Answer: 450 kg
Explanation: p=mv
m= p/v
m=40500/90
m=450kg
The mass of the truck given that it has a momentum of 40500 Kgm/s and moving at 90 m/s is 450 Kg
What is momentum?Momentum is defined as the product of mass and velocity. It is expressed as
Momentum = mass × velocity
How to determine the mass Momentum = 40500 Kgm/sVelocity = 90 m/sMass =?Momentum = mass × velocity
40500 = mass × 90
Divide both side by 90
Mass = 40500 / 90
Mass = 450 Kg
Learn more about momentum:
https://brainly.com/question/250648
A train travels 55 km south along a straight track in 34 minutes. What is the train's average velocity in kilometers per hour?
Answer: v = 96.5 km/h
Explanation: Solve this problem using the following equation:
v= d/t
First convert t in minutes into hours
34 mins x 1 hour / 60 mins
= 0.57 h
Substitute the values
v = 55 km / 0.57 h
= 96.5 km/h
A rock has a mass of 340.6 kg and a volume of 214 cm^3. Calculate the density
Density = mass/volume
Density = 340.6kg / 214 cm^3
Density = 1.592 kg/ cm^3
Density = 1,592 gram/cm^3
That's about 70 TIMES the density of the most dense natural element (Osmium). This is one verrrry interesting rock !
According to the question,
Mass, m = 340.6 kgVolume, V = 214 cm³We know the formula,
→ [tex]Density = \frac{Mass}{Volume}[/tex]
By substituting the values, we get
[tex]= \frac{340.6}{214}[/tex]
[tex]= 1.592 \ kg/cm^3[/tex]
or,
[tex]= 1592 \ g/cm^3[/tex]
Thus the response above is correct.
Learn more about density here:
https://brainly.com/question/3251575
Which of the following best describes the picture shown below?
Answer:
b
Explanation:
its b
As per the image depicted the picture shows us the arrow and the target to be hit.
As per the picture 2 or 3 arrows have been shown in the green region that is quite far form the spot in red. This shows the concept of poor or low accuracy and high precession as all of them are in same place.Hence the option B is correct.
Learn more about the following best describes the picture shown below.
brainly.ph/question/14877199.
stephanie, who has a mass of 75 kg is driving and suddenly slams on her brakes to avoid hitting a student crossing blanco road. she is wearing her seatbelt, which brings her body to a stop at 0.5 seconds. an average foce of 3750 N is exerted on her body during the collision. how fast was she going before applying the brakes?
Answer:
25 m/s
Explanation:
Impulse = change in momentum
F Δt = m Δv
(3750 N) (0.5 s) = (75 kg) (v − 0 m/s)
v = 25 m/s
A 40 kg gymnast somersaults into a foam ball pit at a speed of 7 m/s. If the foam applies an average resistive force of 1,000 N, how far into the pit will the gymnast sink before she stops?
The distance covered is 0.98 m
Explanation:
Newton's second law states that the force applied on the gymnast is equal to the product between its mass and its acceleration:
[tex]F=ma[/tex]
where in this case,
F = -1000 N is the force applied (negative since it is opposite to the direction of motion)
m = 40 kg is the mass
a is the acceleration
Solving for a,
[tex]a=\frac{F}{m}=\frac{-1000}{40}=-25 m/s^2[/tex]
Since the motion of the gymnast is a uniformly accelerated motion, we can now apply suvat equations:
[tex]v^2-u^2=2as[/tex]
where
v = 0 is the final velocity of the gymnast
u = 7 m/s is the initial velocity
[tex]a=-25 m/s^2[/tex] is the acceleration
s is the distance through which the gymnast moves before stopping
And solving for s,
[tex]s=\frac{v^2-u^2}{2a}=\frac{0-7^2}{2(-25)}=0.98 m[/tex]
Learn more about accelerated motion:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly
Using the principles of work and kinetic energy, we can calculate that the gymnast will sink 0.98 meters into the foam pit before coming to a stop.
Explanation:In this physics problem, we are dealing with the principles of work and kinetic energy. The work done to stop the gymnast can be calculated using the formula W=Fxd, where F is the resistive force, and d is the distance. It’s also equal to the change in kinetic energy, which can be found using KE = 0.5mv^2.
To calculate the distance into the pit the gymnast will sink, we first calculate her initial kinetic energy. It’s KE = 0.5*(40 kg)*(7 m/s)^2 = 980 Joules. The work done to stop her (which is equal to her initial kinetic energy) is W = 980 Joules. Now, solve the work equation for distance: d = W/F = 980 Joules / 1000 N = 0.98 m. So, the gymnast will sink 0.98 meters into the foam pit before she stops.
Learn more about Physics - Work and Energy here:https://brainly.com/question/33726554
#SPJ11
A non-infectious disease is a disease that you can not catch.
True or False
40 pointsss
Answer:
TRUE
Explanation:
Answer: TRUE
Explanation:
calculate the total surface area of a solid cone of slant height 15cm and base radius 8cm.
Answer:
it's 578 cm
[tex]\pi \times 8 \times 15 + \pi \times {8 }^{2} = 578[/tex]
Explanation:
[tex]surface \: area \: of \: a \: corn = \pi \times radius \times slant \: height + \pi \times {r}^{2} [/tex]
which category are liquids and gases a part of? PLEASE HELP
-compounds
-solutions
-solids
-fluids
Liquids and gases are a part of fluids.
Explanation
Liquids and gases are two states of matter and they differ from solids in terms of close packing of the particles and freedom of movement. The solid particles are closely packed allowing lesser freedom of movement while the particles are not the tightly packed in liquids and gases. gases have greater freedom of movement than solids and liquids and liquids have greater freedom of movement than solids.
Due to this factor liquids and gases can move or flow easily and that is why they are called fluids.
How to find final velocity
Answer:
Explanation:
The equation or formula for velocity is similar to speed. To figure out velocity, you divide the distance by the time it takes to travel that same distance, then you add your direction to it.
Final answer:
To calculate final velocity, identify the knowns (initial velocity, acceleration, time), determine the unknown (final velocity), use the equation v = vo + at, and solve by substituting values into the equation.
Explanation:
To find the final velocity of an object, you must first:
Identify the known values, such as initial velocity (vo), acceleration (a), and time (t).
Determine the unknown, which is the final velocity (v).
Select the appropriate equation to calculate final velocity. The standard equation used is v = vo + at.
Substitute the known values into the equation and solve for the final velocity.
For example, if the initial velocity is 70.0 m/s, the acceleration is -1.50 m/s², and the time is 40.0 s, you would calculate the final velocity as follows:
v = vo + at = 70.0 m/s + (-1.50 m/s²) (40.0 s) = 10.0 m/s
This calculation reveals that the final velocity of the object after 40 seconds is 10.0 m/s.
Add each of the following vectors and find the total resultant.
a. 15 m East and 25 m North.
b. 220 m North and 80 m West.
c. 2.2 m South and 1.8 m North.
d. 150 m East and 180 m South.
e. 45 m South, 30 m East, and 15 m North.
A current 1A in the human body is extremely dangerous.
a) Estimate the potential difference needed to produce this current.
b) Suggest why your are unlikely to be injured by an electric current in your house.
Please answer both questions.
a) Potential difference needed: 10,000 V
b) Because the potential difference in the house is maximum 230 V
Explanation:
a)
The relationship between current, potential difference and resistance in a conductor is given by Ohm's law:
[tex]V=RI[/tex]
where
V is the potential difference
R is the resistance
I is the current
The resistance of the human body is estimated to be as high as [tex]100,000 \Omega[/tex] for a dry body and as low as [tex]1000 \Omega[/tex] for a wet body: in this problem, we use a value in the middle,
[tex]R=10,000 \Omega[/tex]
Therefore, the potential difference needed to produce a current of
[tex]I=1 A[/tex]
is
[tex]V=(10,000)(1)=10,000 V[/tex]
b)
Here we want to estimate if it is likely or not to get injured by an electric current in a house.
The amount of current that can be fatal is [tex]I=1 A[/tex]. From part a), we saw that in order to produce this current through the human body, a potential difference of
[tex]V=10,000 V[/tex]
is needed.
However, the electricity that reaches the houses and then is connected to the household appliances has a potential difference of
V = 230 V
This value is much lower than 10,000 V, therefore the electricity in the house is unlikely to cause injures to human body.
Learn more about potential difference:
brainly.com/question/4438943
brainly.com/question/10597501
brainly.com/question/12246020
#LearnwithBrainly