g → 83.8 g

Now we can make the rule of three:

16.2 g of urea use 83.8 g of water

then, 5 g of urea would use (5 . 83.8) / 16.2 = 25.8 g of water

b. 1.5 % by mass, means 1.5 g of solute in 100 g of solution.

So water mass, for this solution will be 100 g - 1.5 g = 98.5 g

Now, we apply the rule of three:

1.5 g of solute use 98.5 of water

26.2 g of solute will use (26.2  . 98.5)/1.5 = 1720.4 g

The 5.00 g of urea in the preparation of a 16.2 percent by mass solution need 25.8 gram of water and 26.2 g of magnesium Chloride in the preparation of a 1.5 percent by mass solution needs 1720.4 g of water.

 

Percent by mass solution, means the grams of solute in 100 g. of solution.

(A) So, 16.2 g of urea are contained in 100 g of solution.

So, 83.8 water added to make 16.2 g solution.

Thus, 5 g of urea need

[tex]\bold {\dfrac { (5\times 83.8)} { 16.2} = 25.8 g}[/tex]

 

(B). 1.5 % by mass, means 1.5 g of solute in 100 g of solution.  

So, 98.5 g of water added to prepare 1.5 % solution.      

26.2 g of Magnesium Chloride will use

[tex]\bold {\dfrac {26.2 \times 98.5}{1.5} = 1720.4 g}[/tex]

Therefore, the 5.00 g of urea in the preparation of a 16.2 percent by mass solution need 25.8 gram of water and 26.2 g of magnesium Chloride in the preparation of a 1.5 percent by mass solution needs 1720.4 g of water.

To know more about percent by mass solution.

https://brainly.com/question/15136748

A 31.4−g sample of ethylene glycol, a car radiator coolant, loses 607 J of heat. What was the initial temperature of the ethylene glycol if the final temperature is 32.5°C? (c of ethylene glycol = 2.42 J/g·K

Answers

The initial temperature of the ethylene glycol is equal to 40.5°C.

What is the specific heat capacity?

The specific heat capacity is defined as the amount of heat required to raise the temperature of one unit of material by one degree Celsius. The specific heat capacity of the material depends upon the nature of the material.

The mathematical expression is used to calculate the specific heat is equal to:

[tex]Q = mC \triangle T[/tex]

Given, the mass of the sample of ethylene glycol, m = 31.4 g

The final temperature of the sample, T₂ = 32.5°C = 305.5 K

The specific heat capacity of ethylene glycol, C =  2.42 J/g·K

The heat lost from the sample, Q = - 607 J

The initial temperature of the sample:

- 607 = 31.4 × 2.42 × (305.5 - T₁)

305.5 - T₁ = - 7.988

T₁ = 313.49 K

T₁ = 40.5°C  

Therefore, the initial temperature of the ethylene glycol is 40.5°C.

Learn more about specific heat capacity, here:

https://brainly.com/question/28302909

#SPJ2

Final answer:

The initial temperature of ethylene glycol can be found by rearranging the equation q = mcΔT and dividing the heat lost by the product of the mass and specific heat capacity, considering the known final temperature and that the ethylene glycol is cooling down.

Explanation:

To calculate the initial temperature of ethylene glycol when it loses heat, we can use the equation that relates heat loss to temperature change, q = mcΔT, where q is the heat lost, m is the mass, c is the specific heat capacity of the substance, and ΔT is the change in temperature. Given that ethylene glycol loses 607 J of heat (q), has a mass of 31.4g (m), and a specific heat capacity of 2.42 J/g·°C (c), and the final temperature is 32.5°C, we can rearrange the equation to solve for the initial temperature, T_initial.

The heat lost is negative because the ethylene glycol is cooling down, so we have: -607 J = 31.4g × 2.42 J/g·K × (32.5°C - T_initial). Solving for T_initial we find that the initial temperature of the ethylene glycol is higher than the final temperature of 32.5°C by an amount resultant from dividing the heat lost by the product of the mass and the specific heat capacity.

Barium-142 is used as a GI radiocontrast agent. After 1.25 hours, 9.25 μg remains in the patient. Determine the original dose given the half-life of Ba-142 is 10.6 minutes.

Answers

Answer:

The answer to your question is the original dose of Ba-142 was 1184 μg

Explanation:

Data

Total time = 1.25 hours

The Final amount of Ba = 9.25 μg

The Half-life of Ba = 10.6 minutes

Process

1.- Convert total time to minutes

                      1 h ----------------- 60 min

                       1.25 h ------------ x

                        x = 75 min

2.- Draw a table of this process

                   Final amount of Ba               Time

                           9.25                                 75 min

                           18.5                                  64.4 min

                           37                                     53.8 min

                           74                                     43.2 min

                          148                                     32.6 min

                          296                                    22  min

                          592                                    11.4 min

                         1184                                      0.8 min        

Solid NH4HS is introduced into an evacuated flask at 24 ∘C. The following reaction takes place: NH4HS(s)⇌NH3(g)+H2S(g) At equilibrium the total pressure (for NH3 and H2S taken together) is 0.614 atm.

Answers

Answer:

0.09425

Explanation:

The reactant is in solid phase and therefore has zero partial pressure.

The products have the same mole ratio (1:1) and will have the same partial pressure = 1/2 × 0.614 atm = 0.307 atm

Kp =  (NH3)(H2S) = 0.09425

Final answer:

The equilibrium constant expression for the given reaction is K = [NH3][H2S]. Since NH4HS is a solid, it is not included in the equilibrium constant expression. If the concentration of H2S triples, the concentration of NH3 should decrease by a factor of 3 to maintain equilibrium.

Explanation:

The given reaction involving NH4HS(s)⇌NH3(g)+H2S(g) is an equilibrium reaction. At equilibrium, the total pressure of NH3 and H2S combined is 0.614 atm. In this equilibrium expression, NH4HS(s) does not appear since it is a solid. Therefore, the equilibrium constant, K, is given by the expression K = [NH3][H2S]. Since the concentrations of the products are inversely proportional, if the H2S concentration triples, the NH3 concentration must decrease by a factor of 3 to keep the system at equilibrium so that the product of the concentrations equals K.

If your hot coffee sits on your desktop and loses 50 kJ of energy duringcooling, what is the quantitative change in enthalpy of the coffee?

Answers

Answer : The change in enthalpy of the coffee is negative.

Explanation :

Endothermic reaction : It is defined as the chemical reaction in which the energy is absorbed from the surrounding.

In the endothermic reaction, the energy of reactant are less than the energy of product.

Exothermic reaction : It is defined as the chemical reaction in which the energy is released into the surrounding.

In the exothermic reaction, the energy of reactant are more than the energy of product.

Enthalpy change : It is the difference between the energy of product and the reactant. It is represented as [tex]\Delta H[/tex].

When the system gains energy in the form of heat then the change in enthalpy is positive.When the system loses energy in the form of heat then the change in enthalpy is negative.

As per question, if hot coffee sits on your desktop and loses 50 kJ of energy during cooling, the change in enthalpy of the coffee is negative.

Hence, change in enthalpy of the coffee is negative.

Fe₃O₄ reacts with CO according to the equation
Fe₃O₄ + CO --> Fe + CO₂ (unbalanced)
If 478.9 g Fe₃O₄ is reacted with excess CO, what mass of CO₂ will be produced assuming 100% yield?
1. 91.02 g CO₂
2. 182.05 g CO₂
3. 364.1 g CO₂
4. none of these
5. 273.1 g CO₂

Answers

Answer:

Option 3.

364.1 g of CO₂ are produced by the reaction

Explanation:

Let's verify the balance equation for this reaction:

Fe₃O₄  +   4 CO  →  3 Fe   +   4CO₂

Let's convert the mass of Fe₃O₄ to moles (mass / molar mass)

478.9 g / 231.55 g/mol  = 2.07 moles

Ratio is 1:4, so let's make a rule of three to determine the moles of CO₂ produced and then its mass.

1 mol of Fe₃O₄ is needed to produce 4 moles of CO₂

Then, 2.07 moles of Fe₃O₄ will produce (2.07  .4) /1 = 8.27 moles of CO₂.

Molar mass . moles = mass

44 g/mol . 8.27 mol = 364 g of CO₂

The molar mass of an element is the mass of one _______ of the element.

Answers

Mass of one mole of the element

For hot vacuum filtration, the filter paper should be completely dry when pouring the hot solution into the Buchner funnel to filter.
A) True
B) False

Answers

Answer:

False.

Explanation:

The given statement is false because for hot vacuum filtration, the filter paper should be wet rather than dry when pouring the hot solution into the Buchner funnel. This is because The possible explanation the filter paper needs to be wetted is not only to allow it to adhere to the funnel, but also to promote the solute to filter down readily across its pores of the paper without wetting it (this is true for organic and aqueous solvents).

How did Dalton describe the relationship between atoms and elements? An element is made up of one kind of atom. Atoms are made up of combinations of elements. Elements are made up of atoms arranged in whole-number ratios. Different kinds of atoms chemically combine to form elements.

Answers

Final answer:

Dalton described the relationship between atoms and elements in terms of the composition of elements and the combination of atoms to form compounds.

Explanation:

Dalton described the relationship between atoms and elements in the following way:

An element is always made up of one kind of atom. Each element is composed of atoms that have the same number of protons.Atoms are made up of combinations of elements. Atoms combine with other atoms of different elements to form compounds.Elements are made up of atoms arranged in whole-number ratios. The atoms of different elements combine in fixed ratios to form compounds.Different kinds of atoms always chemically combine to form elements. Atoms of different elements can combine in various ways to form new substances.

Learn more about Dalton's atomic theory here:

https://brainly.com/question/13157325

#SPJ6

Dalton described elements as being made up of a single, unique type of atom. Atoms of different elements differ in properties. Atoms combine in fixed, whole-number ratios to form compounds.

John Dalton, the English chemist, proposed a theory that is fundamental to understanding chemical elements and atoms. According to Dalton's atomic theory:

Elements are made of extremely small particles called atoms.Atoms of a given element are identical in size, mass, and other properties; atoms of different elements differ in size, mass, and other properties.Atoms cannot be subdivided, created, or destroyed by chemical means.Atoms of different elements combine in fixed, small, whole-number ratios to form compounds.

Hence, Dalton described the relationship between atoms and elements by stating that each element is composed of one kind of atom unique to that element, which can combine to form more complex structures.

Combustion reactions are exothermic. The heat of reaction for the combustion of cyclopropane, C3H6, is 499.8 kcal/mol. What is the heat of combustion for cyclopropane in kcal/gram?

Answers

Final answer:

To find the heat of combustion for cyclopropane in kcal/gram, divide the heat of reaction (499.8 kcal/mol) by the molar mass of cyclopropane (42.08 g/mol).

Explanation:

The heat of combustion for cyclopropane in kcal/gram can be calculated using its molar mass and the given heat of reaction. The molar mass of cyclopropane, C3H6, is 42.08 g/mol. With a heat of reaction of 499.8 kcal/mol, we can calculate the heat of combustion per gram by dividing the heat of reaction by the molar mass:

Heat of combustion (kcal/g) = Heat of reaction (kcal/mol) / Molar mass (g/mol)

Thus,

Heat of combustion (kcal/g) = 499.8 kcal/mol / 42.08 g/mol

Once you perform the division, you'll have the heat of combustion for cyclopropane in kcal/gram.

Learn more about Heat of Combustion here:

https://brainly.com/question/38340398

#SPJ12

Other Questions
Since many societies have a dominantly young age structure, their population will tend to increase over the short run despite successful national family planning programs.True / False. Consider the following statement: "the problem with economics is that it assumes that consumers and firms always make the correct decisions. But we know that everyone makes mistakes." What is the most correct response to this statement? A sample of gas occupies a volume of 57.9 L at 300K. Use Charless Law to calculate the volume (L) when the temperature is 264K. Show the calculation. Rick buys and sells antiques via the Internet. So far, he has profited $2,502. Based on his profits to date, he developed the following linear model where x represents time in months, and y represents his total profits, in dollars. Interpret the slope.y = 2,502 + 417xa. An additional month of buying and selling is associated with an additional $2,919 in profits.b. An additional month of buying and selling is associated with an additional $2,502 in profits.c. An additional month of buying and selling is associated with an additional $2,085 in profits.d. An additional month of buying and selling is associated with an additional $417 in profits. what is n/8=11/5 solve for n The defendant robbed a bank and fled in a getaway car driven by an accomplice, not realizing that one of the bundles of money he took had the serial numbers recorded and had a tiny tracking device attached to the wrapper. The banks security consultant obtained portable tracking equipment and was able to trace the bundle of money to the defendants house. The police were notified and they arrived at the defendants house a few hours after the robbery. They knocked on the door, announced their presence, and saw someone matching the description of the robber in the hallway. They entered and arrested the defendant, and then conducted a protective sweep of the house for the accomplice, who they believed had a gun. They did not find him, but while checking a closet, they discovered several of the bundles of money from the bank and a gun the defendant had used in the robbery. The police also discovered two clear plastic bags of what appeared to be marijuana sitting on top of a dresser. They seized the money, the gun, and the two bags. Later testing confirmed that the substance in the bags was marijuana. The defendant was charged with the bank robbery and with possession of the marijuana. At a preliminary hearing, he moves to suppress introduction of the money, gun, and marijuana. How should the court rule? A government agency authorizes an individual to work in a given occupation after the individual has completed an approved education program and passed a state board test: Whats the slope of y=-7x+5 A potential energy function for a system in which a two-dimensional force acts is of the form U = 3x5y 3x. Find the force that acts at the point (x, y). A study group is to be selected from 5 freshmen, 7 sophomores, and 4 juniors. a) If a study group is to consist of 2 freshmen, 3 sophomores, and 1 junior, how many different ways can the study group be selected? b) If a study group consisting of 6 students is selected, what is the probability that the group will consist of 2 freshmen, 3 sophomores, and 1 junior? Solve the following equation (y = 1.2345x 0.6789) for x, given that y = 0.570 Zach's behavior of pushing other children typically occurs on the playground. The playground would be a(n) ________________ setting for Zach's behavior.a. analogueb. manipulatedc. naturald. controlled Manganese nodules are considered a valuable resource from the ocean floor because they are abundant and contain not only manganese but also? When Carl confronts his wife, she reacts with anger, aggression, and retaliation. It is very possible his wife has such elevated self-esteem that it's a problem known as _______ Carlton finds that a geographic restructuring would have a positive effect on his insurance company and increase its efficiency. He draws up a report for the board of directors in which he mentions that separate departments should be set up for each of the company's 10 sales territories. Which of the following statements is most likely to increase the positivity of his proposition?A) Let me know if you want to work on changing the structure of the company.B) Using a geographic structure will not guarantee that the company's productivity increases.C) Geographic restructuring is not likely to reduce the company's overall costs.D) I look forward to putting together a detailed plan to restructure the company geographically.E) A geographic structure might possibly have a positive effect on the company. Lydia's Lights wants to extend its market into Mexico. Before jumping in, the company needs to conduct some in-depth research to gauge customer's needs, interests, and buying patterns. Which of the following is the BEST option for Lydia's Lights? The term ____ means that a public information network such as an Internet service provider (ISP) should treat all users, all platforms, and all content equally. why was stalin so suspicious of his former western allies? Jose is trying to lose 100 pounds. He has greatly restricted his caloric intake but has lost only about 6 percent of his desired goal. Jose's limited weight loss is due, at least in part, to the fact that his dietary restriction led to a(n)A)decrease in his secretion of ghrelin.B)elevation of his set point.C)decrease in his metabolic rate.D)elevation of his blood glucose level. a bicycle company makes five styles of bikes in seven different colors. How many different bicycles can the company make when considering both style and color? Steam Workshop Downloader