How many milliliters o a 0.2% solution o a skin test antigen must be used to prepare 4 mL o a solution containing 0.04 mg/mL o the antigen?

Answers

Answer 1

Answer:

0.08 mL

Explanation:

The solution of the skin test has a concentration of 0.2% (w/v), which means that there are 0.2 g of the antigen per 100 mL of the solution. If a new solution will be done using it, then this solution will be diluted, and the mass of the antigen added must be the same in the volume taken and at the diluted solution.

The mass is the concentration (in g/mL) multiplied by the volume of the solution (in mL), so, if m is the mass, C the concentration, V the volume, 1 the initial solution, and 2 the diluted:

m1 = m2

C1*V1 = C2*V2

Where

C1 = 0.2 g/100 mL = 0.002 g/mL

V1 = ?

C2 = 0.04 mg/mL = 0.00004 g/mL

V2 = 4 mL

0.002*V1 = 0.00004*4

V1 = 0.08 mL

Answer 2

Considering the definition of dilution, 0.08 mL of a 0.2% solution of a skin test antigen must be used to prepare 4 mL of a solution containing 0.04 mg/mL of the antigen.

First of all, you have to know that when it is desired to prepare a less concentrated solution from a more concentrated one, it is called dilution.

Dilution is the process of reducing the concentration of solute in solution, which is accomplished by simply adding more solvent to the solution at the same amount of solute.

In a dilution the amount of solute does not change, but as more solvent is added, the concentration of the solute decreases, as the volume (and weight) of the solution increases.

A dilution is mathematically expressed as:

Ci×Vi = Cf×Vf

where

Ci: initial concentration Vi: initial volume Cf: final concentration Vf: final volume

In this case, you know:

Ci= 0.2% (w/v), which means that there are 0.2 g of the antigen per 100 mL of the solution. Then, the concentration is [tex]\frac{0.2g}{100mL}[/tex]= 0.002 [tex]\frac{g}{mL}[/tex] Vi= ? Cf= 0.04 [tex]\frac{mg}{mL}[/tex]= 0.00004 [tex]\frac{g}{mL}[/tex] (being 0.001 mg= 1 g) Vf= 4 mL  

Replacing in the definition of dilution:

0.002 [tex]\frac{g}{mL}[/tex] × Vi= 0.00004 [tex]\frac{g}{mL}[/tex]× 4 mL

Solving:

[tex]Vi=\frac{0.00004 \frac{g}{mL}x4 mL}{0.002\frac{g}{mL} }[/tex]

Vi= 0.08 mL

In summary, 0.08 mL of a 0.2% solution of a skin test antigen must be used to prepare 4 mL of a solution containing 0.04 mg/mL of the antigen.

Learn more about dilution:

brainly.com/question/20113402?referrer=searchResults brainly.com/question/22762236?referrer=searchResults

Related Questions

What mass of carbon dioxide is produced from the complete combustion of 6.40×10−3 gg of methane?

CH4 + O2 --> CO2 + 2H2O

Answers

Answer: 17.6×10^-3g of CO2

Explanation:

We first look at the stoichiometry of the balanced reaction equation. One mole of methane produces one mole of carbon dioxide. Hence 16g of methane yields 44g of carbon dioxide. If we now composed this with the given 6.40×10^-3g of methane as shown in the solution attached, we obtain the answer stated above.

About 0.0176 grams of carbon dioxide (CO₂) are produced from the complete combustion of 6.40 × 10⁻³ grams of methane (CH₄), according to the balanced chemical equation.

To determine the mass of carbon dioxide (CO₂) produced from the complete combustion of methane (CH₄), we can use stoichiometry. The balanced chemical equation for the combustion of methane is:

CH₄ + 2O₂ → CO₂ + 2H₂O

This equation tells us that one mole of CH₄ reacts with two moles of O₂ to produce one mole of CO₂. We need to follow these steps:

Calculate the moles of CH₄:

Moles of CH₄ = Mass of CH₄ / Molar mass of CH₄

The molar mass of CH₄ is calculated as follows:

Molar mass of CH₄ = (1 × 12.01 g/mol) + (4 × 1.01 g/mol) = 16.05 g/mol

Moles of CH₄ = 6.40 × 10⁻³ g / 16.05 g/mol ≈ 3.99 × 10⁻⁴ moles

Use the mole ratio from the balanced equation to find the moles of CO₂ produced:

Moles of CO₂ = Moles of CH₄ (from the balanced equation)

Since the balanced equation tells us that one mole of CH₄ produces one mole of CO₂, the moles of CO₂ produced are also approximately 3.99 × 10⁻⁴ moles.

Calculate the mass of CO₂ produced:

Mass of CO₂ = Moles of CO₂ × Molar mass of CO₂

The molar mass of CO₂ is calculated as follows:

Molar mass of CO₂ = (1 × 12.01 g/mol) + (2 × 16.00 g/mol) = 44.01 g/mol

Mass of CO₂ = (3.99 × 10⁻⁴ moles) × (44.01 g/mol) ≈ 0.0176 g

Therefore, approximately 0.0176 grams of carbon dioxide are produced from the complete combustion of 6.40 × 10⁻³ grams of methane.

For more such information on:combustion

https://brainly.com/question/10458605

#SPJ3

A water treatment plant receives the source water with an average Ca2+ concentration of 46.9 mg/L and Mg2+ concentration of 14.8 mg/L. The plant is treating 80 million gallons of water per day. What mass of solids will be produced per day if all of the calcium and magnesium are converted to CaCO3(s) and Mg(OH)2(s) in the softening process? Give your answer in kg.

Answers

Answer:

42,650 kg of calcium carbonate will be produced everyday.

13,600.5 kg of magnesium hydroxide will be produced everyday.

Explanation:

Concentration of calcium ions = 46.9 mg/L

Concentration of magnesium ions = 14.8  mg/L

Volume of solution treated everyday , V= 80 million gal

= [tex]80\times 10^6 gal=4.546\times 80\time 10^6 L=3.637\times 10^8 L[/tex]

1 gallon = 4.546 Liter

Mass of  calcium ion in V = [tex]46.9 mg/L\times 3.637\times 10^8 L[/tex]

=  [tex]1.706\times 10^{10} mg[/tex]

1 mg = 0.001 g

[tex]1.706\times 10^{7} g[/tex]

Moles of calcium ions = [tex]\frac{1.706\times 10^{7} g}{40 g/mol}=426,500 mol[/tex]

From 1 mole of calcium ion 1mol of carbonate is formed . then from 426,500 moles of calcium ion will form :

[tex]\frac{1}{1}\times 426,500 mol=426,500 mol[/tex] of calcium carbonate

Mass of 426,500 moles of calcium carbonate:

426,500 mol × 100 g/mol  = 42,650,000 g = 42,650 kg

Mass of  magnesium ion in V = [tex]14.8 mg/L\times 3.637\times 10^8 L[/tex]

= [tex]5.382\times 10^{9} mg[/tex]

=  [tex]5.382\times 10^{6} g[/tex]

Moles of magnesium ions = [tex]\frac{5.382\times 10^{6} g}{24 g/mol}=224,250 mol[/tex]

From 1 mole of magnesium ion 1 mol of magnesium hydroxide is formed . then from 224,250 moles of magnesium ion will form :

[tex]\frac{1}{1}\times 224,250 mol=224,250 mol[/tex] of magnesium hydroxide

Mass of 224,250 moles of magnesium hydroxide:

224,250 mol × 58 g/mol  = 13,006,500 g = 13,006.5 kg

42,650 kg of calcium carbonate will be produced everyday.

13,600.5 kg of magnesium hydroxide will be produced everyday.

A sample of gas occupies a volume of 57.9 L at 300K. Use Charles’s Law to calculate the volume (L) when the temperature is 264K. Show the calculation.

Answers

Answer:

When the temperature lowers to 264K the volume lowers to 50.95 L

Explanation:

Step 1: Data given

The initial volume of a gas = 57.9 L

The initial temperature = 300 K

The temperature lowers to 264 K

Step 2: Charles's law

V1 / T1 = V2 / T2

⇒ with V1 = the initial volume of the gas = 57.9 L

⇒ with T1 = the initial temperature = 300K

⇒ with V2 the new volume = TO BE DETERMINED

⇒ with T2 = the final temperature = 264K

57.9L /300K = V2 / 264K

V2 = (57.9*264)/300

V2 = 50.95 L

When the temperature lowers to 264K the volume lowers to 50.95 L

The electronegativities of titanium and oxygen are 1.5 and 3.5. Calculate the fraction of bonding that is covalent for titania (T​IO2 ).

Answers

Answer:

0.63 is the fraction of bonding

Explanation:

This is the formula for fraction of bonding

covalent =  1 - e ^( - 0.25 . ΔEn²)

First of all, let's determine ΔEn, where you subtract the two values of electronegativity for each element

En O = 3.5

En Ti = 1.5

ΔEn = 3.4 - 1.5 = 2

covalent = 1 - e ^( - 0.25 2²)

covalent = 1 - e ^(- 0.25 . 4)

covalent = 1 - e ^-1 → 0.63

bonding is mostly covalent

value of Δ H ∘ rxn for the equation NH 3 ( g ) + 2 O 2 ( g ) ⟶ HNO3 ( g ) + H 2 O ( g )

Answers

Answer: - 894.6 kJ/mol.

Explanation:

Hess law is states that the changes in enthalpies in a chemical reactions is independent of the pathway between the initial and final states.

∆H is the change in the sum of the internal energy of a system.

We are to find the Value of ΔH°(rxn) for the equation:

NH3 (g) + 2 O2 (g) ⟶ HNO3 (g) + H2O (g). ----------------------------------(**).

From the series of equations given;

==> 4NH3 (g) + 5O2 (g) -------->4 NO(g) + 6H2O (l). ∆H = -1166.0 kJ/mol.--------------------------------------(1).

===> 2NO(g) + O2 (g) ------> 2NO2 (g). ∆H = -116.2 kJ/mol.---------------(2).

===> 3NO2 (g) + H2O (l) ---------> 2HNO3 (aq) + NO (g). ∆H = -137.3 kJ/mol.-------------------------------------(3).

The first thing to do is to multiply equation (2) by 3. Also, multiply equation (3) by 2. This will give us equation (4) and (5) respectively.

6NO + 3 O2 ----------------> 6NO2. ∆H= 3 × (-116.2 kJ/mol) = -348.6 kJ/mol. ------------------------------------(4).

6NO2 + 2 H2O ----------------> 4HNO3 + 2 NO. ∆H= 2 × (-137.3kj/mol) = -274.6 kJ/mol ---------------------------(5).

Next, add equations (4) and (5) to give;

4NO +3O2 +2H2O -------------> 4HNO3. ∆H = -623.2 kJ/mol. -----(6).

Add this equation to the equation (1) from above, we have;

4NH3 + 8O2 --------------> 4HNO3 + 4H2O. ∆H= -1789.2 kJ/mol. --------(7).

Then, divide the equation (7) above by 2 to give us back the equation (**).

NH3 (g) + 2 O2 (g) ⟶ HNO3 (g) + H2O (g). ∆H= -894.6 kJ/mol.

Δ H^∘ (rxn)= - 894.6 kJ/mol.

What is the partial pressure of oxygen gas in a mixture which contains 540 mmHg He, 203 303 Pa N2 if the total pressure of the mixture is 5.00 atmospheres?

Answers

Answer:

Partial pressure O₂  = 2.284 atm

Explanation:

This is problem with unit conversion. Let's convert everything to atm

760 mmHg ___ 1 atm

540 mmHg ___ (540 / 760) = 0.710 atm

101325 Pa ____ 1 atm

203303 Pa ____ (203303 / 101325) = 2.006 atm

Total pressure of the mixture = Sum of partial pressure of each gas

0.710 atm (He) + 2.006 (N₂) + Partial Pressure O₂ = 5 atm

Partial pressure O₂ = 5 atm - 2.006 atm - 0.710 atm = 2.284 atm

Consider the following reaction:
Br2(g) + Cl2(g) ⇌ 2BrCl(g), Kp=1.112 at 150 K.
A reaction mixture initially contains a Br2 partial pressure of 751 torr and a Cl2 partial pressure of 737 torr at 150 K.
Calculate the equilibrium partial pressure of BrCl.

Answers

The equilibrium partial pressure of BrCl is  817.32 torr.

To calculate the equilibrium partial pressure of BrCl, we first need to determine the change in partial pressures of Br2 and Cl2 from their initial values to equilibrium. Let's denote the change in partial pressure of Br2 as "x," and the change in partial pressure of Cl2 as "2x" (according to the stoichiometry of the reaction).

The initial partial pressure of Br2 is 751 torr, and the initial partial pressure of Cl2 is 737 torr. At equilibrium, the partial pressure of Br2 will be \( 751 - x \) torr, and the partial pressure of Cl2 will be [tex]\( 737 - 2x \)[/tex] torr.

Given that the equilibrium constant[tex]\( K_p = 1.112 \) at 150 K, we can write the expression for \( K_p \) as follows:[/tex]

[tex]\[ K_p = \frac{{(P_{BrCl})^2}}{{(P_{Br_2})(P_{Cl_2})}} \][/tex]

Plugging in the equilibrium partial pressures:

[tex]\[ 1.112 = \frac{{(2x)^2}}{{(751 - x)(737 - 2x)}} \][/tex]

Now, let's solve for "x" to find the change in partial pressure of Br2 and Cl2 at equilibrium:

[tex]\[ 1.112(751 - x)(737 - 2x) = 4x^2 \]\[ 1.112(556187 - 1488x - 1474x + 4x^2) = 4x^2 \]\[ 1.112(556187 - 2962x) = 4x^2 \]\[ 618866.744 - 3298.144x = 4x^2 \]\[ 4x^2 + 3298.144x - 618866.744 = 0 \][/tex]

Now, solving this quadratic equation for "x" yields two possible solutions, but we discard the negative solution since we're dealing with partial pressures:

[tex]\[ x = 408.66 \][/tex]

Now, substitute this value back into the expressions for equilibrium partial pressures:

Partial pressure of Br2 at equilibrium: [tex]\( 751 - 408.66 = 342.34 \)[/tex] torr

Partial pressure of Cl2 at equilibrium: [tex]\( 737 - 2(408.66) = -80.66 \)[/tex] torr (which we discard since partial pressures can't be negative)

Finally, calculate the equilibrium partial pressure of BrCl using the stoichiometry of the reaction:

[tex]\[ P_{BrCl} = 2x = 2(408.66) = 817.32 \text{ torr} \][/tex]

So, the equilibrium partial pressure of BrCl is approximately 817.32 torr.

Complete Question:

Consider the following reaction:

Br2(g) + Cl2(g) ⇌ 2BrCl(g), Kp=1.112 at 150 K.

A reaction mixture initially contains a Br2 partial pressure of 751 torr and a Cl2 partial pressure of 737 torr at 150 K.

Calculate the equilibrium partial pressure of BrCl.

So, the equilibrium partial pressure of BrCl is approximately 784.86 torr.

To solve this problem, we'll use the expression for the equilibrium constant [tex]\( K_p \):[/tex]

[tex]\[ K_p = \frac{{P_{\text{{BrCl}}}^2}}{{P_{\text{{Br}_2}} \cdot P_{\text{{Cl}_2}}}} \][/tex]

Given that [tex]\( K_p = 1.112 \)[/tex], [tex]\( P_{{{Br}_2}} = 751 \)[/tex] torr, and [tex]\( P_{{Cl}_2}} = 737 \)[/tex] torr, we can rearrange the equation to solve for [tex]\( P_{\text{{BrCl}}} \):[/tex]

[tex]\[ P_{{{BrCl}}} = \sqrt{{K_p \cdot P_{{{Br}_2}} \cdot P_{{Cl}_2}}}} \][/tex]

Let's plug in the values and solve for [tex]\( P_{{{BrCl}}} \):[/tex]

[tex]\[ P_{{{BrCl}}} = \sqrt{{1.112 \cdot 751 \cdot 737}} \][/tex]

[tex]\[ P_{{{BrCl}}} = \sqrt{{1.112 \cdot 751 \cdot 737}} \][/tex]

[tex]\[ P_{{{BrCl}}} \approx \sqrt{{615872.544}} \][/tex]

[tex]\[ P_{{{BrCl}}} \approx 784.86 \, \text{torr} \][/tex]

The compound chromium(II) nitrate is a strong electrolyte. Write the reaction when solid chromium(II) nitrate is put into water:

Answers

Final answer:

Solid chromium(II) nitrate dissolves in water and dissociates into chromium ions and nitrate ions, indicating its strong electrolyte nature.

Explanation:

The question pertains to the dissolution of chromium(II) nitrate in water and its behavior as a strong electrolyte. When solid chromium(II) nitrate is placed in water, it will undergo the process of dissolution and dissociation since it is a strong electrolyte. This can be represented by the following chemical reaction:

Cr(NO3)2(s) → Cr2+(aq) + 2NO3−(aq)

Here, solid chromium(II) nitrate dissolves in water, producing chromium ions and nitrate ions, which are uniformly dispersed throughout the aqueous solution. The reaction showcases the strong electrolytic nature of chromium(II) nitrate, which allows it to completely dissociate in solution and conduct electricity.

The reaction is- [tex]\[ \text{Cr(NO}_3\text{)}_2(s) \rightarrow \text{Cr}^{2+}(aq) + 2\text{NO}_3^-(aq) \][/tex]

The reaction when solid chromium(II) nitrate [tex](Cr(NO\(_3\))\(_2\))[/tex] is dissolved in water can be represented by the following equation:

[tex]\[ \text{Cr(NO}_3\text{)}_2(s) \rightarrow \text{Cr}^{2+}(aq) + 2\text{NO}_3^-(aq) \][/tex]

When a strong electrolyte like chromium(II) nitrate dissolves in water, it dissociates completely into its constituent ions. Chromium(II) nitrate consists of the chromium(II) cation, [tex]Cr\(^{2+}\)[/tex], and the nitrate anion, [tex]NO\(_3\)\(^-\)[/tex]. The solid compound, represented by the (s) notation, separates into its ions in aqueous solution, as indicated by the (aq) notation.

The compound dissociates into one chromium(II) ion for every molecule of chromium(II) nitrate and two nitrate ions per molecule, as indicated by the stoichiometric coefficients in the balanced equation. The nitrate ion has a charge of -1, and since the chromium(II) ion has a charge of +2, two nitrate ions are required to balance the charge, resulting in a neutral compound. When dissolved, these ions are solvated by water molecules, but this aspect is not explicitly shown in the reaction equation.

Amateur radio operators in the United States can transmit on several bands. One of those bands consists of radio waves with a wavelength near 40nm.
Calculate the frequency of these radio waves.

Answers

The frequency of radio waves with a wavelength of 40nm is approximately [tex]7.5 x 10^15 Hz.[/tex]

The frequency of radio waves can be calculated using the formula:

Frequency = Speed of light / Wavelength

Given that the wavelength is 40nm, we need to convert it into meters by dividing it by 10^9. Therefore, the wavelength is [tex]40 x 10^-9 m.[/tex]

The speed of light is approximately [tex]3 x 10^8 m/s.[/tex]Plugging in these values into the formula:

Frequency =[tex](3 x 10^8 m/s) / (40 x 10^-9 m) = 7.5 x 10^15 Hz[/tex]

Therefore, the frequency of these radio waves is approximately [tex]7.5 x 10^15 Hz.[/tex]

Know more about frequency:

https://brainly.com/question/29739263

#SPJ12

Final answer:

To calculate the frequency, use the equation speed of light = wavelength x frequency, rearrange the equation to find frequency = speed of light / wavelength, and plug in the values to find the frequency.

Explanation:

To calculate the frequency of radio waves with a wavelength near 40nm, we can use the equation: speed of light = wavelength x frequency. The speed of light is approximately 3 x 10^8 m/s. Rearranging the equation gives us frequency = speed of light / wavelength. Converting the wavelength from nm to m, we get 40nm = 40 x 10^-9 m. Plugging the values into the equation, we find that the frequency is approximately 7.5 x 10^15 Hz.

Learn more about Frequency of radio waves here:

https://brainly.com/question/32468982

#SPJ3

What are the melting points and safety concerns associated with the use of copper and sulfur?

Answers

Answer:

The answer is explained below.

Explanation:

The melting point is a physical property of a substance and is the temperature at which the material changes from a solid to a liquid state at atmospheric pressure.

Melting point of copper

The melting point of copper (Cu)  with atomic number 29 is 1,085 °C

Safety concerns associated with the use of copper

Excess copper inhibits plants growth.Copper can affect the activity in soils, as it negatively influences the activity of microorganisms and earthworms.Exposure of the body to copper can irritate the skin and eyes.Copper may negatively affect the liver and kidneys.Copper is also known to cause vomiting, headaches and dizziness when exposed for long.

Melting point of sulfur

The melting point of sulfur (S) with atomic number 16 is 115.2 °C

Safety concerns associated with the use of sulfur

Long term exposure Increases susceptibility to respiratory infections.Ingesting too much sulfur may cause diarrhea and blurred vision.Chronic exposure can affect the sense of smelling. If animals eat too much sulfur, it may affect the stomach and intestines, and cause neurological disorders.Prolonged inhalation exposure may  cause severe breathing difficulties.Thermal burn from molten sulfur when in contact with the skin, can cause dryness, mild irritation.Sulfur in excess can cause brain cell death.

Draw a structure for an alcohol that exhibits a molecular ion at M+ = 74 and that produces fragments at m/z = 59, m/z = 56 and m/z = 45.

Answers

Answer:

Please refer to the attachment below for answer and explanation.

Explanation:

Please refer to the attachment below for answer and explanation.

If a research paper appeared reporting the structure of a new molecule with formula C2H8 , most chemists would be highly skeptical. Why?

Answers

Answer: The formula does not correlate with the general molecular formula of any known homologous series of hydrocarbon compounds

Explanation:

Hydrocarbons are arranged in families of compounds known as homologous series, each having its unique molecular formula.

Alkanes CnH2n+2

Alkenes CnH2n

Alkynes CnHn

C2H8 does not fit into any of these homologous series. The compound cannot be cyclic because it has only two carbon atoms. Considering all these, the existence of this hypothetical compound is simply an impossibility.

Final answer:

Chemists would be skeptical of a molecule with the formula C2H8 because it contradicts the octet rule. This rule outlines that carbon typically forms four bonds and hydrogen forms a single bond. A C2H8 molecule suggests more than four bonds per carbon, which does not usually occur in stable compounds.

Explanation:

The skepticism among chemists regarding a molecule with the formula C2H8 stems from the very basics of chemistry and molecular structures. According to the octet rule, carbon (C) forms four bonds, and hydrogen (H) forms a single bond. So a molecule with two carbon atoms would usually only have six hydrogen atoms attached (as in the case of ethane, C2H6), allowing each carbon atom to form the maximum four bonds (three with hydrogen, one with the other carbon). A molecule with two carbons and eight hydrogens would suggest more than four bonds per carbon atom, which is generally not observed in stable compounds.

Learn more about Octet Rule here:

https://brainly.com/question/34260733

#SPJ3

Your lab partner named this compound 3-methyl-4-n-propylhexane, but that is not correct.
What is the correct IUPAC name?

Answers

Answer: The correct IUPAC name of the alkane is 4-ethyl-3-methylheptane

Explanation:

The IUPAC nomenclature of alkanes are given as follows:

Select the longest possible carbon chain.For the number of carbon atom, we add prefix as 'meth' for 1, 'eth' for 2, 'prop' for 3, 'but' for 4, 'pent' for 5, 'hex' for 6, 'sept' for 7, 'oct' for 8, 'nona' for 9 and 'deca' for 10.A suffix '-ane' is added at the end of the name.If two of more similar alkyl groups are present, then the words 'di', 'tri' 'tetra' and so on are used to specify the number of times these alkyl groups appear in the chain.

We are given:

An alkane having chemical name as 3-methyl-4-n-propylhexane. This will not be the correct name of the alkane because the longest possible carbon chain has 7 Carbon atoms, not 6 carbon atoms

The image of the given alkane is shown in the image below.

Hence, the correct IUPAC name of the alkane is 4-ethyl-3-methylheptane

The correct IUPAC name of the molecule is 2-cyclopropyl cyclohexane.

The IUPAC name of a molecule is also called the systematic name of the molecule. The IUPAC name of a molecule is given in such a way that the structure of the molecule can be drawn from its name.

The correct IUPAC name of the molecule is 2-cyclopropyl cyclohexane. The substituent in the molecule is the cyclopropyl moiety.

Learn more about IUPAC nomenclature: https://brainly.com/question/11587934

Under certain conditions, the substance hydrobromic acid can be broken down to form hydrogen and bromine.

If 25.0 grams of hydrobromic acid react to form 0.3 grams of hydrogen, how many grams of bromine must simultaneously be formed?

2. Under certain conditions, the substance ammonium chloride can be broken down to form ammonia and hydrogen chloride.

If 29.1 grams of ammonium chloride react to form 9.3 grams of ammonia, how many grams of hydrogen chloride must simultaneously be formed?

Answers

Answer:

1. 24.7g of Br2

2. 19.9g of HCl

Explanation:Please see attachment for explanation

When ammonia is mixed with hydrogen chloride (HCl), the white solid ammonium chloride (NH4Cl) is produced. Suppose 10.0 g ammonia is mixed with the same mass of hydrogen chloride. What substances will be present after the reaction has gone to completion, and what will their masses be?

Answers

Final answer:

After 10.0 g of ammonia reacts with 10.0 g of hydrogen chloride, 31.5 g of ammonium chloride is produced with leftover hydrogen chloride remaining.

Explanation:

When ammonia is mixed with hydrogen chloride (HCl), there is a chemical reaction in which ammonium chloride (NH4Cl) is formed. This reaction can be represented by the balanced chemical equation: NH3 (g) + HCl (g) → NH4Cl (s). The molar mass of ammonia (NH3) is approximately 17 g/mol and that of hydrogen chloride (HCl) is approximately 36.5 g/mol. When 10.0 g of each reactant is mixed, stoichiometry is used to determine the products and their masses after the reaction goes to completion.

Form the given masses, we can calculate the moles of each reactant: 10.0 g NH3 ÷ 17 g/mol ≈ 0.588 mol NH3 and 10.0 g HCl ÷ 36.5 g/mol ≈ 0.274 mol HCl. Since the reaction occurs in a 1:1 molar ratio, ammonia is the limiting reactant because we have less moles of it compared to moles of HCl. Therefore, all the ammonia will react with HCl to produce 0.588 mol of NH4Cl. The mass of the produced NH4Cl can be found by multiplying the moles of NH4Cl by its molar mass (approximately 53.5 g/mol), so 0.588 mol × 53.5 g/mol ≈ 31.5 g of NH4Cl. There will be no remaining ammonia. Since HCl is in excess, after the reaction the system will contain 31.5 g of NH4Cl and some unreacted HCl.

Which type of fermentation produces CO2 bubbles in baking?

a)Homolactic fermentation
b)Oxidative phosphorylation
c)Alcoholic fermentation
d)Butanediol fermentation

Answers

Alcoholic fermentation  fermentation produces CO2 bubbles in baking.

Explanation:

The other name given for the Alcoholic Fermentation is Ethanol fermentation. In this process of fermentation, ethanol and carbon dioxide are the resultant by-products. These are formed by the conversion of fructose,sucrose and glucose to cellular energy. This type of fermentation do not require oxygen for the process to take place. Hence, these are known to be an anaerobic process

This type of fermentation has its application like ethanol fuel production, cooking of bread, etc. A dough rises  of the Ethanol fermentation. this is because, the sugars that are present in a dough are absorbed by yeast . this produces ethanol and carbon dioxide. During baking process,bubbles are formed by this carbon dioxide.

You are making homemade ice cream and can use either 200 g Ice Melt (CaCl2) or 200 g rock salt (NaCl) to lower the freezing point of 7.00 kg of ice (assume the ice is pure water). Which salt would help you eat your ice cream faster (i.e. lower the freezing temperature of the ice)?

Answers

Calcium chloride (CaCl2) is more effective at lowering the freezing point of ice than sodium chloride (NaCl) because it produces more ions when it dissociates, leading to greater freezing point depression.

To determine which salt would help you eat your homemade ice cream faster by lowering the freezing point of ice more effectively, we need to consider the colligative properties of each salt. The property of interest here is freezing point depression, which is a colligative property that states the freezing point of a solution is lower than that of the pure solvent due to the presence of solute particles.

Calcium chloride (CaCl2) is more effective at lowering the freezing point than sodium chloride (NaCl) because it dissociates into three ions (one Ca2+ and two Cl-), while NaCl dissociates into only two ions (one Na+ and one Cl-). Since the extent of freezing point depression is dependent on the number of solute particles in solution, CaCl2 will lower the freezing point more than NaCl for the same mass.

Given that the freezing points of saturated solutions are −22°C for NaCl and −30°C for CaCl2, using 200 g of CaCl2 would result in a lower freezing temperature compared to the same amount of NaCl, thus allowing your ice cream to freeze quicker.

List the properties of a substance that would definitely establish that the material is molecular

Answers

Answer:

For a material to be molecular, it must possess the following properties

1. Molecular substances is made up of non metals atoms

2. Molecular substances are always unable to conducy electricity

3. Molecular substances have strong intramolecular forces and weak intermolecular forces

4. Molecular substance has low boiling and melting points

The properties of a substance that makes a material molecular are listed below:

Low melting points and boiling points.

Low enthalpies of fusion

Low enthalpies of vaporization

Poor electrical and thermal conductivity

Molecular substances

Molecular substances are substances usually containing two or more atoms combined together by a covalent bond.

Learn more about molecular substances:

https://brainly.com/question/5424624

A solution is prepared at that is initially in chlorous acid , a weak acid with , and in potassium chlorite . Calculate the pH of the solution. Round your answer to decimal places.

Answers

The question is incomplete, here is the complete question:

A solution is prepared at 25°C that is initially 0.075 M in chlorous acid [tex](HClO_2)[/tex] , a weak acid with [tex]K_a=1.1\times 10^{-2}[/tex], and 0.34 M in potassium chloride [tex](KClO_2)[/tex] . Calculate the pH of the solution. Round your answer to 2 decimal places.

Answer: The pH of the solution is 2.62

Explanation:

The chemical equation for the reaction of chlorous acid and potassium hydroxide follows:

[tex]HClO_2+KOH\rightarrow KClO_2+H_2O[/tex]

To calculate the pH of acidic buffer, we use the equation given by Henderson Hasselbalch:

[tex]pH=pK_a+\log(\frac{[salt]}{[acid]})[/tex]

[tex]pH=pK_a+\log(\frac{[NaHCO_3]}{[H_2CO_3]})[/tex]

We are given:

[tex]pK_a[/tex] = negative logarithm of acid dissociation constant of chlorous acid = 1.96

[tex][KClO_2]=0.34M[/tex]

[tex][HClO_2]=0.075M[/tex]

pH = ?

Putting values in above equation, we get:

[tex]pH=1.96+\log(\frac{0.34}{0.075})\\\\pH=2.62[/tex]

Hence, the pH of the solution is 2.62

A chemist added an excess of sodium sulfate to a solution of a soluble barium compound to precipitate all of the barium ion as barium sulfate, BaSO4. How many grams of barium ion are in a 441-mg sample of the barium compound if a solution of the sample gave 403 mg BaSO4 precipitate? What is the mass percentage of barium in the compound?

Answers

Answer : The mass percentage of barium in the compound is, 53.8 %

Explanation : Given,

Mass of barium compound = 441 mg

Mass of barium sulfate = 403 mg = 0.403 g       (1 mg = 0.001 g)

The balanced chemical reaction will be:

[tex]Ba^{2+}(aq)+Na_2SO_4(aq)\rightarrow BaSO_4(s)+2Na^+(aq)[/tex]

First we have to calculate the moles of [tex]BaSO_4[/tex]

[tex]\text{Moles of }BaSO_4=\frac{\text{Mass of }BaSO_4}{\text{Molar mass of }BaSO_4}[/tex]

Molar mass of [tex]BaSO_4[/tex] = 233.38 g/mole

[tex]\text{Moles of }BaSO_4=\frac{0.403g}{233.38g/mole}=0.001727mole[/tex]

Now we have to calculate the moles of barium ion.

From the balanced chemical reaction, we conclude that

As, 1 mole of barium sulfate produced from 1 mole of barium ion

So, 0.001727 mole of barium sulfate produced from 0.001727 mole of barium ion

Now we have to calculate the mass of barium ion.

[tex]\text{ Mass of }Ba^{2+}=\text{ Moles of }Ba^{2+}\times \text{ Molar mass of }Ba^{2+}[/tex]

Molar mass of barium = 137.3 g/mol

[tex]\text{ Mass of }Ba^{2+}=(0.001727moles)\times (137.3g/mole)=0.2371g[/tex]

Now we convert the mass of barium ion from gram to mg.

Conversion used : (1 g = 1000 mg)

Mass of barium ion = 0.2371 g = 237.1 mg

Now we have to calculate the mass percentage of barium in the compound.

Mass percent of barium = [tex]\frac{237.1mg}{441mg}\times 100=53.8\%[/tex]

Thus, the mass percentage of barium in the compound is, 53.8 %

A solution is saturated in both nitrogen gas and potassium bromide at 750C. When the solution is cooled to room temperature, what is most likely to happen? Why? (5 pts)

a. Some nitrogen gas bubbles out of solution.

b. Some potassium bromide precipitates out of solution.

c. Some nitrogen gas bubbles out of solution and some potassium bromide precipitates out of solution.

d. Nothing happens.

Answers

Some Potassium bromide precipitates out of solution.

Option B.

Explanation:

Solubility is defined as the tendency of a substance to get mixed into a solvent at a particular temperature and pressure. The amount of solubility is defined as the amount of substance in grams which will make a saturated solution of 100ml at a temperature and pressure.

Potassium bromide is a salt and nitrogen is a gas. The solubility of the salts generally increase with temperature in water, and decreases with decrease in temperature. So in case of potassium bromide, the solubility of the salt will decrease, leaving some precipitate in the room temperature.

While in case of gases, the solubility of them do decrease with increase in temperature. So at room temperature, solubility of nitrogen will be more than that in 750°C. So no gas will bubble off.

Some of the potassium bromide precipitates out of the solution.  

• The solubility of the gas is inversely proportional to the temperature. With the decrease in temperature, the solubility of the gas increases.  

• Therefore, in the given case, nitrogen will not move out, in spite of that opposite will take place, that is, more atmospheric nitrogen will get dissolve in the solution.  

• The solubility of ionic salts like potassium bromide is directly corelated to the temperature, that is, the solubility of the salt decreases when the reduction in temperature takes place.  

• The precipitation of some of the salt takes place because solubility is low at lower temperature and the excess salt stays in solid form.  

Thus, some of the potassium bromide precipitates out of the solution .

To know more about:

https://brainly.com/question/14745953

Caffeine (C_8H_10N_4O_2) is a weak base with a K_b value of 4 times 10^-4. The pH of a 0.01 M solution of caffeine is in the range of: a. 2-3 b. 5-6 c. 7-8 d. 9-10 e. 11-12

Answers

Answer:

The pH of the solution lies from 11 to 12.Hence, option e is correct.

Explanation:

The value of [tex]K_b[/tex] for caffine = [tex]4\times 10^{-4}[/tex]

[tex]CafOH(aq)\rightleftharpoons Caf(aq)+OH^-(aq)[/tex]

Initial

   0           0.01 M       0

AT equilibrium:

  x          (0.01 -x)M      x

[tex]K_b=\frac{x(0.01-x)}{(x)}[/tex]

[tex]4\times 10^{-4}=\frac{x(0.01-x)}{(x)}[/tex]

Solving for x:

x = 0.0096 M

The pOH of the solution is given by :

[tex]pOH=-\log[OH^-}[/tex]

[tex]pOH=-\log[x][/tex]

[tex]pOH=-\log[0.0096][/tex]

pOH = 2.02

pH= 14 - pOH = 14 - 2.02 = 11.98

The pH of the solution lies from 11 to 12.

pH is the measurement of the acidity and alkaline level of a solution. It indicates the levels of hydrogen ions present in the solution.

pH can be calculated as :

pH = - log [H₃O+]

The correct answer is :

Option D. 11-12

To calculate the pH of a solution we need to know the concentration of hydronium ion in moles per litre.

Given,

The value of Kb of caffeine= 4 × 10⁻⁴

[tex]\text {Caf OH}\; \text{(aq)} \rightleftharpoons \text{Caf (aq)} & \; + \text{OH}^{-} \text{(aq)}[/tex]

Initially:

        0             0.01 M            0

At the equilibrium:

       Y            (0.01- Y)M         Y

[tex]\text{K}_{\text{b}} & = \frac{\text{Y}(0.01 - \text{Y})}{\text{Y}}[/tex]

[tex]4 \times 10^{-4} = \frac{\text{Y}(0.01 - \text{Y})}{\text{Y}}[/tex]

Solving for Y:

Y = 0.0096 M

The pOH of the solution can be determined by:

[tex]\text{pOH} & = \text{- log}\; (\text{OH}^{-} )[/tex]

[tex]\text{pOH} & = \text{- log}\; (\text{Y} )[/tex]

[tex]\text{pOH} & = \text{- log}\; (0.0096)[/tex]

pOH = 2.02

pH = 14- pOH

= 14-2.02

= 11.98

Therefore, the pH of the solution ranges between 11 - 12.

To learn more on pH, acids and bases follow the link:

https://brainly.com/question/22228645

Can you help with part B

Part A

Acetylene, C2H2, can be converted to ethane, C2H6, by a process known as hydrogenation. The reaction is

C2H2(g)+2H2(g)⇌C2H6(g)

Given the following data at standard conditions (all pressures equal to 1 atm and the common reference temperature 298 K), what is the value of Kp for this reaction?

Substance ΔG∘f
(kJ/mol)
C2H2(g) 209.2
H2(g) 0
C2H6(g) −32.89
Express your answer using two significant figures.

Kp =
2.7×1042

SubmitHintsMy AnswersGive UpReview Part

Correct

Based on the magnitude of K, we know that this reaction has practically gone to completion at equilibrium.

Standard versus Nonstandard Conditions

In Part A, we saw that ΔG∘=−242.1 kJ for the hydrogenation of acetylene under standard conditions (all pressures equal to 1 atm and the common reference temperature 298 K). In Part B, you will determine the ΔG for the reaction under a given set of nonstandard conditions.

Answers

Answer:

[tex]\delta G= -261.2kg[/tex] for the reaction under a given set of nonstandard conditions.

Explanation:

[tex]C_{2}H_6(g) + 2H_2(g)\rightleftharpoons C_2H_6(g)[/tex]

[tex]Q_p = \frac{P_c_2H_6}{P_c_2H_2\timesP_H_2}[/tex]

    = [tex]\frac{3.25\times10^-2}{4.25\times4.15}[/tex]

[tex]Q_p[/tex] = [tex]4.44 \times 10^-4[/tex]

[tex]\delta G =\delta G^0 + RTlnQ_P[/tex]

     = [tex]-242.1+8.314\times10^-3\times298\timesln(4.44\times10^-4)[/tex]

     = [tex]\delta G= -261.2kg[/tex]

So,  [tex]\delta G= -261.2kg[/tex]

Rank the following molecules using numbers 1 - 4 in order of increasing boiling points (i.e. you would input 1 for the molecule with the lowest boiling point.)

A. decane
B. 3,3,4,4-tetramethylhexane
C. 2,2-dimethylpropane
D. dodecane

Answers

Answer:

B<C<A<D

Explanation:

The boiling point of alkanes increases with increasing chain length. Heavily branched alkanes usually show lower boiling points because of smaller dispersion forces. The longer the hydrocarbon chain, the higher the expected boiling point due to greater dispersion forces. This accounts for the order of increasing boiling points stated. Dodecane, a long chain alkanes us expected to have the highest boiling point, filled by decane then the di substituted before the tetra substituted alkanes which has the lowest boiling point.

The correct ranking of the molecules from the lowest to the highest boiling point is:

1. 2,2-dimethylpropane (C)

2. decane (A)

3. 3,3,4,4-tetramethylhexane (B)

4. dodecane (D)

Boiling points of molecules are influenced by several factors, with molecular weight and intermolecular forces being the most significant. Generally, as the molecular weight increases, the boiling point also increases due to stronger London dispersion forces. Additionally, branching in alkanes decreases the surface area available for intermolecular interactions, leading to lower boiling points compared to straight-chain alkanes of similar molecular weight.

Let's analyze each molecule:

A. Decane (C10H22) is a straight-chain alkane with 10 carbon atoms. It has a higher molecular weight than the other molecules except for dodecane, which means it will have relatively strong London dispersion forces.

B. 3,3,4,4-Tetramethylhexane (C10H22) is an isomer of decane with the same molecular formula but with more branching. The branching reduces the surface area for intermolecular interactions, which typically results in a lower boiling point compared to straight-chain decane.

C. 2,2-Dimethylpropane (C5H12), also known as neopentane, is highly branched and has the lowest molecular weight among the given molecules. Its highly branched structure minimizes the surface area for intermolecular interactions, leading to the weakest London dispersion forces and, consequently, the lowest boiling point.

D. Dodecane (C12H26) has the highest molecular weight among the given molecules, with 12 carbon atoms in a straight chain. It will have the strongest London dispersion forces and, therefore, the highest boiling point.

Based on these considerations, the molecules can be ranked in order of increasing boiling points as follows:

1. 2,2-Dimethylpropane (C) - Lowest molecular weight and highest degree of branching.

2. Decane (A) - Higher molecular weight than 2,2-dimethylpropane but less than dodecane, and less branching than 3,3,4,4-tetramethylhexane.

3. 3,3,4,4-Tetramethylhexane (B) - Same molecular weight as decane but more branching, which slightly lowers its boiling point compared to decane.

4. Dodecane (D) - Highest molecular weight and a straight chain, resulting in the strongest intermolecular forces and the highest boiling point."

If 6 moles of A and 2 moles of B are reacted, what is the maximum number of moles of C that can be formed

Answers

Given the balanced equation 2A + 3B = 3C, with 6 moles of A and 2 moles of B, A is the limiting reactant. The maximum moles of C formed is 9 (Option D).

First, let's identify the limiting reactant by comparing the mole ratios of A and B in the balanced equation:

[tex]\[2A + 3B \rightarrow 3C\][/tex]

The mole ratio between A and B is 2:3. If you have 6 moles of A and 2 moles of B, you can compare the actual ratio (6 moles A to 2 moles B) with the ratio in the balanced equation (2 moles A to 3 moles B).

The actual ratio is 6:2, which simplifies to 3:1. The balanced ratio is 2:3. The limiting reactant will be the one with the smaller ratio, so in this case, A is the limiting reactant.

Now, let's determine the maximum number of moles of C that can be formed using the stoichiometry of the balanced equation:

For every 2 moles of A, 3 moles of C are formed.

Since you have 6 moles of A (the limiting reactant), you can use the ratio to find the moles of C:

[tex]\[\text{Moles of C} = \left( \frac{3 \text{ moles C}}{2 \text{ moles A}} \right) \times 6 \text{ moles A} = 9 \text{ moles C}\][/tex]

Therefore, the correct answer is:

D. 9 moles

The probable question may be:

Consider the chemical equation: 2A+3B=3C. If 6 moles of A and 2 moles of  B are reacted, what is the maximum number of moles of C that can be formed?

A. 4 moles

B. 2 moles

C. 3 moles

D. 9 moles

Unit conversions.(a) Convert 10,000 dynes to units of lbm ∙ ft/s^2 and lbf(b) Convert 0.2 atm to units of Kpa and lbf/in^2(c) Convert 37 °C (physiological temperature) to units of °F and K.(d) Convert 50 in 2 ∙ lbm/s^2 units of joules and cal.

Answers

Answer:

(a)  0.72 lbm· ft/s²

(b)  20.3 kPa,  2.94 lbf / in²

(c)  98.6 ºF,  310 K

(d)  1.5 x 10⁻² J,  6.1 x 10⁻² cal

Explanation:

Our strategy here will be to find the conversion factors for the quantities we are asked in each part, and perform the calculations.

(a) 10,000 dynes to lbm ·ft/s²

here we are asked to convert  the  force of 10,000 dynes to lbm ·ft/s². Recall that F= ma ( m= mass, a = acceleration), thus

10,000 dynes = 10 g cm/s²

converting the force

10,000 g cm/s² x (1 lbm/454 g) x (1 ft / 30.48 cm ) /s² = 0.72 lbm· ft/s²

(b)

1 atm = 101.33 pa

0.2 atm x ( 101.33 kPa ) = 20.3 kPa

1 atm = 14.7 lbf / in²

0.2 atm x ( 14.7 lbf / in² /atm ) = 2.94 lbf / in²

(c) The formula for the conversion from ºC to ºF is:

ºF = 9/5 ºC +32

ºF = 9/5 ( 37ºC) + 32 = 98.6 ºF

K = ºC + 273

K = (37 + 273) K = 310 K

(d) 50 in²·lbm/s² to joules and calories

Since the unit in² ·lbm/s² is not that common, lets convert it using their definition.

These are energy units, and we know the energy is the force times distance. In turn force is mass times acceleration so that the units of energy are mass time distance per time squared.

Joules is the unit of energy  in the metric system.

50 in² lbm/s² = 50 in²x ( 2.54 cm/in x 1m /100cm)² x (1lbm x 0.454 Kg/lbm)/s²

= 1.5 x 10⁻² Kg m²/² =  1.5 x 10⁻² J

To convert to cal it wilñl be easier to use the value in joules just calculated:

1.5 x 10⁻² J x  (4.184 cal/J) = 6.1 x 10⁻² cal

Final answer:

This response provides detailed conversions for different units in physics including dynes, lbm, atm, and temperature measurements. It explains how to convert between various units and provides step-by-step examples for each conversion.

Explanation:

Unit conversions:

(a) To convert 10,000 dynes to lbm ∙ ft/s² and lbf:
1 dyne = 1 g cm/s² = 10⁻⁵ N, therefore, 10,000 dynes = 0.1 N. Using 1 lb = 453.59 g, 1 ft = 0.3048 m, 1 lb = 4.448 N, the conversion is: 10,000 dynes = 0.1 N = 0.0225 lb or 0.1 N = 0.0225 lbf.

(b) To convert 0.2 atm to Kpa and lbf:
1 atm = 101.3 Kpa, therefore, 0.2 atm = 20.26 Kpa. Also, 1 atm = 14.7 lb/in², so 0.2 atm = 2.94 lb/in².

(c) Converting 37 °C to °F and K:
To convert °C to °F: °F = (°C × 9/5) + 32. So, 37 °C = 98.6 °F. To obtain K from °C, use K = °C + 273. Thus, 37 °C = 310 K.

A mixture of helium, neon, and xenon gases is made with the same mass of each gas. Which (if any) gas will have the highest partial pressure?

a. They will all have the same partial pressure
b. Xe
c. He
d. Ne

Answers

Answer:

Xe will have the highest partial pressure

Explanation:

Using Dalton's law of partial pressures for ideal gases

p=P*x

where

p= partial pressure , P= total pressure and x = mole fraction = n / ∑n

since the number of moles is related with mass through

n= m/M

where

m= mass and M= molecular weight

then if m is the same for all the gases

x = m*M/ ∑ (m*M) = m*M/ m∑ M  = M/∑ M

thus

p=P*x = P*M/ ∑ M

for the 3 gases

p₁=P*x₁ = P*M₁/ (M₁+M₂+M₃)

p₂=P*x₃ = P*M₂/ (M₁+M₂+M₃)

p₂=P*x₃ = P*M₃/ (M₁+M₂+M₃)

then for gasses under the same pressure (P=constant) and same mass (m=constant) , p is higher when the molecular weight is higher . Therefore Xe will have the highest partial pressure

Answer:

He

Explanation:

The partial pressure of a gas is given by mole fraction of the gas multiplied by the total pressure of the gas. The mole fraction of each gas is the number of moles of that gas divided by the total number of moles present. The number of moles of each gas depends on its relative atomic mass since they are all of the same mass. The smaller the relative atomic mass, the greater number of moles of a gas and the greater mole fraction of that gas and the greater its partial pressure. Hence, helium is the lightest gas in the list hence it will have the highest partial pressure.

"How would you make 100 mL of a carbonic acid buffer at 0.5 M and pH = 6.0 using 1.0 M NaHCO3 and either 1.0 M NaOH or 1.0 M HCl and water?"

Answers

Answer:

You first  start by weighing a quatity of NaHCO3 which is by calculating the molecular mass of the salt and then multiply it with the molarity given which is 0.5 M, the gram/mol gotten is then dissolve in some water, add 0.1M NaOH dropwise until the pH is 9.8. Transfer quantitatively to a 100 mL volumetric flask and dilute to the mark. Mix thoroughtly.

Explanation:

molar mass of Na HCO3= 84.01

molarity given= 0.5 M

to get the g/mol to dissolve in 1000 mL , 0.5 x 84.01 =42.005 g/mol=1 L

to get 100 mL , 42.002 divide by 10

=4.2005g/mol

Final answer:

To make a carbonic acid buffer at 0.5 M and pH 6.0, mix equal molar amounts of NaHCO3 and H2CO3. For 100 mL at 0.5 M, mix 25 mL of 1.0 M HCl with 50 mL of 1.0 M NaHCO3 and dilute to 100 mL with water.

Explanation:

To make 100 mL of a carbonic acid buffer at 0.5 M and pH = 6.0 using 1.0 M NaHCO3 and either 1.0 M NaOH or 1.0 M HCl, you first need to understand the Henderson-Hasselbalch equation:



pH = pKa + log([A-]/[HA])

For carbonic acid (pKa ≈ 6.1), when pH is 6.0:


6.0 = 6.1 + log([NaHCO3]/[H2CO3])

This suggests the ratio of [NaHCO3] to [H2CO3] should be close to 1:1. Solving for the concentrations:

log([NaHCO3]/[H2CO3]) = -0.1

[NaHCO3]/[H2CO3] ≈ 0.79

If you want a 0.5 M buffer, you'll need close to 0.25 M NaHCO3 and 0.25 M H2CO3.

To get H2CO3, you can add HCl to NaHCO3 since H2CO3 is not stable:

NaHCO3 + HCl → H2CO3 + NaCl

For 100 mL at 0.25 M, you would need 25 mmol of HCl. You would take 25 mL of 1.0 M HCl (because 25 mL × 1.0 M = 25 mmol) and add it to 50 mL of 1.0 M NaHCO3 (which provides 50 mmol NaHCO3) to keep the ratio. Then dilute to 100 mL with water.

15 g of gold and 25 g of silver are mixed to form a single-phase ideal solid solution.
How many moles of solution are there? What are the mole fractions of gold and silver?
What is the molar entropy of mixing?
What is the total entropy of mixing?
What is the molar free energy change at 500 degree C?
What are the chemical potentials of Au and Ag at 500 degree C taking the free energies of pure Au and Ag as zero?

Answers

Answer:

1. How many moles of solution are there. Ans: 0.3079193mol

2. Mole fraction for gold : 0.2473212

Mole fraction for silver: 0.7526787

3. Molar entropy of mixing for gold: 2.87285j/k

Molar entropy of mixing for silver: 1.77804j/k

4. Total entropy of mixing: 4.65089j/k

5. Molar free energy: -2325.445kj

6. Chemical potential for silver: -1750.31129j/mol

Chemical potential for gold: -575.13185j/mol

Explanation:

(1)

molar mass of silver = 107.8682g/mol

Molar mass of gold= 196.96657g/mol

Therefore mole = mass/molar mass

For silver: 25g/107.8682g/mol = 0.2317643mol

For gold: 15g/196.96657g/mol= 0.076155mol

Total number of mole= 0.2317643+0.076155= 0.30791193mol

(2)

Mole fraction for silver= 0.2317643/0.3079193= 0.7526787

Mole fraction for gold=0.076155/0.3079193=0.2473212

(3)

The molar entropy mixing ∆Sm= -RXi×lnXi

R= gas constant= 8.3144598

Xi = mole fraction

For silver:

-8.3144598×0.7526787( ln0.7526787)= 1.77804j/k

For gold:

-8.3144598×0.2473212( ln0.2473212)= 2.87285k/j

(4)

Total entropy= 1.77804+2.87285=4.65089k/j

(5)

Molar free energy change at 500°C

G=H-TS

Where G= Gibbs free energy

H= enthalpy,. T= Temperature, S= entropy

H=0, T=500+ 273=773k, S=4.65089

Therefore

G= 0- 773x4.65089= -3595.138kj

(6)

Chemical potential = Gibbs free energy × mole fraction

For silver:

-3595.138×0.7526787=-2705.9837j/mol

For gold:

-3595.138×0.2473212= -889.15381j/mol

Final answer:

The total number of moles in the solid solution of gold and silver is 0.308 mol with mole fractions of 0.247 and 0.753 for gold and silver, respectively. Other aspects of the question, including molar entropy of mixing, molar free energy change, and chemical potentials, cannot be answered without additional data.

Explanation:

To answer your question, we first need to find the number of moles of gold (Au) and silver (Ag) in the mixture. The atomic mass of Au is approximately 197 g/mol and of Ag is 107.87 g/mol. From this, we can calculate the number of moles as follows:

Moles of Au = 15g/(197 g/mol) = approximately 0.076 molMoles of Ag = 25g/(107.87 g/mol) = approximately 0.232 mol

The total number of moles in the solution = Moles of Au + Moles of Ag = 0.076 mol + 0.232 mol = 0.308 mol.

Therefore, the mole fractions are: xAu = 0.076/0.308 = 0.247, xAg = 0.232/0.308 = 0.753.

As for the molar entropy of mixing, molar free energy change, total entropy of mixing, and chemical potentials of Au and Ag, these values depend on the specific conditions of the system and cannot be determined without additional information. Accordingly, these parts of the question cannot be answered.

Learn more about Chemistry of Solid Solutions here:

https://brainly.com/question/36922492

#SPJ3

Consider two solutions, solution A and solution B. [H+] in solution A is 500 times greater than that in solution B. what is the difference in the pH values of the two solutions?

Answers

Answer: The difference in the pH values of the two solutions is 2.7

Explanation:

pH or pOH is the measure of acidity or alkalinity of a solution.

pH is calculated by taking negative logarithm of hydrogen ion concentration.

[tex]pH=-\log [H^+][/tex]

a) For solution A, let [tex][H^+][/tex]  = [tex]0.0001\times 500M=0.05M[/tex]

Putting in the values:

[tex]pH=-\log[0.05][/tex]

[tex]pH=1.3[/tex]

b) For solution B, [tex][H^+][/tex]  =[tex]0.0001M[/tex]

Putting in the values:

[tex]pH=-\log[0.0001][/tex]

[tex]pH=4[/tex]

Thus the difference in pH will be (4-1.3)= 2.7.

The difference in the pH values of the two solutions is 2.7

Let the [H+] of solution B be 0.0001 M

Thus,

The [H+] of solution A = 0.0001 × 500 = 0.05 M

Next, we shall determine the pH of each solution

For solution A:

Hydrogen ion concentration [H+] = 0.0001 M

pH =?

pH = –Log [H+]

pH = –Log 0.0001

pH = 1.3

For solution B:

Hydrogen ion concentration [H+] = 0.05 M

pH =?

pH = –Log [H+]

pH = –Log 0.05

pH = 4

Finally, we shall determine the difference in the pH values of the two solutions

pH of solution A = 1.3

pH of solution B = 4

Difference =?

Difference = 4 – 1.3

Difference = 2.7

Therefore, the difference in the pH values of the two solutions is 2.7

Learn more: https://brainly.com/question/9278932

Other Questions
A 76.00 pound flask of mercury costs $162.50. The density of mercury is 13.534g/cm 3. A. Find the price of one cubic inch of mercury by calculating intermediate values.B. What is the price of one pound of mercury?C. What is the price of one gram of mercury?D. What is the price of one cubic centimeter of mercury?E. What is the price of one cubic inch of mercury? The price elasticity of demand is:a) the ratio of the percentage change in quantity demanded to the percentage change in price.b) the responsiveness of revenue to a change in quantity.c) the ratio of the change in quantity demanded divided by the change in price.d) the response of revenue to a change in price. f(x)=x+2, find f(-5)f(5). Eliza is a kindergarten teacher for Alexander Hamilton Elementary School. Eliza decorates her classroom with new artwork, posters, bulletin boards, etc. In 2018, she spends $470 on materials and supplies for her classroom. The school reimburses her $100 (the annual reimbursement limit). Eliza can deduct _________ for AGI and _________ from AGI. According to the text, realists tend to be a. consequentialists b. utilitarians c. deontologists d. egoists How did the Atlantic slave trade contribute to conditions that eventually led tothe Haitian Revolution?OA. It created a huge slave population that hoped to overthrow Saint-Domingue's social system.OB. It led European countries to pull their military support from Saint-Domingue in protest.C. It outraged mixed-race laborers in Saint-Domingue who lost theirjobs when farms bought slaves.D. It led to an economic depression due to the high cost of slaves. In order to find the height of a cliff, you stand at the bottom of the cliff, walk 60 feetfrom the base, and place a mirror on the ground. Then you face the cliff and step back5 feet so that can see the top of the cliff in the mirror. Assuming your eyes are 6 feetabove the ground, explain how to use this information to find the height of the cliff.(The angles marked congruent are congruent because of the nature of the reflection oflight in a mirror.)Q5ft60 ftKMirror Mattie is making a collar for her dog. She needs to buy some chain,a clasp, and a name tag. She wants the chain to be 40 centimeters long. One meter of chain costs $9.75. The clasp is $1.29 and the name tag is$3.43. How much will it cost to make a collar? 2. What was required for GA to rejoin the Union? What is a real world situation for the problem 42.48 Divided by 25 Please help ASAP will give BRAINLIEST ANSWER!!!!!!! After the defendant's attorney has finished calling witnesses, the plaintiff's attorney can call witnesses and put forth evidence to rebut the defendant's case. This is called a _____.A. resolution B. restitution C. remittitur D. rebuttal E. rejoinder How did King Taejo eliminate his competitors?He sent them into exile.He had them killed.He turned them into slaves.He made them become priests Find the solution of the given initial value problem. ty' + 6y = t2 t + 1, y(1) = 1 6 , t > 0 why might king have gone into such specific detail about steps taken and recent events in birminghham this early in the letter Darcys house is 6 times as far from school as her friends house. If her friends house is 3/4 mile from school, how many miles from school is Darcys house? the average number 1 0 1 5 6 3 4 The particles that are found in the nucleus of an atom area. neutrons and electronsc. protons and neutronsb. electrons onlyd. protons and electrons The Oldowan tool tradition is primarily associated with what group of early human ancestors An unknown protein are dissolved in enough solvent to make of solution. The osmotic pressure of this solution is measured to be at .Calculate molar mass of a protein. Steam Workshop Downloader