Find the value of tan 39°. Round to the nearest ten-thousandth.
The value of the given trigonometric ratio tan 39° is approximately 0.8098.
Use the concept of trigonometric ratio defined as:
Trigonometric Identities are equality statements that hold true for all values of the variables in the equation and that use trigonometry functions.
There are several distinctive trigonometric identities that relate to a triangle's side length and angle. Only the right-angle triangle is consistent with the trigonometric identities.
The given trigonometric ratio is: tan 39°
Since,
[tex]\text{tan }\theta = \dfrac{\text{sin }\theta}{\text{cos }\theta}[/tex]
The value of the sine of 39° is approximately 0.6293.
The value of the cosine of 39° is approximately 0.7771.
Therefore,
tan 39° = 0.6293 / 0.7771
tan 39°≈ 0.8098 (After rounding to four decimal places).
Hence,
The required value tan 39° is approximately 0.8098.
To learn more about trigonometric ratios visit:
https://brainly.com/question/29156330
#SPJ6
A(n) ______ is a letter or symbol that represents some unknown value.
A. term
B. equation
C. variable
D. expression
Answer:
It is a variable
Step-by-step explanation:
A variable is a characteristic, number, or quantity that increases or decreases over time or takes different values in different situations. Hope this helps.
Round 0.978 to the nearest tenth
Which lines are parallel if m4 = m5? Justify your answer.
Answer:
r and s are parellel
Step-by-step explanation:
The correct answer is that lines 4 and 5 are parallel if [tex]\( m_4 = m_5 \).[/tex]
To justify this answer, we must understand the concept of slope in the context of lines in a plane. The slope of a line, denoted by m is a measure of its steepness and is defined as the ratio of the vertical change (rise) to the horizontal change (run) between two points on the line. Mathematically, if two points on a line have coordinates [tex]\( (x_1, y_1) \)[/tex] and [tex]\( (x_2, y_2) \),[/tex] then the slope m is given by: [tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex] For two lines to be parallel, they must have the same slope. This is because parallel lines have the same steepness and never intersect. Therefore, if the slope of line 4, [tex]\( m_4 \)[/tex], is equal to the slope of line 5, [tex]\( m_5 \)[/tex], then lines 4 and 5 are parallel. In mathematical notation, if [tex]\( m_4 = m_5 \),[/tex] then line 4 and line 5 are parallel, which can be written as: [tex]\[ m_4 = m_5 \Rightarrow \text{Line 4} \parallel \text{Line 5} \][/tex] This conclusion is based on the fundamental properties of slopes and parallel lines in Euclidean geometry. If the slopes of two lines are equal, it means that they rise and run at the same rate, and thus, they will maintain a constant distance from each other, never intersecting, which is the definition of parallel lines.
HELP PLEASE?! I'm very bad at math and I need help with this question please.
What is the value of y in the equation 6 + y = −3?
A.) −9
B.) −3
C.) 3
D.) 9
Sandra rode her bike 5 times as many miles as Barbara. If b, the distance Barbara rode, equals 3.4 miles, what is the correct expression and distance Sandra rode?
a) b+5; when b=3.4, the distance Sandra rode is 17 miles.
b) 5b; when b=3.4, the distance Sandra rode is 17 miles.
c) 5b; when b=3.4, the distance Sandra rode is 8.4 miles.
d) b+5; when b=3.4, the distance Sandra rode is 8.4 miles.
Answer:
Option b is correct
5b; when b = 3.4 miles , the distance Sandra rode is 17 miles
Step-by-step explanation:
Here, b represents the distance Barbara rode.
As per the statement:
Sandra rode her bike 5 times as many miles as Barbara.
⇒[tex]\text{Distance Sandra rode} = 5b[/tex] miles ....[1]
It is also given that:
the distance Barbara rode, equals 3.4 miles
⇒[tex]b = 3.4[/tex] miles
Substitute in [1] we have;
[tex]\text{Distance Sandra rode} = 5(3.4)=17[/tex] miles
Therefore, the correct expression and distance Sandra rode is
5b ; when b = 3.4 miles , the distance Sandra rode is 17 miles
The sum of two consecutive integers is at least 46. What is the least possible pair of integers?
Answer
23 and 24.
Explanation
let the first integer be x.
The next integer would be x + 1
Now form the equation
x + (x+1) = 46
x + x + 1 = 46
2x + 1 = 46
2x = 46 - 1
x = 45
x = 22.5 This is not an integer.
Since the question is asking for the least possible integer, unless we use 23 ≅22.5
The first integer been 23, the other one would be (23 + 1) = 24.
The least possible pair would be 23 and 24.
What is 9/2 as a decimal?
Kamal bought 7 packs of paper clips for a project. then he bought 8 more packs. there are 25 paper clips in each pack. how many paper clips did he buy?
Answer:
He bought 375 paper clips.
Step-by-step explanation:
Given,
The initial number of packs of paper clips = 7,
Also, the additional number of packs of paper clips = 8,
So, the total number of packs of paper clips = 7 + 8 = 15,
Now, the number of paper clips in each pack = 25,
Hence, the total number of paper clips = number of paper clips in each pack × total packs
= 25 × 15
= 375
Assuming x > 0, which of these expressions is equivalent to 11 times the square root of 245 x to the third plus 9 times the square root of 45 x to the third? ?
5 x times the square root of 104 x
20 times the square root of 290 x to the sixth
20 x times the square root of 290 x
104 x times the square root of 5 x
Find the equation of the tangent line to the curve y = 2sinx at the point (pi/6,1). The equation of this tangent line can be written in the form y = mx+b. Compute m and b
The equation of the tangent line to the curve y = 2sinx at the point (pi/6,1) is y = sqrt(3)x + (1 - sqrt(3)(pi/6)).
Explanation:To find the equation of the tangent line to the curve y = 2sinx at the point (pi/6, 1), we need to find the slope of the curve at that point. The slope of a curve at a point is equal to the derivative of the function at that point.
Taking the derivative of y = 2sinx, we have dy/dx = 2cosx. Evaluating this derivative at x = pi/6, we get dy/dx = 2cos(pi/6) = sqrt(3). Therefore, the slope of the tangent line is sqrt(3).
Now we have the slope and a point on the line, (pi/6, 1). We can use the point-slope form of a line, y - y1 = m(x - x1), where (x1, y1) is the given point and m is the slope.
Plugging in the values, we have y - 1 = sqrt(3)(x - pi/6).
Simplifying this equation, we get y = sqrt(3)x - sqrt(3)(pi/6) + 1. Finally, we can rewrite the equation in the form y = mx + b by simplifying the y-intercept, giving us y = sqrt(3)x + (1 - sqrt(3)(pi/6)).
Learn more about Finding the equation of a tangent line here:https://brainly.com/question/39323392
#SPJ3
factor the common factor out of 8x^3+12x
Please complete z2+9z-90=(z-6)(z+?) ...?
Answer:
Answer would be 15.
Step-by-step explanation:
We have to complete the expression given as
[tex]z^{2}+9z-90=(z-6)(z+?))[/tex]
We will try to factorize the expression given in the left side.
[tex]z^{2}+9z-90=z^{2}+15z-6z-90[/tex]
= z(z+15)-6(z-15)
=[tex](z-6)(z-15)[/tex]
Now we will compare this factorized form with the right side of the expression.
(z-6) (z-15) (= (z-6) (z+?)
We find question mark is 15.
Therefore, the answer is 15.
"Sarah is renting a car for her weekend trip to the mountains. The total cost of the rental, y, as it relates to the number of miles driven, x, is shown in the graph below.
Fill in the blanks so that the functions below, written to represent this situation, are correct. If necessary, the answer in terms of a decimal, rounded to the nearest hundredth.
f(x)= ______x+________"
Answer:
[tex]f(x)=\dfrac{1}{4}x+25[/tex]
Step-by-step explanation:
Clearly from the graph we could see that it passes through two points (0,25) and (20,30) and also as the graph is linear so with the help of these two points we can find the relation between f(x) and x.
We know that the equation of a line passing through two points (a,b) and (c,d) is given by:
[tex]y-b=\dfrac{d-b}{c-a}\times (x-a)[/tex]
Here we have:
y=f(x) , (a,b)=(0,25) and (c,d)=(20,30).
Hence the equation of this graph is given as:
[tex]f(x)-25=\dfrac{30-25}{20-0}\times (x-0)\\\\f(x)-25=\dfrac{5}{20}\times x\\\\f(x)-25=\dfrac{1}{4}\times x\\\\f(x)=\dfrac{1}{4}x+25[/tex]
Hence,
[tex]f(x)=\dfrac{1}{4}x+25[/tex]
The population of a city increases by 10,000 per year. The starting population is 800,000.
Let P be the ending population.
Which shows an equation for the total population after x years?
Determine the sum -46.38 (-24.6)
Given D = 5, E = 10 and F = 4, evaluate
D*E/F
...?
Find the correct prime factorization of 28/98, and then reduce the fraction to lowest terms. ...?
To reduce the fraction 28/98 to lowest terms, we prime factorize each number, cancel out the common factors, and simplify. The fraction 28/98 simplifies to 1/7.
The correct prime factorization of 28 is 2×2×7 (or 2²×7), and for 98 it's 2×7×7 (or 2×7²). To reduce the fraction 28/98 to lowest terms, we can remove the common factors in the numerator and the denominator.
Since both numerator and denominator have a 2 and a 7, we can replace them with '1'. After simplifying, the remaining factors in the numerator are 1 and the remaining factors in the denominator are 7. Therefore, 28/98 reduced to lowest terms is 1/7.
Write the area as a product and as a sum.
The area of the square as a product is a multiplication of the two sides.
What is the area of the square?The space occupied by any two-dimensional figure in a plane is called the area. The space occupied by the square in a two-dimensional plane is called the area of the square.
The square is a quadrilateral having all the sides to be equal and all the angles at 90 degrees. The area of the square will be calculated as,
Area = side x side
Therefore, the area of the square as a product is a multiplication of the two sides.
To know more about an area follow
https://brainly.com/question/25092270
#SPJ5
Celeste is making fruit baskets for her service club to take to a local hospital. the directions say to fill the boxes using 5 apples for every 6 oranges. celeste is filling her baskets with 2 apples every 3 oranges.
Celeste is making fruit baskets for her service club, and she is not following the specific ratio but using a similar ratio of apples to oranges in her baskets.
Explanation:Celeste is making fruit baskets for her service club, and the directions say to fill the boxes using 5 apples for every 6 oranges. However, Celeste is filling her baskets with 2 apples for every 3 oranges. To determine if Celeste is following the directions, we can compare the ratio of apples to oranges in her baskets with the ratio specified in the directions.
In the directions, the ratio of apples to oranges is 5 apples: 6 oranges, which can be simplified to 5/6. In Celeste's baskets, the ratio of apples to oranges is 2 apples : 3 oranges, or 2/3.
To compare these ratios, we can find the least common multiple (LCM) of the denominators (6 and 3), which is 6. Then, we can convert both ratios to have the same denominator using equivalent fractions:
5/6 * 1/1 = 5/6 and 2/3 * 2/2 = 4/6.
Since 4/6 is less than 5/6, Celeste is not following the directions exactly. However, she is still using a similar ratio of apples to oranges in her baskets.
p² 13p=-30 menentukan nilai p
Algebraic terms are separated by ______.
Choose all that apply.
1)=
2)+
3)x
4)÷
5)-
In algebra, terms are separated by addition (+), subtraction (-), multiplication (x), and division (÷) symbols. The equals (=) sign is used to show equality, not to separate terms.
Explanation:In the realm of mathematics, particularly in algebra, algebraic terms are separated by addition (+), subtraction (-), multiplication (x), and division (÷) symbols. These operations are the main components that allow us to manipulate and solve algebraic expressions and equations. For example, in the expression 3x - 2y + 5z, the terms (3x, 2y, 5z) are separated by subtraction (-) and addition (+) symbols. Please note that the equals (=) sign does not separate terms; rather, it is used to show the equality between two mathematical expressions.
Learn more about Algebraic Terms here:https://brainly.com/question/33577799
#SPJ11
Final answer:
Algebraic terms are separated by plus (+) and minus (-) signs, which denote addition or subtraction between terms in an expression.
Explanation:
Algebraic terms are separated by plus (+) and minus (-) signs.
These signs denote addition or subtraction between terms in an algebraic expression.
While the multiplication sign (x) and division sign (÷) indicate operations between terms, they do not separate independent terms within an expression.
For instance, in the expression 2x + 3y - 5z, the plus and minus signs separate the terms 2x, 3y, and 5z.
What is the probability of getting 3 tails when tossing a coin 4 times?
The probability of getting 3 tails, when tossing a coin 4 times is 25%
To find the probability of getting 3 tails when tossing a coin 4 times, we can use the binomial probability formula:
[tex]\[ P(X = k) = \binom{n}{k} \times p^k \times (1 - p)^{n - k} \][/tex]
Where:
- P(X = k) is the probability of getting exactly k successes (in this case, 3 tails).
- n is the number of trials (coin tosses).
- k is the number of successes we are interested in (in this case, 3 tails).
- p is the probability of success on each trial (in this case, the probability of getting tails).
- [tex]\( (1 - p) \)[/tex] is the probability of failure on each trial (in this case, the probability of getting heads).
Since the coin is fair, the probability of getting tails p is [tex]\( \frac{1}{2} \)[/tex], and the probability of getting heads [tex](\( 1 - p \))[/tex] is also [tex]\( \frac{1}{2} \)[/tex].
Substituting these values into the formula:
[tex]\[ P(X = 3) = \binom{4}{3} \times \left(\frac{1}{2}\right)^3 \times \left(1 - \frac{1}{2}\right)^{4 - 3} \][/tex]
[tex]\[ P(X = 3) = \binom{4}{3} \times \left(\frac{1}{2}\right)^3 \times \left(\frac{1}{2}\right)^1 \][/tex]
[tex]\[ P(X = 3) = 4 \times \left(\frac{1}{8}\right) \times \left(\frac{1}{2}\right) \][/tex]
[tex]\[ P(X = 3) = \frac{4}{16} \][/tex]
[tex]\[ P(X = 3) = \frac{1}{4} \][/tex]
To express the probability as a percentage, we multiply by 100:
[tex]\[ P(X = 3) = \frac{1}{4} \times 100\% = 25\% \][/tex]
Therefore, the probability of getting 3 tails when tossing a coin 4 times is 25%.
On sunday,sheldon bought 4 and 1 half kg of plant food. he used 1 and 2 thirds kg on his strawberry plants and used 1 fourth kg for his tomato plants. how many kilograms of plant food did sheldon have left write one or more to show how u reached your answer.
Factor of 3x^2 - 6x 3
Which set of ordered pairs represents y as a function of x?
{(5, 4), (2, 3), (1, 1), (2, 4)}
{(-9, 2), (0, 6), (1, -2), (0, 6)}
{(3, 2), (-4, -2), (3, 1), (-4, 1)}
{(-1, 0), (4, 3), (-7, -3), (-1, -8)}
What is the standard form for y + 5 = 0?
Clark wants to figure out how many pens to order for the office there 48 workers and he needs to order one pen for each worker he knows that for every six people who prefer red door 6 prefer blue how many blue pens should he order
Given that the preference for red and blue pens is equal and that there are 48 workers, Clark should order 24 blue pens for the office.
Explanation:The student is interested in figuring out how many blue pens to order for 48 workers in an office knowing that the preferences for red and blue pens are equal. This means that for every 6 people who prefer red, the same number of people will prefer blue.
To determine the number of blue pens needed, we can use a simple proportion. Since 6 people prefer red and the same number prefer blue, we have a 1:1 ratio of red to blue preferences.
Therefore, the total number of blue pens needed would be half of the total number of workers:
Total workers = 48Number of blue pens = Total workers / 2 = 48 / 2Number of blue pens = 24A rectangular prism has a length of 4.2 cm, a width of 5.8 cm, and a height of 9.6 cm. A similar prism has a length of 14.7 cm, a width of 20.3 cm, and a height of 33.6 cm. The dimensions of the smaller prism are each multiplied by what factor to produce the corresponding dimensions of the larger prism?
Answer:
its (c) 3 1/2
Step-by-step explanation:
The initial number of views for a reader board was 25. The number of views is growing exponentially at a rate of 18% per week. What is the number of views expected to be four weeks from now? Round to the nearest whole number Enter your answer in the box.
This is an exponential growth problem. Let's write the equation for exponential growth.
[tex]P=P_{0} (1+r)^{n}[/tex]
Where,
P is the final amount[tex]P_{0}[/tex] is the initial amountr is the rate at which increasingn is the timeFrom the problem, we know initial number of views, [tex]P_{0}[/tex], is 25. Rate of increase, r, is 0.18. Time, n, is 4 weeks. Plugging in these values in the equation and solving for P will give us the number of views expected in four weeks time.
[tex]P=(25)(1+0.18)^{4}\\=(25)(1.18)^{4}\\=48.47[/tex]
Rounding to nearest whole number, it is 48.
ANSWER: 48