How many trips would one rubber-tired Herrywampus have to make to backfill a space with a geometrical volume of 5400 cubic yard? The maximum capacity of the machine is 30 cubic yard (heaped), or 40 tons. The material is to be compacted with a shrinkage of 25% (relative to bank measure) and has a swell factor of 20% (relative to bank measure). The material weighs 3,000 lb/cu yd (bank). Assume that the machine carries its maximum load on each trip. Check by both weight and volume limitations

Answers

Answer 1

The rubber-tired Herrywampus machine would need to make 288 trips to backfill the space with the given geometrical volume, considering both volume and weight limitations.

The Breakdown

we need to consider the volume and weight limitations of the rubber-tired Herrywampus machine.

Geometrical volume of the space to be backfilled: 5400 cubic yards

Maximum capacity of the machine: 30 cubic yards (heaped) or 40 tons

Compaction shrinkage: 25% (relative to bank measure)

Swell factor: 20% (relative to bank measure)

- Material weight: 3,000 lb/cu yd (bank)

Calculate the actual volume of material required to backfill the space.

Actual volume = Geometrical volume / (1 - Compaction shrinkage)

Actual volume = 5400 cubic yards / (1 - 0.25)

Actual volume = 7200 cubic yards

Calculate the volume of material to be loaded into the machine, considering the swell factor.

Swelled volume = Actual volume × (1 + Swell factor)

Swelled volume = 7200 cubic yards × (1 + 0.20)

Swelled volume = 8640 cubic yards

Calculate the number of trips required based on the machine's volume capacity.

Number of trips = Swelled volume / Machine capacity

Number of trips = 8640 cubic yards / 30 cubic yards

Number of trips = 288 trips

Check the weight limitation.

Weight of material per trip = Machine capacity × Material weight

Weight of material per trip = 30 cubic yards × 3,000 lb/cu yd

Weight of material per trip = 90,000 lb

Total weight of material = Swelled volume × Material weight

Total weight of material = 8640 cubic yards × 3,000 lb/cu yd

Total weight of material = 25,920,000 lb

Number of trips based on weight limitation = Total weight of material / Weight of material per trip

Number of trips based on weight limitation = 25,920,000 lb / 90,000 lb

Number of trips based on weight limitation = 288 trips

Therefore, the rubber-tired Herrywampus machine would need to make 288 trips to backfill the space with the given geometrical volume, considering both volume and weight limitations.


Related Questions

A wind chill factor is defined as the temperature in still air required for a human to suffer the same heat loss as he does for the actual air temperature with the wind blowing. On a very cold morning on the ski slopes at Big Bear, the outside temperature is 15 ℉ and the wind chill factor is-30 °F. Find the wind speed in miles/hour. Assumptions: For a person fully clothed in ski gear, assume that temperature on the outside surface of the clothes is 40 °F and the heat transfer coefficient in sl air is 4 Btu/hr ft2 °F. For simplicity, model the person as a cylinder 1 ft in diameter by 6 ft tall. Use the correlation for forced convection past an upright cylinder: Nu 0.0239 ReD 0805 . Properties of air: thermal conductivity 0.0 134 Btu/hrft。F, density 0.0845 lbm/ft, dynamic viscosity 3.996×10-2 bm/ft hr 2.0

Answers

Answer: V = 208514.156 ft/hr

Explanation:

we will begin by giving a step by step order of answering.

given that

A = area available for convection which will be same for both cases

h (still) = heat transfer coefficient in still air

h(blowing) = heat transfer coefficient in blowing air.

Therefore,

h(still) A [40-(-30)] = h(blowing) A (40-15)

canceling out we have

h(still) (70) = h(blowing) (25)

where h(still) = 4 Btu/hr.ft².°F

4 × 70 =  h(blowing) (25)

h (blowing) = 11.2 Btu/hr.ft².°F

Also, we have that NUD = 0.0239 ReD 0805

h (blowing) D / k = 0.0239 (ρVD/μ)˄0.805

where from our data,

D = diameter = 1 ft

ρ = density = 0.0845 lbm/ft

μ = viscosity = 3.996×10-2 bm/ft hr

K = 0.0134 Btu/hr.ft²°F

So from

h (blowing) D / k = 0.0239 (ρVD/μ)˄0.805

we have;

11.2 × 1 / K =  0.0239 (0.0845×V×1 / 3.996×10-2 )˄0.805

where K = 0.0134

V = 208514.156 ft/hr

cheers i hope this helps

An online music platform, S record, is planning to implement a database to enhance its data management practice and ultimately advance its business operations. The initial planning analysis phases have revealed the following system requirements:

Each album has a unique Album ID as well as the following attributes: Album Title, Album Price, and Release Date. An album contains at least one song or more songs. Songs are identified by Song ID. Each song can be contained in more than one album or not contained in any of them at all and has a Song Title and Play Time. Each song belongs to at least one genre or multiple genres. Songs are written by at least an artist or multiple artists. Each artist has a unique Artist ID, and an artist writes at least one song or multiple songs, to be recorded in the database. Data held by each artist includes Artist Name and Debut Date.

Each customer must sign up as a member to make a purchase on the platform. The customer membership information includes Customer ID, Customer Name, Address (consisting of City, State, Postal Code), Phone Number, Birthday, Registration Date. Customers place orders to purchase at least one album or more albums. They can purchase multiple quantities of the same album, which should be recorded as Quantities Ordered. Each order is identified by an Order IDand has Order Date, Total Price, Payment Method, and Delivery Option.

Q1. Draw an ER diagram for Statement 1 (You can add notes to your diagram to explain additional assumptions, if necessary).

File format: asgmt1_q1_ lastname_firstname.pdf

Answers

Answer:

Explanation:

We would be taking a breakdown of the following entities.

online music platform database can have the following entities:

1. Artist

has the following attributes:

Artists Name

Artist ID

Debut Date

2. Albums

has the following attributes

:

Album ID

Title

Release Date  

Price

3. Song

 has the following attributes

:

Song ID

Play Time

Title

genres

4. Items

This represents the items the customers purchased with several albums and quantity.

this shows the following attributes

Album ID

Qty

 

5. Orders

has the following attributes

The Order ID

The Order Date

Total Price

Payment Method

Delivery Option

6. Customer

has the following attributes

Customer ID

Customer Name

Address - City, State, Postal code

Phone Number

Birthday

Registration Date

NB. the uploaded image shows the ER Diagram.

cheers i hope this helps.

A heat engine operates between a source at 477°C and a sink at 27°C. If heat is supplied to the heat engine at a steady rate of 65,000 kJ/min, determine the maximum power output of this heat engine.

Answers

Answer:

[tex] T_C = 27+273.15 = 300.15 K[/tex]

[tex] T_H = 477+273.15 = 750.15 K[/tex]

And replacing in the Carnot efficiency we got:

[tex] e= 1- \frac{300.15}{750.15}= 0.59988 = 59.98 \%[/tex]

[tex] W_{max}= e* Q_H = 0.59988 * 65000 \frac{KJ}{min}= 38992.2 \frac{KJ}{min}[/tex]

Explanation:

For this case we can use the fact that the maximum thermal efficiency for a heat engine between two temperatures are given by the Carnot efficiency:

[tex] e = 1 -frac{T_C}{T_H}[/tex]

We have on this case after convert the temperatures in kelvin this:

[tex] T_C = 27+273.15 = 300.15 K[/tex]

[tex] T_H = 477+273.15 = 750.15 K[/tex]

And replacing in the Carnot efficiency we got:

[tex] e= 1- \frac{300.15}{750.15}= 0.59988 = 59.98 \%[/tex]

And the maximum power output on this case would be defined as:

[tex] W_{max}= e* Q_H = 0.59988 * 65000 \frac{KJ}{min}= 38992.2 \frac{KJ}{min}[/tex]

Where [tex] Q_H[/tex] represent the heat associated to the deposit with higher temperature.

A Diesel cycle engine is analyzed using the air standard method. Given the conditions at state 1, compression ratio (r), and cutoff ratio (rc) determine the efficiency and other values listed below.
Note: The gas constant for air is R=0.287 kJ/kg-K.

--Given Values--
T1 (K) = 306
P1 (kPa) = 140
r = 10
rc = 1.75

a) Determine the specific internal energy (kJ/kg) at state 1.
Your Answer =
b) Determine the relative specific volume at state 1.
Your Answer =
c) Determine the relative specific volume at state 2.
Your Answer =
d) Determine the temperature (K) at state 2.
Your Answer =
e) Determine the pressure (kPa) at state 2.
Your Answer =
f) Determine the specific enthalpy (kJ/kg) at state 2.
Your Answer =
g) Determine the temperature (K) at state 3.
Your Answer =
h) Determine the pressure (kPa) at state 3.
Your Answer =
i) Determine the specific enthalpy (kJ/kg) at state 3.
Your Answer =
j) Determine the relative specific volume at state 3.
Your Answer =
k) Determine the relative specific volume at state 4.
Your Answer =
l) Determine the temperature (K) at state 4.
Your Answer =
m) Determine the pressure (kPa) at state 4.
Your Answer =
n) Determine the specific internal energy (kJ/kg) at state 4.
Your Answer =
o) Determine the net work per cycle (kJ/kg) of the engine.
Your Answer =
p) Determine the heat addition per cycle (kJ/kg) of the engine.
Your Answer =
q) Determine the efficiency (%) of the engine.
Your Answer =

help A through Q

Answers

Answer:

Explanation: see attachment

The girl has a mass of 45kg and center of mass at G. (Figure 1) If she is swinging to a maximum height defined by theta = 60, determine the force developed along each of the four supporting posts such as AB at the instant theta = 0.

Answers

Answer and Explanation:

the answer is attached below

The design for a new cementless hip implant is to be studied using an instrumented implant and a fixed simulated femur.
Assuming the punch applies an average force of 2 kN over a time of 2 ms to the 200-g implant, determine (a) the velocity of the implant immediately after impact, (b) the average resistance of the implant to penetration if the implant moves 1 mm before coming to rest.

Answers

Answer:

a) the velocity of the implant immediately after impact is 20 m/s

b) the average resistance of the implant is 40000 N

Explanation:

a) The impulse momentum is:

mv1 + ∑Imp(1---->2) = mv2

According the exercise:

v1=0

∑Imp(1---->2) = F(t2-t1)

m=0.2 kg

Replacing:

[tex]0+F(t_{2} -t_{1} )=0.2v_{2}[/tex]

if F=2 kN and t2-t1=2x10^-3 s. Replacing

[tex]0+2x10^{-3} (2x10^{-3} )=0.2v_{2} \\v_{2} =\frac{4}{0.2} =20m/s[/tex]

b) Work and energy in the system is:

T2 - U(2----->3) = T3

where T2 and T3 are the kinetic energy and U(2----->3) is the work.

[tex]T_{2} =\frac{1}{2} mv_{2}^{2} \\T_{3} =0\\U_{2---3} =-F_{res} x[/tex]

Replacing:

[tex]\frac{1}{2} *0.2*20^{2} -F_{res} *0.001=0\\F_{res} =40000N[/tex]

If block A of the pulley system is moving downward at 6 ft>s while block C is moving down at 18 ft>s, determine the relative velocity of block B with respect to C.

Answers

Answer:

Explanation:

The detailed steps and appropriate calculation with analysis is as shown in the attachment.

The final answer is "39 ft/s".

Determine the string's length.

[tex]S_A +2S_B +2S_C = Constant[/tex]

Calculate the equation in terms of time.

[tex]v_A+2v_B +2v_c =0 \\\\6 +2v_B +2(18)=0 \\\\2v_B = -42 \\\\V_B =-21 \frac{ft}{s}[/tex]

Calculate the relative velocity of B with respect to C.[tex]V_B = v_c + V_{\frac{B}{C}} \\\\-21=18+ V_{\frac{B}{C}} \\\\ V_{\frac{B}{C}}= -39 \ \frac{ft}{s} = 39 \ \frac{ft}{s} \uparrow[/tex]

Find out more information about the velocity here:

brainly.com/question/15088467

Under standard conditions, a given reaction is endergonic (i.e., DG >0). Which of the following can render this reaction favorable: using the product immediately in the next step, maintaining a high starting-material concentration, or keeping a high product concentration

Answers

Answer:

Explanation:using the product immediately in the next step

Pro-Cut Rotor Matching Systems provide a non-directional finish without performing additional swirl sanding — true or false?

Answers

Answer:True

Explanation:Rotor matching is a term used to describe the process through a brake rotor is aligned to the hub and bearing assembly to produce a smooth, flat, and straight friction surface.

Rotor matching is an essential process which is required to prevent swirling of a break when a vehicle is stopping, rotor matching is needed for efficient and effective break system performance as it is one of the main determinant factors for accidents arising from break failures.

If you stretch a rubber hose and pluck it, you can observe a pulse traveling up and down the hose. What happens to the speed of the pulse if you stretch the hose more tightly

Answers

Answer:

Explanation:if you stretch the hose more tightly the speed of the pulse will reduce..

One-dimensional plane wall of thickness 2L=80 mm experiences uniform thermal generation of q dot =1000 W/m^3 and is convectively cooled at x=±40m by an ambient fluid characterized by T [infinity] = 30 degrees C. If the steady-state temperature distribution within the wall is T(x) = a(L2-x2)+b where a = 15o C/m^2 and b=40oC, what is the thermal conductivityof the wall? What is the value of the convection heat transfer coefficient?

Answers

Answer:

Thermal Conductivity (K) = 33.33 W/m. ° C

The value of the convection heat transfer coefficient = 3 W/m².° C

Explanation:

The attached document file gives a detailed and clear explanation about the question.

This assignment covers the sequential circuit component: Register and ALU. In this assignment you are supposed to create your own storage component for two numbers using registers. Those two numbers are then passed into a custom ALU that calculates the result of one of four possible operations. Key aspect of this assignment is to understand how to control registers, how to route signals and how to design a custom ALU.

Answers

Answer:

The part I called command in the first diagram has been renamed to opcode, or operation code. This is a set of bits (a number) that will tell the ALU which action to perform. I can get the LC-3 opcodes for ADD and NOT and ADD from the book, so I'm not too worried.

Note the #? comment by the switch above opcode. This means I'm not sure how many switches I will need. How many bits do I need to perform all the operations I want? The textbook will tell me.

Materials

Now I make a list of all the materials you have accumulated so far. This list is just an example; yours may be different.

Two 4-bit inputs

One 4-bit output

Two keypads for 4-bit input

Three 7-segment displays (2 for input, 1 for output)

A bunch of switches for opcode (could use a keypad, I guess, but switches are so much more geeky)

A bunch of lights too

The "is zero" LED

One button for clock

One button for reset

One switch for carry-in

Include logic to perform a SUB instruction. That is, subtract the second operand from the first (out = in1 - in2). All three values -- both inputs and the output -- must be two's complement numbers (negative numbers must be represented). Your design may work in one (8 points) or two (4 points) clock cycles.

Explanation:

You are allowed to use the Logisim built-in registers.

The clear input of the register should not be used (do not connect anything to

them).

Custom ALU

Use the provided subcircuit in the template to implement your ALU. You do not have to create additional subcircuits to do this. The ALU has a total of three inputs: First number, second number and select operation input. And one output: Result. The first and second number are used as input for the operations the ALU performs. The select input decides which operation result will be on the single output of the ALU. The ALU is supposed to calculate: NumberA OPERATION NumberB. Register 1 of the storage contains NumberA and Register 2 contains NumberB. The ALU must be able to compute signals with a 4-bit width. Make sure to add labels to all inputs and outputs.

The following operations should be performed for each select input combination (s1s0): • 00: Logic Bitwise XOR

• 01: Multiplication

• 10: Division

• 11: Addition Notes:

You can change the inputs bit width / data bits of any gate to more that 1-bit.

The Logic Bitwise XOR operation can be done with a single XOR gate.

You are also allowed to use the built-in arithmetic logic components and multi- plexer provided by Logisim.

If the result is larger than 4 bits, it will be truncated (only 4 LSB will be shown). This behavior is intended for this assignment. Also, negative results do not have to be considered.

Once you have implemented the ALU circuit, connect the wires in the main circuit properly and test all four operations of your ALU in combination with the storage component.

The flow of a liquid in a 2 inch nominal diameter steel pipe produces a pressure drop due to friction of 78.86 kPa. The length of pipe is 40 m and the mean velocity is 3 m/s. if the density of the liquid is 1000 kg/m^3, then a) determine the reynolds number b) determind if the flow is laminar or tubulent c) compute viscosity of the liquid d) compute the mass flow rate (assume ?, equivalent roughness factor, for Steel pipe to be 45.7 x 10-6 m)

Answers

Answer:

Explanation:

The detailed steps and careful analysis is as shown in the attached file.

Based on the calculations, the Reynolds number is equal to [tex]2.9 \times 10^3[/tex]

Given the following data:

Length of pipe = 40 meters.Diameter of pipe = 2 inches to m = 0.0508 m.Pressure drop = 78.86 kPa.Mean velocity = 3 m/s.Density of liquid = 1000 [tex]kg/m^3[/tex].Roughness factor = [tex]45.7 \times 10^{-6}[/tex] m.

How to calculate the Reynolds number.

Reynolds number has a direct relationship with friction factor. Thus, we would determine the friction factor by using this formula:

[tex]f=\frac{2 \Delta P D}{ \rho Lu^2}[/tex]

Where:

D is the diameter.L is the length.[tex]\Delta P[/tex][tex]\DeltaP[/tex][tex]\DeltaP[/tex] is the pressure drop.u is the mean velocity.[tex]\rho[/tex] is the density.

Substituting the given parameters into the formula, we have;

[tex]f=\frac{2 \times 78.86 \times 10^3 \times 0.0508}{ 1000 \times 40 \times 3^2}\\\\f=\frac{8012.176}{360000}[/tex]

f = 0.0223.

For the Reynolds number:

[tex]N_{Re}=\frac{64}{f} \\\\N_{Re}=\frac{64}{0.0223}[/tex]

Reynolds number = [tex]2.9 \times 10^3[/tex]

Note: Fluid flow is turbulent when Reynolds number is greater than 2000 ([tex]N_{Re} > 2000[/tex]) and it is laminar when it is lesser than 2000 ([tex]N_{Re} < 2000[/tex]).

b. The flow of this liquid is turbulent.

c. To determine the viscosity:

[tex]V=\frac{\rho uD}{N_{Re}} \\\\V=\frac{1000 \times 3 \times 0.0508}{2.9 \times 10^3} \\\\V=\frac{152.4}{2.9 \times 10^3}[/tex]

V = 0.0526 Kgm/s.

d. To determine the mass flow rate:

[tex]m=\rho A u=\rho u\frac{\pi}{4} D^2\\\\m=1000 \times 3 \times 0.7854 \times 0.0508^2[/tex]

m = 6.081 Kg/s.

Read more on Reynolds number here: https://brainly.com/question/14306776

Design a 10-to-4 encoder with inputs in the l-out-of-10 code and outputs in a code like normal BCD except that input lines 8 and 9 are encoded into "E" and " F", respectively.

Answers

Answer:

See image attached.

Explanation:

This device features priority encoding of the inputs

to ensure that only the highest order data line is en-

coded. Nine input lines are encoded to a four line

BCD output. The implied decimal zero condition re-

quires no input condition as zero is encoded when

all nine datalinesare athigh logic level. Alldata input

and outputs are active at the low logic level. All in-

puts are equipped with protection circuits against

static discharge and transient excess voltage.

Final answer:

A 10-to-4 encoder is requested to be designed for mapping 1-out-of-10 input code to a modified BCD output, where the digits 8 and 9 are encoded as 'E' and 'F'. The implementation involves the use of digital logic gates and could also reference quantum gates depending on the context of the course.

Explanation:

The student is asking to design a 10-to-4 encoder with a specific bit pattern for the numbers 8 and 9. This encoder takes a l-out-of-10 input code and produces a BCD-like output with special cases for inputs 8 ('E') and 9 ('F'). The design would necessitate the use of digital logic gates to map each of the 10 inputs to correspondent 4-bit BCD outputs, with the additional requirement to encode the inputs representing the decimal numbers 8 and 9 into the hexadecimal digits 'E' and 'F', respectively.

In terms of circuitry, the encoder might use a combination of logical gates such as AND, OR, and NOT to create the desired output for each input. For example, when the ninth input is active (representing the number 8), the output should be '1110', which signifies 'E' in hexadecimal notation. Similarly, an active tenth input (representing the number 9) should produce '1111', corresponding to 'F' in hexadecimal.

The encoding and decoding elements are described using terms such as CnNOT, CNOT, I (Identity), and Toffoli gates, which suggests a more sophisticated setup, possibly involving quantum computing principles, as these terms relate to quantum gates.

A 2.0-in-thick slab is 10.0 in wide and 12.0 ft long. Thickness is to be reduced in three steps in a hot rolling operation. Each step will reduce the slab to 75% of its previous thickness. It is expected that for this metal and reduction, the slab will widen by 3% in each step. If the entry speed of the slab in the first step is 40 ft/min, and roll speed is the same for the three steps.

Calculate:

a) lenghtb) exit velocity of the final slab

Answers

Answer:

L_f = 26.025 ft

v_f = 51.77 ft/min

Explanation:

Given:-

- The thickness of the slab initially, t_o = 2 in

- The width of the slab initially, w_o = 10 in

- The Length of the slab initially, L_o = 12.0 ft

- The reduction in thickness in each of three steps, r = 75%

- The widening of the slab in each of three steps , m = 3%

- The entry speed vi = 40 ft/min

- The roll speed remains the same

Find:-

a) length

b) exit velocity

Of the final slab

Solution:-

- The final thickness (t_f) after three passes is as follows:

                      t_f =  ( r / 100 )^n * t_o

Where, n = number of passes.

                     t_f = ( 75 / 100 ) ^3 * ( 2.0 )

                    t_f = 0.844 in

- The final width (w_f) after three passes is as follows:

                      w_f =  ( m / 100 + 1 )^n * w_o

Where, n = number of passes.

                     w_f = ( 3 / 100 + 1 ) ^3 * ( 10.0 )

                     w_f = 10.927 in

- Assuming the Volume of the slab remains the same. Zero material Loss. The final length of slab can be determined:

                    t_o*w_o*L_o = t_f*w_f*L_f

                    L_f = ( 2 * 10 * 12 ) / ( 0.844 * 10.927 )

                    L_f = 26.025 ft

- We can use the volume rate equation as the roll speed remains constant i.e change in rate of volume is zero. Hence, we can write the before and after the 3rd step formulation:

                   t_i*w_i*v_i = t_f*w_f*v_f

Where, v_i : The entry step speed

            v_f : Third step exit speed.

                   (0.75)^2 * 2 * (1.03)^2 * 10 * 40 =  (0.844)*(10.927)*v_f

                  v_f = 51.77 ft/min    

This report contains three fields: the label of the vending machine, what percentages of the beverages it was last stocked with are sold, and how many total dollars of sales has this generated. You will need to create a new dictionary where the keys are the vending machine labels, and the values are a new type of object called a `MachineStatus`. For each instance, the `MachineStatus` class should store:

Answers

Answer:

the label of a vending machinethe total amount of beverages the vending machine was previously stocked withthe total amount of beverages currently in stock in the vending machinethe total income of the machine from the last time it was stocked until now (note: beverages have different prices, so you cannot simply multiply the change in stock times $1.50 to get the total income)

Explanation:

For each instance, the `MachineStatus` class should store: the label of a vending machine the total amount of beverages the vending machine was previously stocked with the total amount of beverages currently in stock in the vending machine the total income of the machine from the last time it was stocked until now.

Using the Distortion-Energy failure theory: 8. (5 pts) Calculate the hydrostatic and distortional components of the stress 9. (10 pts) Calculate the von Mises stress and the factor of safety. 10. (10 pts) Of the two factors of safety computed, which one is more realistic? What failure theory should you use if you want to be conservative? 11. (10 pts) Suppose all the principal stresses are equal in magnitude and sign, and larger than Sy. What are the predicted safety factors by the maximum shear stress and distortion energy failure theories? Calculate your results and explain them. What do you think would happen in reality?

Answers

Answer:

Detailed solution is given below:

The contents of a tank are to be mixed with a turbine impeller that has six flat blades. The diameter of the impeller is 3 m. If the temperature is 20°Cand the impeller is rotated at 30 rpm (rev/min), what will be the power consumption? Use power number (Np) of 3.5

Answers

Answer:

P=3.31 hp (2.47 kW).

Explanation:

Solution

Curve A in Fig1. applies under the conditions of this problem.

S1 = Da / Dt ; S2 = E / Dt ; S3 = L / Da ; S4 = W / Da ; S5 = J / Dt and S6 = H / Dt

The above notations are with reference to the diagram below against the dimensions noted. The notations are valid for other examples following also.

32.2

Fig. 32.2 Dimension of turbine agitator

The Reynolds number is calculated. The quantities for substitution are, in consistent units,

D a =2⋅ft

n= 90/ 60 =1.5 r/s

μ = 12 x 6.72 x 10-4 = 8.06 x 10-3 lb/ft-s

ρ = 93.5 lb/ft3 g= 32.17 ft/s2

NRc = (( D a) 2 n ρ)/ μ = 2 2 ×1.5×93.5 8.06× 10 −3 =69,600

From curve A (Fig.1) , for NRc = 69,600 , N P = 5.8, and from Eq. P= N P × (n) 3 × ( D a )5 × ρ g c

The power P= 5.8×93.5× (1.5) 3 × (2) 5 / 32.17 =1821⋅ft−lb f/s requirement is 1821/550 = 3.31 hp (2.47 kW).

Air flows steadily between two sections in a long, straight portion of 10-cm inside diameter pipe. The uniformly distributed temperature and pressure at each section are given. The average air velocity at Sections (1) and (2) are 66 m/s and 300 m/s, respectively. Assume uniform velocity distributions. Determine the frictional force (Rx) exerted by the pipe wall on the airflow between the sections. At section (1), p1 = 7 MPa, T1 = 25°C, and V1 = 66 m/s. At section 2, p2 = 1.3 MPa, T1 = -20°C, and V2 = 300 m/s. (5 pt)

Answers

Answer:

solution attached below

Explanation:

1. A priority queue is an abstract data type which is like a regular queue or some other data structures, but where additionally each element has a "priority" associated with it. In a priority queue, an element with high priority is served before an element with low priority like scheduler. If two elements have the same priority, they are served according to their order in the queue.

Answers

Answer:

The code is as below whereas the output is attached herewith

Explanation:

package brainly.priorityQueue;

class PriorityJobQueue {

   Job[] arr;

   int size;

   int count;

   PriorityJobQueue(int size){

       this.size = size;

       arr = new Job[size];

       count = 0;

   }

   // Function to insert an element into the priority queue

   void insert(Job value){

       if(count == size){

           System.out.println("Cannot insert the key");

           return;

       }

       arr[count++] = value;

       heapifyUpwards(count);

   }

   // Function to heapify an element upwards

   void heapifyUpwards(int x){

       if(x<=0)

           return;

       int par = (x-1)/2;

       Job temp;

       if(arr[x-1].getPriority() < arr[par].getPriority()){

           temp = arr[par];

           arr[par] = arr[x-1];

           arr[x-1] = temp;

           heapifyUpwards(par+1);

       }

   }

   // Function to extract the minimum value from the priority queue

   Job extractMin(){

       Job rvalue = null;

       try {

           rvalue = arr[0].clone();

       } catch (CloneNotSupportedException e) {

           e.printStackTrace();

       }

       arr[0].setPriority(Integer.MAX_VALUE);

       heapifyDownwards(0);

       return rvalue;

   }

   // Function to heapify an element downwards

   void heapifyDownwards(int index){

       if(index >=arr.length)

           return;

       Job temp;

       int min = index;

       int left,right;

       left = 2*index;

       right = left+1;

       if(left<arr.length && arr[index].getPriority() > arr[left].getPriority()){

           min =left;

       }

       if(right <arr.length && arr[min].getPriority() > arr[right].getPriority()){

           min = right;

       }

       if(min!=index) {

           temp = arr[min];

           arr[min] = arr[index];

           arr[index] = temp;

           heapifyDownwards(min);

       }

   }

   // Function to implement the heapsort using priority queue

   static void heapSort(Job[] array){

       PriorityJobQueue object = new PriorityJobQueue(array.length);

       int i;

       for(i=0; i<array.length; i++){

           object.insert(array[i]);

       }

       for(i=0; i<array.length; i++){

           array[i] = object.extractMin();

       }

   }

}

package brainly.priorityQueue;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.util.Arrays;

public class PriorityJobQueueTest {

   // Function to read user input

   public static void main(String[] args) {

       BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

       int n;

       System.out.println("Enter the number of elements in the array");

       try{

           n = Integer.parseInt(br.readLine());

       }catch (IOException e){

           System.out.println("An error occurred");

           return;

       }

       System.out.println("Enter array elements");

       Job[] array = new Job[n];

       int i;

       for(i=0; i<array.length; i++){

           Job job  =new Job();

           try{

               job.setJobId(i);

               System.out.println("Element "+i +"priority:");

               job.setJobName("Name"+i);

               job.setSubmitterName("SubmitterName"+i);

               job.setPriority(Integer.parseInt(br.readLine()));

               array[i] = job;

           }catch (IOException e){

               System.out.println("An error occurred");

           }

       }

       System.out.println("The initial array is");

       System.out.println(Arrays.toString(array));

       PriorityJobQueue.heapSort(array);

       System.out.println("The sorted array is");

       System.out.println(Arrays.toString(array));

       Job[] readyQueue =new Job[4];

   }

}

Please write the following code in Python 3. Also please show all output(s) and share your code.

Below is a for loop that works. Underneath the for loop, rewrite the problem so that it does the same thing, but using a while loop instead of a for loop. Assign the accumulated total in the while loop code to the variable sum2. Once complete, sum2 should equal sum1.


sum1 = 0

lst = [65, 78, 21, 33]

for x in lst:
sum1 = sum1 + x

Answers

Final answer:

Explanation of rewriting code from for loop to while loop in Python.

Explanation:

To rewrite the given code using a while loop instead of a for loop, you can iterate over the list indices and manually accumulate the total.

Here is the code:

sum1 = 0
lst = [65, 78, 21, 33]
index = 0
sum2 = 0
while index < len(lst):
   sum2 += lst[index]
   index += 1

By using this code snippet, the sum accumulated using the while loop will be stored in the variable sum2, which should equal the sum1 calculated using the for loop.

A thick oak wall (rho = 545 kg/m3 , Cp = 2385 J/kgK, and k = 0.17 W/mK) initially at 25°C is suddenly exposed to combustion products at 800°C. Determine the time of exposure necessary for the surface to reach the ignition temperature of 400°C, assuming the convection heat transfer coefficient between the wall and the products to be 20 W/m2 K. At that time, what is the temperature 1 cm below the surface? (Note: use an appropriate equation for the semi-infinite wall case; compare equations 18.20 and 18.21 in the text).

Answers

Answer:

Explanation:

The detailed calculation and appropriate equation with substitution is as shown in the attached file.

the spring mass system has an attached mass of 10g the spring constant is 30g/s^2. A dashpot mechanism is attached. which has a damping coefficient of 40g/s. The mass is pulled down and released. At time t=0, the mass is 3cm below the rest position and moving upward at 5cm/s

solve the differential equation. state whether the motion of the sping-mass system is harmonic, damped oscillation, critically damped or overdamped.

Answers

Answer:

Explanation: see attachment

The structure supports a distributed load of w. The limiting stress in rod (1) is 370 MPa, and the limiting stress in each pin is 220 MPa. If the minimum factor of safety for the structure is 2.10, determine the maximum distributed load magnitude w that may be applied to the structure plus the stresses in the rod and pins at the maximum w.

Answers

Final answer:

In engineering, the maximum load a structure can withstand while maintaining a factor of safety can be calculated based on material properties and stress limits. Analyzing stress distributions in rods and pins under maximum loads is crucial for ensuring the structural integrity of a system.

Explanation:

The maximum distributed load magnitude w that may be applied to the structure can be determined using the concept of factor of safety, which is the ratio of the materials' strength to the maximum stress it is subjected to. The factor of safety is given as 2.10, limiting stress in rod (1) as 370 MPa, and limiting stress in each pin as 220 MPa. By setting up equations based on these data, you can calculate the maximum load w.

To calculate the stresses in the rod and each pin at the maximum w, you would need to consider the equilibrium of forces acting on the structure with the maximum load applied. By analyzing the forces acting on the rod and pins, you can determine the stresses within them when the structure is subjected to the maximum load.

Example: Assuming the structure consists of multiple rods and pins, each experiencing different loads, you can analyze the stress distribution within the structure by considering the individual material properties and load distributions to ensure structural integrity.

Which has the capability to produce the most work in a closed system;
1 kg of steam at 800 kPa and 180°C or 1 kg of R–134a at 800 kPa and 180°C? Take T0 = 25°C and P0 = 100 kPa.

Answers

Answer:

note:

solution is attached in word form due to error in mathematical equation. furthermore i also attach Screenshot of solution in word due to different version of MS Office please find the attachment

Final answer:

The amount of work produced by 1 kg of steam and 1 kg of R–134a would be the same in a closed system at the given conditions.

Explanation:

In a closed system, the amount of work produced depends on the change in internal energy of the system. The change in internal energy is given by the formula ΔU = Q - W, where Q is the heat added to the system and W is the work done by the system. Since both 1 kg of steam and 1 kg of R–134a are at the same temperature and pressure, their internal energy changes would be the same for the same amount of heat added. Therefore, the amount of work produced by both substances would also be the same in a closed system.

Learn more about work produced in a closed system here:

https://brainly.com/question/34701684

#SPJ3

A 14-cm-radius, 90-cm-high vertical cylindrical container is partially filled with 60-cm-high water. Now, the cylinder is rotated at a constant angular speed of 180 rpm. Determine how much the liquid level at the center of the cylinder will drop as a result of this rotational motion.

Answers

Final answer:

The student's question involves calculating the water level drop at the center of a rotating cylindrical container, which requires understanding of rotational motion and equilibrium in physics.

Explanation:

The student is asking about the change in water level in a rotating cylindrical container due to the centrifugal force. In a rotating frame, the water surface forms a parabolic shape and the level at the center drops. To solve this problem, principles of rotational motion and physics are applied. The task is to calculate the drop in the center of the water surface within a cylindrical container rotating at a constant angular speed. This can be determined by setting up the equilibrium of forces acting on a particle of the water in the radial direction and using the relationship between the angular speed, radius, and acceleration in a rotating system.

The elastic cords used for bungee jumping are designed to endure large strains. Consider a bungee cord that stretches to a maximum length 3.85 times the original length. There are different ways to report this extensional deformation. Calculate how 'wrong' the engineering strain is compared to the true strain by evaluating the ratio:

εtrue / εengr = __________

Answers

Answer:

(εtrue/εengr) = (1.3481/2.85) = 0.473

This shows that the engineering strain is truly a bit far off the true strain.

Explanation:

εengr

Engineering strain is a measure of how much a material deforms under a particular load. It is the amount of deformation in the direction of the applied force divided by the initial length of the material.

ε(engineering) = ΔL/L₀

Lf = final length = 3.85 L₀

L₀ = original length = L₀

ΔL = Lf - L₀ = 3.85 L₀ - L₀ = 2.85 L₀

ε(engineering) = ΔL/L₀ = (2.85L₀)/L₀ = 2.85

εtrue

True Strain measures instantaneous deformation. It is obtained mathematically by integrating strain over small time periods and Running them up. Hence,

ε(true) = In (Lf/L₀)

Lf = 3.85L₀

L₀ = L₀

ε(true) = In (Lf/L₀) = In (3.85L₀/L₀) = In 3.85 = 1.3481

(εtrue/εengr) = (1.3481/2.85) = 0.473

randomFactory public static Shape randomFactory(int canvas_width, int canvas_height) Create a random shape. Create a random shape to fit on a canvas of the given size. The shape will be no larger than half the size of the canvas and will fit completely on it. Parameters: canvas_width - the width of the canvas being used. canvas_height - the height of the canvas being used. Returns: the generated shape.

Answers

Answer:

import java.awt.Color;

import java.awt.Canvas;

import java.awt.Button;

import java.awt.Image;

import java.awt.Graphics;

import java.awt.Frame;

import java.awt.event.*;

import java.util.*;

/**

  * Check attached images for the continuation of the code

  * 5000 characters exceeded

  * It appears that your answer contains either a link or inappropriate words error

  */

1. A wood board is one of a dozen different parts in a homemade robot kit. The width, depth, and height dimensions of the board are 7.5 x 14 x 1.75 inches, respectively. The board is made from southern yellow pine, which has an air dry weight density of .025 lb/in.3. a. What is the volume of the wood board? Precision = 0.00

Answers

Answer:

183.75 cubic inches.

Explanation:

The volume of the wood board is determine by means of this expression:

[tex]V = w \cdot h \cdot l[/tex]

By replacing variables:

[tex]V = (7.5 in) \cdot (14 in) \cdot (1.75 in)\\V = 183.75 in^{3}[/tex]

A group of n Ghostbusters is battling n ghosts. Each Ghostbuster carries a proton pack, which shoots a stream at a ghost, eradicating it. A stream goes in a straight line and terminates when it hits the ghost. The Ghostbusters decide upon the following strategy. They will pair off with the ghosts, forming n Ghostbuster-ghost pairs, and then simultaneously each Ghostbuster will shoot a stream at his chosen ghost. As we all know, it is very dangerous to let streams cross, and so the Ghostbusters must choose pairings for which no streams will cross. Assume that the position of each Ghostbuster and each ghost is a fixed point in the plane and that no three positions are collinear.Give an O(n 2 lg n)-time algorithm to pair Ghostbusters with ghosts in such a way that no streams cross. Provide a step by step algorithm for this question.

Answers

Answer:

Using the above algorithm matches one pair of Ghostbuster and Ghost. On  each side of the line formed by the pairing, the number of Ghostbusters and Ghosts are  the same, so use the algorithm recursively on each side of the line to find pairings. The  worst case is when, after each iteration, one side of the line contains no Ghostbusters  or Ghosts. Then, we need n/2 total iterations to find pairings, giving us an P([tex]n^{2} lg n[/tex])-  time algorithm.

Final answer:

The described problem requires creating non-crossing pairings between points in a plane, utilizing a divide and conquer algorithm similar to finding the closest pair of points. The algorithm involves sorting, recursively pairing, checking for potential crossings, and merging pairs in O(n^2  lg n) time.

Explanation:

The problem described is one of computational geometry, specifically related to the pairing of points (representing Ghostbusters and ghosts) in the plane so that the lines (streams) connecting the pairs do not cross. An O(n^2  lg n)-time algorithm to solve this can be designed by utilizing a divide and conquer strategy similar to the one used in the closest pair of points problem.

Sort all the points by their x-coordinates.Divide the set of points into two halves by drawing a vertical line through the median x-coordinate.Recursively pair off Ghostbusters and ghosts in each half. Ensure that each pair consists of one Ghostbuster and one ghost from the same half.Find potential cross-stream pairs by examining Ghostbusters and ghosts that are close to the dividing line. This step identifies pairs that may cause crossing streams after the recursive step.For each Ghostbuster on one side of the dividing line, pair with the closest ghost on the other side such that the pair does not cause a stream cross with already established pairs. Utilize a data structure to dynamically check for intersections while pairing.Repeat this for all unpaired Ghostbusters adjacent to the dividing line.Merge the pairs from both halves along with the Ghostbuster-ghost pairs across the divide.

Steps 4 to 6 are critical in ensuring that no streams cross and contribute to the O(n lg n) complexity for pairing across the divide. The overall complexity is O(n^2  lg n) due to the recursive nature of the algorithm and the added complexity of checking for crossing streams.

Other Questions
The United States has considered a national health care system that would guarantee medical care to all citizens as a basic human right. The government's involvement in providing health care for all citizens is characteristic of which type of economic system On July 22, a company that uses the perpetual inventory system purchased merchandise inventory at a cost of $5,250 with credit terms 2/10, net 30. If the company pays for the purchase on August 1, what would be the appropriate journal entry?A.Merchandise Inventory 5,250Accounts Payable 5,250B.Accounts Payable 5,250Merchandise Inventory 5,250C.Purchase Discount 5,145Accounts Payable 5,145D. Accounts Payable 5,145Cash 5,145E. Accounts Payable 5,250Merchandise Inventory 105Cash 5,145 the lord of the flies chapter 2-3 signpost?? welpp! Which of the following statements is true? A. Cells in different areas of an organism have different genetic information. B. All of the cells in an organism have the same genetic information. C. An offspring produced through sexual reproduction has the exact same genetic information as its parent. D. An offspring produced through asexual reproduction has genetic information that is very different from its parent. is this equation balanced?nh4oh+hc2h3o2=nh4c2h3o2+h2o A SOHO's connection to the internet is through an antenna that sends and receives a microwave signal to the ISP's antenna. There can be no obstacles on the direct path between the two antennae. The first and second lines of defense are considered nonspecific resistance while the third line of defense is considered adaptive immunity. True or False What is the area of the lawn Moerdyk Corporation's bonds have a 15-year maturity, a 7.25% semiannual coupon, and a par value of $1,000. The going interest rate (rd) is 6.20%, based on semiannual compounding. What is the bonds price? $1,047.19 $1,074.05 $1,101.58 $1,129.12 $1,157.35 12. Wendy sliced a loaf of bread into 12equal slices. She used 4 of the slices tomake sandwiches. What fraction of theloaf of bread was left? Sum of Two DiceAn experiment was conducted in which two fair dicewere thrown 100 times. The sum of the pipsshowing on the dice was then recorded. Thefrequency histogram to the right gives the results.Use the histogram to complete parts (a) through (f). OFrequencyT . 10 12Value of dice(a) What was the most frequent outcome of the experiment?(b) What was the least frequent? Which of the following occurs as water vapor cools in the atmosphere? transpiration condensation precipitation evaporation Find the value of x. 6. A project to build a new taxiway at Culpepper Airport is 5 days behind at day 65. It had a planned cost of $735,000 for this point in time, but the actual cost is only $550,000. Estimate the variances So. At oaknoll school 90 out of 270 students own computers. What percent of students at oaknoll school do not own computers? Round to nearest tenth of a percent Why the separate car act of 1890 significant Root hairs are thin outgrowths from certain plant roots that enhance water and nutrient absorption from the soil. Which of the following best describes how root hairs are specialized for this function?A. Root hairs are specialized for the phagocytosis of nutrients and water in the soil.B. Root hairs contain an increased number of vacuoles that store water for the plant.C. Root hairs have an elongated shape that increases the surface area-to-volume ratio.D. Root hairs have specialized membranes that have increased permeability to water and nutrients. List three different types of things made from cottonseed linters. Excerpt from Energy from the WindLi Yung3Wind is one of the oldest sources of energy. People have used the winds power since the beginning of recorded time. Over 5,000 years ago, ancient Egyptians used wind to sail ships on the Nile River. Later, people built windmills, thin buildings with spinning blades that are turned by the wind. When the wind turns the blades, the movement powers simple machines that can grind wheat, cut wood, or help with other tasks. For example, in the United States, people built thousands of windmills in the West that pumped water for farms and ranches.4Todays wind machines are a lot like the old-fashioned windmills. These machines, called turbines, use blades to collect the winds energy. Instead of using that energy for simple tasks, though, turbines turn the energy into electricity. Todays wind machines are built on huge towers that are hollow and made of strong steel. The blades, called rotors, are made of tough, light materials called fiberglass and polyester. Heres how the wind machine works. The wind pushes on the blades, making them turn. The turning blades spin a shaft that is connected to a generator, a machine that makes electricity. This electricity is then sent along wires to homes, businesses, and schools. It is used to power all sorts of tools and machines, from computers to can openers.5Wind turbines are very striking and impressive to see. The most common type of turbine has blades like airplane propellers. Turbines stand twenty stories tall and have three blades that are each two hundred feet long. The largest wind turbine in the world, located in Hawaii, has blades that are longer than a football field!6You may also see many wind turbines together in one area. People often build the turbines close together in a wind-power plant called a wind farm. A large wind farm may consist of a few dozen to about one hundred wind machines. One of the largest wind farms in the United States is in Altamont Pass, California. It has more than 900 wind turbines! Wind farms are built in flat, open areas where the wind blows at least twelve miles per hour.If you were writing a research paper about wind turbines, which sentence from the passage would be irrelevant to your research?A)The most common type of turbine has blades like airplane propellers.B)Over 5,000 years ago, ancient Egyptians used wind to sail ships on the Nile River.C)People often build the turbines close together in a wind-power plant called a wind farm.D)Instead of using that energy for simple tasks, though, turbines turn the energy into electricity. what is the problem with pollution? why does it exist?