If an insulated (power side) wire rubbed through a part of the insulation and the wire conductor touched the steel body of a vehicle, the type of failure would be called a(an)

Answers

Answer 1

Answer:

a short-to-ground

Explanation:

Many failures that occur in vehicles can be diagnosed as electrical problems. The reason for these usually relate mainly to the electricity generated in the battery or alternator, in the ignition system as well as those produced by blown wires or fuses.

Cables or fuses: a blown fuse or a damaged electrical wire or one that is making ground or earth effect can be the cause of an electrical problem. Keep in mind that everyone is connected to each other through the wires of the electrical system. Fuses protect car components from power surges. If you have a problem with one, check it to see if you will have to replace it.

Answer 2
Final answer:

A failure where an insulated wire rubs through and touches the steel body of a vehicle is known as a short circuit.

Explanation:

If an insulated (power side) wire rubs through a part of the insulation and the wire conductor touches the steel body of a vehicle, this type of failure is known as a short circuit. This happens when a wire carrying current touches the vehicle's body, which is grounded. As the body acts like a path of least resistance, the current prefers flowing through it rather than its intended path, creating a short circuit. This can result in various problems like damage to components, blowing a fuse, or even triggering a fire.

Learn more about short circuit here:

https://brainly.com/question/31673358

#SPJ3


Related Questions

A truck is hoisted a certain distance in a garage and therefore has potential energy with respect to the floor. If it were lifted twice as high, it would have ____ as much potential energy.

Answers

Answer:

If the truck were lifted twice as high, it would have twice as much potential energy

Explanation:

Potential energy = mgh

where;

m is mass of the truck (kg)

g is acceleration due to gravity (m/s²)

h is the height above the floor.

Initial Potential Energy, E₁ = mgh₁

When the truck was lifted twice as high, New height (h₂) = 2h₁

New potential Energy, E₂ =mgh₂ = mg(2h₁)

E₂ = 2mgh₁

Recall, E₁ = mgh₁, then substitute in E₁  into E₂

E₂ = 2(mgh₁)

E₂ = 2E₁

Therefore, If the truck were lifted twice as high, it would have twice as much potential energy

The cheetah is one of the fastest-accelerating animals, because it can go from rest to 16.2 m/s (about 36 mi/h) in 2.4 s. If its mass is 102 kg, determine the average power developed by the cheetah during the acceleration phase of its motion. Express your answer in the following units.

Answers

Power of cheetah is 5576.85 W = 7.48 hp

Explanation:

Power is the ratio of energy to time.

Here we need to consider kinetic energy,

Mass, m = 102 kg

Initial velocity = 0 m/s

Final velocity = 16.2 m/s

Time, t = 2.4 s

Initial kinetic energy = 0.5 x Mass x Initial velocity² = 0.5 x 102 x 0² = 0 J

Final kinetic energy = 0.5 x Mass x Final velocity² = 0.5 x 102 x 16.2² = 13384.44 J

Change in energy = Final kinetic energy - Initial kinetic energy

Change in energy = 13384.44 - 0

Change in energy = 13384.44 J

Power = 13384.44  ÷ 2.4 = 5576.85 W = 7.48 hp

Power of cheetah is 5576.85 W = 7.48 hp

As a cat pounces on a mouse, its muscles consume 10 units of potential energy (which the cat previously gained from the food it consumed). However, the pounce itself only required 4 units of kinetic energy. How many units of energy were dissipated as heat?

Answers

Final answer:

The cat used 10 units of potential energy to pounce but only 4 units were converted meaningfully into kinetic energy of the pounce. The remaining 6 units were dissipated as heat.

Explanation:

When the cat pounces on a mouse, the energy needed for this action is less than the total potential energy consumed. The cat's body uses 10 units of potential energy, but the pounce only required 4 units of kinetic energy. The difference between these two values signifies the amount of energy dissipated as heat. Therefore, we can perform the subtraction: 10 units (total potential energy) - 4 units (kinetic energy used) = 6 units. Thus, "6 units of energy were dissipated as heat."

Learn more about Energy Conversion here:

https://brainly.com/question/33439849

#SPJ3

The total magnification of a specimen being viewed with a 10X ocular lens and a 40X objective lens is _____.

Answers

Answer:

total magnification = 400 X

Explanation:

given data

ocular lens = 10 X

objective lens = 40 X

to find out

total magnification

solution

we know that total magnification is express as

total magnification = Objective magnification ×  ocular magnification  .................1

put here value we get

total magnification =  10 × 40

total magnification = 400 X

Final answer:

The total magnification for a microscope with a 10X ocular lens and a 40X objective lens is 400X.

Explanation:

When using a microscope, the total magnification can be found by multiplying the magnification of the ocular lens (also known as the eyepiece) by the magnification of the objective lens. Thus, in your case, the total magnification of the specimen being viewed with a 10X ocular lens and a 40X objective lens would be 400X. This is because 10 times 40 equals 400. Therefore, you are observing the specimen at 400 times its actual size.

Learn more about Total Magnification here:

https://brainly.com/question/33719662

#SPJ3

If a ball end mill cutter's stepover is kept at a fixed value but the diameter of the tool is increased, the scallop height increases as a consequence.Select one:a. Trueb. False

Answers

Answer: FALSE

Explanation:Ball End Mills are hemispherical tip used to cut and and shape/ milling rounded objects, such as the metal bearing grooves, slotting and pocketing.

Ball End Mill also called Ball nose end mills, the scallop height will not increase as a result of the increase in diameter. The diameter is the distance between one end of the round tool to another when taken from the middle.

Two canoes are touching and at rest on a lake. The occupants push away from each other in opposite directions, giving canoe 1 a speed of 0.56 m/s and canoe 2 a speed of 0.45 m/s .

If the mass of canoe 1 is 320 kg , what is the mass of canoe 2?

Answers

Answer:

398.22 kg

Explanation:

[tex]m_1[/tex] = Mass of canoe 1 = 320 kg

[tex]m_2[/tex] = Mass of canoe 2

[tex]v_1[/tex] = Velocity of canoe 1 = 0.56 m/s

[tex]v_2[/tex] = Velocity of canoe 2 = 0.45 m/s

In this system the linear momentum is conserved

[tex]m_1v_1=m_2v_2\\\Rightarrow m_2=\dfrac{m_1v_1}{v_2}\\\Rightarrow m_2=\dfrac{320\times 0.56}{0.45}\\\Rightarrow m_2=398.22\ kg[/tex]

The mass of the second canoe is 398.22 kg

Answer:

398.22 kg

Explanation:

mass of I canoe, m1 = 320 kg

initial velocity of both the canoe = 0

final velocity of I canoe, v1 = 0.56 m/s

final velocity of II canoe, v2 = - 0.45 m/s

Let the mass of second canoe is m2.

Use conservation of momentum

momentum before push = momentum after push

0 + 0 = m1 x v1 + m2 x v2

0 = 320 x 0.56 - m2 x 0.45

m2 = 398.22 kg

Thus, the mass of second canoe is 398.22 kg.

The average lifetime of a pi meson in its own frame of reference (i.e., the proper lifetime) is 2.6 10-8 s. (a) If the meson moves with a speed of 0.88c, what is its mean lifetime as measured by an observer on Earth? (b) What is the average distance it travels before decaying, as measured by an observer on Earth? (c) What distance would it travel if time dilation did not occur?

Answers

Final answer:

a) The measured lifetime of the pi meson as observed by an Earth observer is longer than its proper lifetime due to time dilation. b) The average distance the meson travels before decaying can be calculated using the velocity and measured lifetime. c) If time dilation did not occur, the distance the meson would travel can be calculated using the velocity and proper lifetime.

Explanation:

a) According to time dilation, the average lifetime of the pi meson as measured by an observer on Earth is longer than its proper lifetime. To calculate it, we use the formula for time dilation: t' = t / γ, where t' is the measured lifetime, t is the proper lifetime, and γ is the Lorentz factor. Given that the proper lifetime is 2.6 × 10-8 s and the speed of the meson is 0.88c, we can calculate γ using the formula γ = 1 / √(1 - v2/c2). After calculating γ, we can substitute it into the time dilation formula to find the measured lifetime on Earth.

b) To calculate the average distance the meson travels before decaying, we use the formula d = v · t', where d is the distance, v is the velocity, and t' is the measured lifetime. We can substitute the values given in part a) to find the distance traveled by the meson.

c) If time dilation did not occur, the distance the meson would travel can be calculated using the formula d = v · t, where d is the distance, v is the velocity, and t is the proper lifetime. By substituting the values given in part a) into this formula, we can find the distance the meson would travel in the absence of time dilation.

A 106 kg clock initially at rest on a horizontal floor requires a 670 N horizontal force to set it in motion. After the clock is in motion, a horizontal force of 557 N keeps it moving with a constant velocity.

a) what is the μs between the clock and the floor?.70
b) what is the μk between the clock and the floor?

Answers

Answer:

a) [tex]\mu_s=0.65[/tex]

b) [tex]\mu_k=0.54[/tex]

Explanation:

Static friction is when the body is at rest or is about to move while kinetic friction is when the body is already in motion. According to Newton's second law:

[tex]\sum F_y:N=mg\\\sum F_x:F_f=F_x[/tex]

a)  In this case, the static friction must be equal to the horizontal force to set the clock in motion:

[tex]F_f=\mu_sN=\mu_smg\\\mu_smg=F_x\\\mu_s=\frac{F_x}{mg}\\\mu_s=\frac{670}{106kg(9.8\frac{m}{s^2})}\\\mu_s=0.65[/tex]

b) In this case, the kinetic friction is equal to the horizontal force that keep the clock moving with constant velocity:

[tex]\mu_kmg=F_x'\\\mu_k=\frac{F_x'}{mg}\\\mu_k=\frac{557}{106kg(9.8\frac{m}{s^2})}\\\mu_k=0.54[/tex]

When two charge producers with different surface materials are rubbed together to create a charge imbalance. True or False

Answers

Answer:

True

Explanation:

Answer:

The answer is TRUE

Plz give brainliest

A meter stick is found to balance at the 49.7-cm mark when placed on a fulcrum. When a 41.0-gram mass is attached at the 23.0-cm mark, the fulcrum must be moved to the 39.2-cm mark for balance. What is the mass of the meter stick?

Answers

Answer:

mass of the meter stick=0.063 kg

or

mass of the meter stick=63.3 g

Explanation:

Given data

m₁=41.0g=0.041kg

r₁=(39.2 - 23)cm

r₂=(49.7 - 39.2)cm

g=9.8 m/s²

To find

m₂(mass of the meter stick)

Solution

The clockwise and counter-clockwise torques must be equal if the meter stick   is in rotational equilibrium

[tex]Torque_{cw}=Torque_{cw}\\F_{1}r_{1}=F_{2}r_{2}\\ m_{1}gr_{1}=m_{2}gr_{2}\\(0.041kg)(9.8m/s^{2} )(0.392m-0.23m)=m_{2}(9.8m/s^{2})(0.497m-0.392m)\\0.0651N.m=1.029m_{2}\\m_{2}=0.063 kg\\or\\m_{2}=63.3g[/tex]

A ball of mass 0.120 kg is dropped from rest from a height of 1.25 m. It rebounds from the floor to reach a height of 0.820 m. What impulse was given to the ball by the floor?

Answers

Answer:

1.0752 kgm/s

Explanation:

Considering when the drop was dropped from rest from a height,

mass of the ball, m = 0.120 kg

height, h = - 1.25 m

the initial velocity, u = 0 m/s

the acceleration due to gravity, g = - 9.8 m/s²

From equation of motion

                            [tex]V^{2} = U^{2} + 2gh[/tex]

Substituting the values,

                             [tex]V^{2} = 0^{2} + 2(-9.8 m/s^{2})(-1.25 m)[/tex]

                             [tex]V^{2} = 24.5 m/s[/tex]

                             [tex]V = \sqrt{24.5} \ m/s[/tex]

                             [tex]V = 4.95 \ m/s[/tex]

                            V = ± 4.95 m/s

                            V = - 4.95 m/s

Since the ball is moving downward, the final velocity of the ball when it hits the floor is  V = - 4.95 m/s  

Considering when the ball rebounds from the floor,

assume the mass of the ball still remain, m = 0.120 kg

height, h = 0.820 m

the final velocity, v = 0 m/s  

the acceleration due to gravity, g = - 9.8 m/s²

From equation of motion

                            [tex]V^{2} = U^{2} + 2gh[/tex]

Substituting the values,

                            [tex]0^{2} = U^{2} + 2(-9.8 m/s^{2})(0.820 m)[/tex]

                            [tex]0 = U^{2} - 16.072 m/s[/tex]

                            [tex]U^{2} = 16.072 m/s[/tex]

                            [tex]U = \sqrt{16.072} \ m/s[/tex]

                           U = ± 4.01 m/s

                          U = + 4.01 m/s

Since the ball is moving upward, the initial velocity of the ball from the bounce from the floor is  U = + 4.01 m/s                        

From Newton's second law of motion, applied force is directly proportional to the rate of change in momentum.

                            [tex]F = \frac{mv - mu}{t}[/tex]

                          [tex]F.t = m(v - u)[/tex]

       ⇒      Impulse = Change in momentum

To calculate the impulse, the moment before the ball hits the ground will be the initial momentum while the moment the ball rebounces will be the final velocity,                        

          ∴          F.t = 0.120  kg(4.01  m/s - (-4.95  m/s) )

                      F.t = 0.120  kg(4.01  m/s + 4.95  m/s) )

                      F.t = 0.120  kg × 8.96  m/s

                      Impulse  = 1.0752 kgm/s

The impulse given to the ball by the floor is 1.0752 kgm/s

                             

The ability of water molecules to form hydrogen bonds with other water molecules and water's ability to dissolve substances that have charges or partial charges are __________.

Answers

Answer:

The ability of water molecules to form hydrogen bonds with other water molecules and water's ability to dissolve substances that have charges or partial charges are due to water's partial charges.

Explanation:

The partial negative charge on oxygen and partial positive charge on hydrogen enables them to make hydrogen bond and also makes it to dissolve the the other substances having partial charges.

Charge is flowing through a conductor at the rate of 420 C/min. If 742 J. of electrical energy are converted to heat in 30 s., what is the potential drop across the conductor?

Answers

Answer:

3.53 V

Explanation:

Electric charge: The is the rate of flow of electric charge along a conductor.

The S.I unit of electric charge is C.

Mathematically it is expressed as,

Q = It ............................ Equation 1

Where Q = electric charge, I = current, t = time.

I = Q/t.......................... Equation 2

From the question, charge flows through the conductor at the rate of 420 C/mim

Which means in 1 min, 420 C of charge flows through the conductor.

Hence,

Q = 420 C, t = 1 min = 60 seconds

Substitute into equation 2

I = 420/60

I =7 A

Also

P = VI......................... Equation 3

Where P = power, V = potential drop, I = current.

V = P/I................... Equation 4

Note: Power = Energy/time

From the question, P = 742/30 = 24.733 W. and I = 7 A.

Substitute these values into equation 4

V = 24.733/7

V = 3.53 V

Hence the potential drop across the conductor =  3.53 V

The potential drop across the conductor is  3.54 V

The rate of flow of electric charge along a conductor per unit time is known as current.

Mathematically it is expressed as,

     

As we know that

Power,   [tex]P = VI[/tex]

Where P is power, V is  potential drop and  I is  current.

 Also,  

It is given that,  energy = 742 J and time = 30s

Power [tex]=\frac{742}{30} =24.74watt[/tex]

Substituting the value of power in equation [tex]P=VI[/tex]

      [tex]V=\frac{P}{I} =\frac{24.74}{7}=3.54V[/tex]

Thus,  the potential drop across the conductor is  3.54 V

Learn more:

https://brainly.com/question/20813208

For every factor of 10 difference in Keq' (e.g., going from 102 to 10, or from 10–3 to 10–4), what is the difference in standard free energy change, ΔG°' (kJ/mol)?

Answers

Answer:

The standard free energy is the difference between that of products and reactants. The value of G has a greater influence on the reaction been considered.

Explanation:

The Gibb's free energy also referred to as the gibb's function represented with letter G. it is the amount of useful work obtained from a system at constant temperature and pressure. The standard gibb's free energy on the other hand is a state function represented as Delta-G, as it depends on the initial and final states of the system. The spontaneity of a reaction is explained by the standard gibb's free energy.

If Delta-G = -ve ( the reaction is spontaneous)if Delta -G = +ve ( the reaction is non-spontaneous)if Delta-G = 0 ( the reaction is at equilibrium)

Use this hints for any reaction involving the Gibb's free, Enthalpy and entropy.

Final answer:

For each factor of 10 change in Keq, there is a corresponding change of approximately 5.7 kJ/mol in standard free energy change, ΔG°', at standard biochemical conditions (298.15 K).

Explanation:

For every factor of 10 difference in the equilibrium constant, Keq, there is a corresponding change in the standard free energy change, ΔG°', as calculated using the relationship between ΔG°' and Keq:

ΔG°' = -RT ln Keq, where R is the universal gas constant and T is the temperature in Kelvin.

Given that R = 8.314 J/mol·K and at standard biochemical conditions T = 298.15 K, a tenfold change in Keq results in a change of (8.314 J/mol·K x 298.15 K x ln(10)), which equates to approximately 5.7 kJ/mol. Therefore, for example, increasing Keq from 102 to 103 would decrease ΔG°' by 5.7 kJ/mol, making the reaction more product-favored under standard conditions. Conversely, decreasing Keq from 10-3 to 10-4 would increase ΔG°' by 5.7 kJ/mol, making the reaction less product-favored under standard conditions.

If a proton and an electron are released when they are 6.50×10⁻¹⁰ m apart (typical atomic distances), find the initial acceleration of each of them.
a) Acceleration of electron
b) Acceleration of proton

Answers

Answer:

(a) Acceleration of electron= 5.993×10²⁰ m/s²

(b) Acceleration of proton= 3.264×10¹⁷ m/s²

Explanation:

Given Data

distance r= 6.50×10⁻¹⁰ m

Mass of electron Me=9.109×10⁻³¹ kg

Mass of proton Mp=1.673×10⁻²⁷ kg

Charge of electron qe= -e = -1.602×10⁻¹⁹C

Charge of electron qp= e = 1.602×10⁻¹⁹C

To find

(a) Acceleration of electron

(b) Acceleration of proton

Solution

Since the charges are opposite the Coulomb Force is attractive

So

[tex]F=\frac{1}{4(\pi)Eo }\frac{|qp*qe|}{r^{2} }\\   F=(8.988*10^{9}Nm^{2}/C^{2})*\frac{(1.602*10^{-19})^{2}  }{(6.50*10^{-10} )^{2}  } \\F=5.46*10^{-10}N[/tex]

From Newtons Second Law of motion

F=ma

a=F/m

For (a) Acceleration of electron

[tex]a=F/Me\\a=(5.46*10^{-10} )/9.109*10^{-31}\\ a=5.993*10^{20}m/s^{2}[/tex]

For(b) Acceleration of proton

[tex]a=F/Mp\\a=(5.46*10^{-10} )/1.673*10^{-27} \\a=3.264*10^{17}m/s^{2}[/tex]

Acceleration of the body is rate of change of the increasing velocity with respect to the time.  is The acceleration of the electron is [tex]5.992\times10^{20}[/tex] meter per second squared and  acceleration of the proton is [tex]3.265\times10^{17}[/tex] meter per second squared.

Given information-

A proton and an electron are released when they are 6.50×10⁻¹⁰ m apart.

The the distance of proton and electron is 6.50×10⁻¹⁰ m.

Now it is known that,

Mass of the electron,

        [tex]m_e=9.109\times10^{-31}[/tex]

Mass of the proton,

        [tex]m_p=1.673\times10^{-27}[/tex]

Charge of the electron,

        [tex]Q_e=-1.602\times10^{-19}[/tex]

Charge of the proton,

        [tex]Q_e=1.602\times10^{-19}[/tex]

Acceleration

Acceleration of the body is rate of change of the increasing velocity with respect to the time. Acceleration of a body is the ratio of the force to the mass of the body.

The coulomb force between the two charges can be given as,

[tex]F=k\dfrac{q_1q_2}{r^2} [/tex]

Here k is the coulombs constant, r is the distance and q is the charge of proton and electron.Put the values,

[tex]F=9\times10^9\times\dfrac{(1.602\times10^{-19})^2}{(6.5\times10^{-10})^2} [/tex]

[tex]F=5.46\times10^{-10}[/tex]

Now it is known that the acceleration of a body is the ratio of the force to the mass of the body.

Acceleration of electron

[tex]a_e=\dfrac{F}{m_e} [/tex]

[tex]a_e=\dfrac{5.46\times10^{-10}}{9.109\times10^{-31}} [/tex]

[tex]a_e=5.992\times10^{20}[/tex]

Acceleration of Proton

[tex]a_p=\dfrac{F}{m_p} [/tex]

[tex]a_p=\dfrac{5.46\times10^{-10}}{1.673\times10^{-27}} [/tex]

[tex]a_e=3.625\times10^{17}[/tex]

Thus the acceleration of the electron is [tex]5.992\times10^{20}[/tex] meter per second squared and  acceleration of the proton is [tex]3.265\times10^{17}[/tex] meter per second squared.

Learn more about the acceleration here;

https://brainly.com/question/12134554

A drawing of electric field lines will immediately reveal (1) the relative magnitude of different charges (proportional to the number of lines that begin or end on each), (2) the sign of different charges (since lines go into negative charges and come out of positive charges), (3) the relative magnitude of the electric field at any point (because the magnitude of the field is proportional to how closely spaced the field lines are), and (4) the symmetry of the charge distribution (since they match the symmetry of the underlying field).

Answers

Complete Question:

The complete question is on the all the uploaded image

Answer:

sfjjA)rule 1,3,5   are brokenB)rule 2,3 are brokenC) rule 2 are brokenD) rule 2,3  are brokenE)rule 2 are brokenF)noneG) rule 3,4 are brokenH) rule 2,4,5 are broken

Explanation:

This solution were gotten by examining the diagrams and figuring out the rules that are broken

For A

we see that the two charges are positive so rule 1 is broken,on the same diagram we see that there is no radial symmetry close to the charge so rule 3 is broken then looking again at the diagram A we can see that the electric field is not tangent to any electric line at any point hence rule 5 is broken

For B:

We see that the number of lines are not proportional to the magnitude of the charge hence rule 2 has been broken

secondly looking again at the diagram we see that the line are not uniformly distributed near the charge hence rule  3 is broken

For C:

We see that the number of line is not proportional to the magnitude of the charge hence rule 2 is broken.

For D:

we see that the number of lines are not proportional to the magnitude of the charge hence rule 2 has been broken

secondly looking again at the diagram we see that the line are not uniformly distributed near the charge hence rule  3 is broken

For E:

We see that the number of line is not proportional to he magnitude of the charge hence rule 2 is broken.

For F

Looking at the diagram we see that none of the rules are broken

For G:

looking  at the diagram we see that the line are not uniformly distributed near the charge hence rule  3 is broken

taking another look at the diagram we see that the spacing of the lines are not indicating the magnitude of the charge hence rule 4 is broken

For H:

We see that the number of line is not proportional to he magnitude of the charge hence rule 2 is broken.

taking another look at the diagram we see that the spacing of the lines are not indicating the magnitude of the charge hence rule 4 is broken

Looking again at the diagram we see that the at any point on the electric field line that the electric field itself is not tangent to the electric field line hence rule 5 is broken

A speed skater moving across frictionless ice at 8.30 m/s hits a 5.10-m-wide patch of rough ice. She slows steadily, then continues on at 5.20 m/s ?

Answers

Incomplete question.The complete question is here

A speed skater moving across frictionless ice at 8.30 m/s hits a 5.10m wide patch of rough ice. She slows steadily, then continues on at 5.20 m/s.What is her acceleration on the rough ice?

Answer:

acceleration = -4.103 m/s²

Explanation:

Given data

Initial velocity Vi=8.30 m/s

Final velocity Vf=5.20 m/s

Initial distance xi=0 m.......(We choose xi=0 the start point of acceleration motion )

Final distance xf=5.10 m

To find

Acceleration

Solution

From the kinetic equation

[tex](v_{f})^{2}=(v_{i} )^{2}+2a(x_{f} -x_{i} )\\  (5.20 m/s)^{2}=(8.30m/s)^{2}+2a(5.10m-0m)\\a=\frac{(5.20m/s)^{2}-(8.30m/s)^{2}  }{2*(5.10m)}\\a=-4.103 m/s^{2}[/tex]

What frequency fapproach is heard by a passenger on a train moving at a speed of 18.0 m/s relative to the ground in a direction opposite to the first train and approaching it?

Answers

Answer:

The frequency is 302.05 Hz.

Explanation:

Given that,

Speed = 18.0 m/s

Suppose a train is traveling at 30.0 m/s relative to the ground in still air. The frequency of the note emitted by the train whistle is 262 Hz .

We need to calculate the frequency

Using formula of frequency

[tex]f'=f(\dfrac{v+v_{p}}{v-v_{s}})[/tex]

Where, f = frequency

v = speed of sound

[tex]v_{p}[/tex] = speed of passenger

[tex]v_{s}[/tex] = speed of source

Put the value into the formula

[tex]f'=262\times(\dfrac{344+18}{344-30})[/tex]

[tex]f'=302.05\ Hz[/tex]

Hence, The frequency is 302.05 Hz.

A 45.0 g hard-boiled egg moves on the end of a spring with force constant 25.0 N/m. Its initial displacement 0.500 m. A damping force Fx= −bvx acts on the egg, and the amplitude of the motion decreases to 0.100 m in a time of 5.00 s. Calculate the magnitude of the damping constant b. Express the magnitude of the damping coefficient numerically in kilograms per second, to three significant figures.

Answers

Answer:

0.02896 kg/s

Explanation:

[tex]A_1[/tex] = Initial displacement = 0.5 m

[tex]A21[/tex] = Final displacement = 0.1 m

t = Time taken = 0.5 s

m = Mass of object = 45 g

Displacement is given by

[tex]x=Ae^{-\dfrac{b}{2m}t}cos(\omega t+\phi)[/tex]

At maximum displacement

[tex]cos(\omega t+\phi)=1[/tex]

[tex]\\\Rightarrow A_2=A_1e^{-\dfrac{b}{2m}t}\\\Rightarrow \dfrac{A_1}{A_2}=e^{\dfrac{b}{2m}t}\\\Rightarrow ln\dfrac{A_1}{A_2}=\dfrac{b}{2m}t\\\Rightarrow b=\dfrac{2m}{t}\times ln\dfrac{A_1}{A_2}\\\Rightarrow b=\dfrac{2\times 0.045}{5}\times ln\dfrac{0.5}{0.1}\\\Rightarrow b=0.02896\ kg/s[/tex]

The magnitude of the damping coefficient is 0.02896 kg/s

Final answer:

To find the damping constant b for a damped harmonic motion scenario with a given change in amplitude over time, you employ the decay of amplitude formula in damped harmonic motion, then rearrange and solve for b.

Explanation:

To calculate the magnitude of the damping constant b for a 45.0 g hard-boiled egg moving at the end of a spring with a force constant of 25.0 N/m given a decrease in amplitude from 0.500 m to 0.100 m over 5.00 seconds, we apply the principle of damped harmonic motion. The damping force is given by Fx= −bvx, where b is the damping coefficient we wish to find. From the information provided, it's understood that this is a case of exponentially decaying amplitude in harmonic motion.

The equation that relates the exponential decay of amplitude in damped harmonic motion is A(t) = A0e−(bt/2m), where A0 is the initial amplitude, A(t) is the amplitude at time t, and m is the mass of the object. By re-arranging this equation to solve for b, and substituting the given values A0=0.500 m, A(t)=0.100 m, t=5.00 s, and m=0.045 kg (since 45.0 g=0.045 kg), we can calculate b.

The rearranged equation for b would be b = 2m[ln(A0/A(t))]/t. Substituting the values gives b = 2(0.045)[ln(0.500/0.100)]/5.00, which after calculation yields the magnitude of b.

A bakery measured the mass of a whole cake as 0.870 kg. A customer bought one slice of the cake and measured the mass of the slice as 0.1151 kg. What is the mass of the remaining cake, without the one slice?

Answers

Answer:

0.7549kg

Explanation:

The mass of the slice + mass of the remaining cake = total mass of cake.

mass of remaining cake = total mass of cake - the mass of the slice

total mass=0.870kg

mass of slice = 0.1151kg

mass of remaining cake = 0.870 - 0.1151

mass of remaining cake=0.7549kg

Friction pulls directly against the direction of motion (at 180) of a sled, and does -55.2 J of work while the sled moves 8.98 m. What is the magnitude (+) of the friction force?(unit=N)

Answers

The magnitude of the force of friction is 6.1 N

Explanation:

The work done by a force when moving an object is given by the equation:

[tex]W=Fd cos \theta[/tex]

where :

F is the magnitude of the force

d is the displacement

[tex]\theta[/tex] is the angle between the direction of the force and of the displacement

In this problem, we have:

W = -55.2 J (work done by the force of friction)

d = 8.98 m (displacement of the sled)

[tex]\theta=180^{\circ}[/tex] (because the force of friction acts opposite to the direction of motion)

By solving the equation for F, we find the magnitude of the force of friction on the sled:

[tex]F=\frac{W}{d cos \theta}=\frac{-55.2}{(8.98)(cos 180^{\circ})}=6.1 N[/tex]

Learn more about work:

brainly.com/question/6763771

brainly.com/question/6443626

#LearnwithBrainly

Answer:

6.1

Explanation:

Acellus

A positively charged insulating rod is brought close to an object that is suspended by a string. If the object is repelled away from the rod we can conclude: A) the object is positively charged B) the object is negatively charged C) the object is an insulator D) the object is a conductor E) none of the above Two small charged objects repel each other with a force F when separated by a distance d. If the charge on each object is reduced to one-fourth of its original value and the distance between them is reduced to d/2 the force becomes: A) F/16 B) F/8 C) F/4 D) F/2 E) F

Answers

Answer

A)   Positively charged two insulating rod are brought closed to an object  they repel each other. It means the Object is positively charged. Because similar charge repel each other.

   The correct answer is Option A.

B) we know force between to charges is calculated using Formula

         [tex]F = \dfrac{kQ_1Q_2}{r^2}[/tex].......(1)

   form the given condition in the question

          [tex]F' = \dfrac{k\dfrac{Q_1}{4}\dfrac{Q_2}{4}}{(\dfrac{r}{2})^2}[/tex]

          [tex]F' = \dfrac{k\dfrac{Q_1}{4}\dfrac{Q_2}{4}}{(\dfrac{r^2}{4})}[/tex]

          [tex]F' = \dfrac{4}{16}\dfrac{kQ_1Q_2}{r^2}[/tex]

from equation (1)

          [tex]F' = \dfrac{F}{4}[/tex]

hence, the correct answer is Option C.

Final answer:

The object is positively charged if repelled by a positively charged rod. The force between two charged objects reduces to F/16 when both charges are one-fourth and the distance is halved.

Explanation:

Charged Objects and Electrostatic Forces

If the object suspended by a string is repelled away from a positively charged insulating rod, we can conclude that the object is positively charged (A). This is because like charges repel each other, according to electrostatic principles.

Regarding the force between two charged objects, Coulomb's law states that the force between two point charges is directly proportional to the product of the charges and inversely proportional to the square of the distance between them. If the charge on each object is reduced to one-fourth of its original value and the distance between them is reduced to d/2, the new force is calculated as:

New charge = Original charge / 4

New distance = d / 2

New force = (1/4 × 1/4) / (1/2 × 1/2)^2 = 1/16 / 1/4 = F/16 (A)

During heavy rain, a section of a mountainside measuring 2.3 km horizontally (perpendicular to the slope), 0.75 km up along the slope, and 1.4 m deep slips into a valley in a mud slide. Assume that the mud ends up uniformly distributed over a surface area of the valley measuring 0.52 km x 0.52 km and that the mass of a cubic meter of mud is 1900 kg. What is the mass of the mud sitting above a 5.5 m2 area of the valley floor?

Answers

Answer:

93328 kg

Explanation:

[tex]\rho[/tex] = Density of mud = 1900 kg/m³

Volume of the cuboid is given by

[tex]V=2300\times 750\times 1.4\\\Rightarrow V=2415000\ m^3[/tex]

Volume is also given by

[tex]V=Al\\\Rightarrow l=\dfrac{V}{A}\\\Rightarrow l=\dfrac{2415000}{520\times 520}\\\Rightarrow l=8.9312\ m[/tex]

The length of the cuboid is 0.89312 m

For the small volume

[tex]V_a=al\\\Rightarrow V_a=5.5\times 8.9312\\\Rightarrow V_a=49.12\ m^3[/tex]

Mass is given by

[tex]m=\rho V_a\\\Rightarrow m=1900\times 49.12\\\Rightarrow m=93328\ kg[/tex]

The mass of the mud is 93328 kg

A Sense of Proportion: The Sun is roughly 100 times the diameter of Earth. If you built a model solar system with a golf ball (diameter of 1.68 inches) for Earth, how big would the model Sun be?

Answers

Diameter of Sun in model = 168 inches = 14 feet = 4.27 m

Explanation:

Diameter of Sun = 100 x Diameter of Earth.

We are creating a model where Earth is same as golf ball,

Diameter of Earth in model = Diameter of golf ball

Diameter of Earth in model = 1.68 inches

Diameter of Sun in model =  100 x Diameter of Earth in model

Diameter of Sun in model =  100 x 1.68

Diameter of Sun in model =  168 inches = 14 feet

Diameter of Sun in model = 168 inches = 14 feet = 4.27 m

What is the magnitude of the net force ona(n) 97 kg driver operating a dragster as it accelerates horizontally along a straight line from rest to 40 m/s in 5 s?

Answers

Answer:

Force acting on the driver will be 776 N

Explanation:

We have given mass of the driver m = 97 kg

It starts from rest so initial velocity u = 0 m /sec

And reaches to a velocity of 40 m /sec in 5 sec

So final velocity v = 40 m /sec

And time taken t = 5 sec

From first equation of motion v = u +at

So [tex]40=0+a\times 5[/tex]

[tex]a=8m/sec^2[/tex]

Now we have to find the force acting the driver

From newtons law we know that F = ma

So force F = 97×8 = 776 N

So force acting on the driver will be 776 N

A cannon shoots a ball at an angle θ above the horizontal ground. (a) Neglecting air resistance, use Newton's second law to find the ball's position as a function of time. (Use axes with x measured horizontally and y vertically.) (b) Let r(t) denote the ball's distance from the cannon. What is the largest possible value of θ if r(t) is to increase throughout the ball's flight?

Answers

Final answer:

The question involves the application of Newton's law to a ball's position over time, launched from a cannon at an angle. The x and y-axis positions can be calculated using horizontal and vertical principles of motion respectively. For the ball's distance (r) to increase throughout the flight, the launch angle needs to be 90°.

Explanation:

The subject of this question relates to the application of Newton's second law in two dimensions, specifically in cases of projectile motion. The position of the ball fired from a cannon is determined by the initial velocity of the ball, the launch angle θ, and the acceleration due to gravity.

The x-component of the ball's position can be calculated using horizontal motion principles. Here, the x position x(t) = V₀cos(θ)t, where V₀ is the initial speed of the ball, cos(θ) is the cosine of the launch angle and t is the time.The y-component of the ball's position can be calculated using vertical motion principles. In this case, y(t) = V₀sin(θ)t - 0.5gt², where sin(θ) is the sine of the launch angle, g is the acceleration due to gravity, and t is the time. For r(t) to increase throughout the ball's flight, the launch angle θ needs to be 90°. This is because the maximum range or distance is attained when objects are projected at an angle of 45°. But the ball's range will start to decrease after this angle, while the height (r(t)) will continue to increase until 90°.

Learn more about Projectile Motion here:

https://brainly.com/question/20627626

#SPJ3

A 0.12 kg body undergoes simple harmonic motion of amplitude 8.5 cm and period 0.20 s. (a) What is themagnitude of the maximum force acting on it? (b) If the oscillations are produced by a spring, what is the springconstant?

Answers

Answer:

a)F=698.83 N

b)K=8221.56 N/m

Explanation:

Given that

mass ,m = 0.12 kg

Amplitude ,A= 8.5 cm

time period ,T = 0.2 s

We know that

[tex]T=\dfrac{2\pi}{\omega}[/tex]

[tex]{\omega}=\dfrac{2\pi }{0.2}\ rad/s[/tex]

[tex]{\omega}=31.41\ rad/s[/tex]

We know that

[tex]{\omega}^2=m\ K[/tex]

K=Spring constant

[tex]K=\dfrac{\omega^2}{m}[/tex]

[tex]K=\dfrac{31.41^2}{0.12}\ N/m[/tex]

K=8221.56 N/m

The maximum force F

F= K A

F= 8221.56 x 0.085 N

F=698.83 N

a)F=698.83 N

b)K=8221.56 N/m

Final answer:

To find the magnitude of the maximum force acting on the body in simple harmonic motion, we use the equation F = -kx. To find the spring constant, we can rearrange the equation F = -kx.

Explanation:

To find the magnitude of the maximum force acting on the body in simple harmonic motion, we can use the equation F = -kx, where F is the force, k is the spring constant, and x is the displacement from the equilibrium position. In this case, we are given the amplitude A = 8.5 cm and the mass m = 0.12 kg. The displacement x at the maximum amplitude is equal to the amplitude, so x = A.

Plugging in the values, we get F = -(k)(A).

(a) To find the magnitude of the maximum force, we need to find the spring constant k. We can use the equation T = 2π√(m/k), where T is the period. Plugging in the values, T = 0.20 s and m = 0.12 kg, we can solve for k.

(b) To find the spring constant, we can rearrange the equation F = -kx to solve for k. Plugging in the values, F = 2.00 mg and x = A, we can solve for k.

How long (in s) will it take an 875 kg car with a useful power output of 42.0 hp (1 hp = 746 W) to reach a speed of 17.0 m/s, neglecting friction? (Assume the car starts from rest.)

Answers

Answer:

The time taken by the car with a useful power output is 4.03 seconds.

Explanation:

Given that,

Mass of the car, m = 875 kg

Initial speed of the car, u = 0

Final speed of the car, v = 17 m/s  

Power of the car, P = 42 hp = 31332 W

The power output of the car is given by the work done per unit time. It is given by :

[tex]P=\dfrac{W}{t}[/tex]

Initial kinetic energy of the car will be 0 as it is at rest.

Final kinetic energy of the car is :

[tex]K=\dfrac{1}{2}mv^2[/tex]

[tex]K=\dfrac{1}{2}\times 875\times (17)^2[/tex]

K = 126437.5

As per the work energy theorem, the change in kinetic energy of the object is equal to the work done.

So,

[tex]P=\dfrac{W}{t}[/tex]

[tex]t=\dfrac{W}{P}[/tex]

[tex]t=\dfrac{126437.5}{31332}[/tex]

t = 4.03 seconds

So, the time taken by the car with a useful power output is 4.03 seconds. Hence, this is the required solution.

____ is the process of sending data over a signal by varying either its amplitude, frequency, or phase.

Answers

Answer:

Modulation

Explanation:

Modulation is the the process whereby a waveform has one or more of it's properties varied. Amplitude, frequency and phase are all properties of a waveform which can be varied hence Modulation is the process of sending data over a signal by varying either its amplitude, frequency or phase.

Use a(t) = -32 feet per second per second as the acceleration due to gravity. (Neglect air resistance.) -With what initial velocity must an object be thrown upward (from ground level) to reach the top of the Washington Monument (approximately 550 feet)?

Answers

Answer:

u= 187.61 ft/s

Explanation:

Given that

g= - 32 ft/s²

The maximum height ,h= 550 ft

Lets take the initial velocity = u ft/s

We know that

v²=u² + 2 g s

v=final speed ,u=initial speed ,s=height

When the object reach at the maximum height then the final speed of the object will become zero.

That is why

u²= 2 x 32 x 550

u²= 35200

u= 187.61 ft/s

That is why the initial speed will be 187.61 ft/s

Answer:

Explanation:

a = - 32 ft/s²

h = 550 ft

Let the initial velocity is u. The velocity at maximum height is zero.

use third equation of motion

v² = u² + 2 a h

0 = u² -  2 x 32 x 550

u² = 35200

u = 187.62 ft/s

Other Questions
In some works of literature, a character who appears briefly, or who does not appear at all, is a significant presence. Using The Importance of Being Earnest, show how such a character functions. You may wish to discuss how the character affects action, theme, or the development of other characters. Avoid plot summary. Let A denote the event that a disk has high shock resistance, and let B denote the event that a disk has high scratch resistance. If a disk is selected at random, determine the following probabilities. Input your answers in the fractional form (do not simplify).P(A)=86/100P(B)=79/100P(A')=7/50P(A U B)=95/100P(A' U B)= ??? a letter to the chairman of your local government area requesting social amenities in my community Which idea is common to both texts?A.Humanity's need for expedition and adventure has allowed people to reach and explore even the farthest points on the planet.B. Human history exists only because of the work the bravest and most adventurous people.C.Humanity can benefit from scientific knowledge and Inventions only through mutual cooperation.D. People's desire to compete against each other for control can often cause them to harm even the most hostile places on theplanet. I need help with this Punnett square Practice If you were setting up an experiment to disprove spontaneous generation in a liquid medium, which of the following would be essential to the experiment?A) supplying the liquid with nutrientsB) starting with a liquid that contains microorganismsC) adding antibiotics to the liquidD) using a sterile liquid and eliminating exposure to microorganismsE) adding carbon dioxide to the liquid PLEASE HELP BRAINLIESTChoose the statements that correctly describe the Electoral College.Not all states get the same number of electoral votes.There are 538 members of the Electoral College.Members of Congress are part of the Electoral College.To become President, a candidate MUST get a majority of the electoral votes.A candidate needs 270 electoral votes to win an election.The Electoral College is used the elect all national government offices. Some large hardware stores, such as Home Depot, boast of carrying as many as 20,000 different products in each store. This volume of goods is the result of? 4/5 is greater than less then or equal to 1/2 Your co-worker Terry is dealing with a lot lately. Usually, he is a productive member of your team, but lately, he's been ill-tempered and even rude to you and the rest of your team. You know that Terry's supervisor scolded him for poor work habits and he got a speeding ticket last week. He also seems worried that he might be fired. You're sympathetic, but his attitude is causing the rest of your team to suffer in terms of morale and productivity. How would you approach Terry about his negative attitude in a positive and non-aggressive way? According to the equation developed by de Broglie, what happens to the wavelength of a particle as mass increases? 25. Belle had the choice of taking out a 4-year car loan at8.5% simple interest or a 5-year car loan at 7.75%simple interest. If she borrows $15,000, how muchinterest would she pay for each loan? Which optionwill require less interest? Generally speaking, if a state or local law contradicts federal law, it is more likely to be ruled unconstitutional if challenged in courts because of the __________ clause. In North American society, categories such as age, ethnicity, gender, sexual orientation, disabilities, and religion are all considered ____________. Melinda expressed concerns as to whether the wording of the questions in a life satisfaction survey may have encouraged respondents to convey unusually positive levels of well-being. Melinda's concerns best illustrated:_____________a) hindsight bias.b) the perils of intuition.c) critical thinking.d) the perception of order in random events. The annual report only contains three basic financial statements: the income statement, balance sheet, statement of cash flows.True / Fasle How many inches are in 2.0 miles Lewis and Clark expedition in adjectives Read and choose the option with the correct conjugation to complete the sentence.Joseph ________ al gimnasio cada tarde. vas va vamos van Deciding if a law is constitutional or unconstitutional isa. Chief Justiceb. Judicial Reviewc. review judgesd. court case Steam Workshop Downloader