How many 4-permutations of [10] have maximum element equal to 6? How many have maximum element at most 6?

Answers

Answer 1

I'm guessing that [10] refers to the set of the first 10 positive integers.

If the largest element of a given 4-permutation is 6, then the other three elements are pulled from the set {1, 2, 3, 4, 5}. This can be done in 5!/(5 - 3)! = 60 ways. Then there are four possible positions to place the 6, giving a total of 4 * 60 = 240 permutations.

If the largest element of a permutation is *at most* 6, then the maximal element is 4, 5, or 6.

If it's 4, then there are three other elements available; this can be done in 3!/(3 - 3)! = 6 ways; multiply by 4 to get a total of 24;If it's 5, then there are four other elements available, hence 4!/(4 - 3)! = 24 ways; multiply by 4 to get a total of 96;If it's 6, then the total is 240.

Putting everything together, the total number of permutations in which the maximal element is at most 6 is 24 + 96 + 240 = 360.

Answer 2
Final answer:

The number of 4-permutations of [10] with a maximum element of 6 is 24. The number of 4-permutations of [10] with a maximum element at most 6 is 120.

Explanation:

To find the number of 4-permutations of [10] with a maximum element of 6, we can consider the possibilities for the position of the maximum element in the permutation. There are 4 possible positions for the maximum element: first, second, third, or fourth. If the maximum element is in the first position, the remaining 3 elements can be any combination of the remaining 3 numbers (10, 9, and 8) which gives us 3! = 6 permutations. Similarly, if the maximum element is in the second, third, or fourth position, we will have 6 permutations for each position.

Therefore, the total number of 4-permutations of [10] with a maximum element of 6 is 4 * 6 = 24.

To find the number of 4-permutations of [10] with a maximum element at most 6, we need to consider all possible values for the maximum element. We already found that there are 24 permutations with a maximum element of 6. Now, we need to consider the possibilities where the maximum element is 5, 4, 3, 2, or 1.

If the maximum element is 5, the remaining 3 elements can be any combination of the remaining 4 numbers (10, 9, 8, and 6) which gives us 4! = 24 permutations. Similarly, if the maximum element is 4, 3, 2, or 1, we will have 24 permutations for each maximum element.

Therefore, the total number of 4-permutations of [10] with a maximum element at most 6 is 24 + 24 + 24 + 24 + 24 = 120.


Related Questions

Fred wants to buy a video game that costs $54. There was a markdown of 20%. How much is the discount?

Answers

Mar 10, 2012 - Markups and Markdowns Word Problems - Independent Practice Worksheet. $6640. $3.201 ... 2) Fred buys a video game disk for $4. There was a discount of 20%.What is the sales price? 20% of 1 pay 8090 ... 5) Timmy wants to buy.a scooter and the price was $50. When ... at a simple interest rate of 54%.

$54 - 20%
= $43.20

You can also calculate how much you save by simply moving the period in 50.00 percent two spaces to the left, and then multiply the result by $54 as follows: $54 x . 50 = $27.00 savings. Furthermore, you can get the final price by simply deducting.

A researcher wants to determine if socioeconomic status (low, moderate, high) is related to smoking (yes or no). The Chi-Square null hypothesis for this study is that socioeconomic status is related to smoking behavior.A. TrueB. False

Answers

Answer:

The chi-square null hypothesis for the study that "socioeconomic status is related to smoking behavior" is False

Step-by-step explanation:

The chi-square null hypothesis is false because the chi-square null hypothesis states that no relationship exists on the categorical variables in a population, they are all independent of each other.

A quantum object whose state is given by is sent through a Stern-Gerlach device with the magnetic field oriented in the y-direction. What is the probability that this object will emerge from the + side of this device?

Answers

Answer:

The probability that the object will emerge from the + side of this device is 1/2

Step-by-step explanation:

Orienting the magnetic field in a Stern-Gerlach device in some direction(y - direction) perpendicular to the direction of motion of the atoms in the beam, the atoms will emerge in two possible beams, corresponding to ±(1/2)h. The positive sign is usually referred to as spin up in the direction, the negative sign as spin down in the explanation, the separation has always been in the y direction. There can be some other cases where magnetic field may be orientated in x-direction or z-direction.

Match each shape on the left to every name that describes it on the right. Some answer options on the right will be used more than once.

Answers

Final answer:

The student is undertaking an English language assignment designed to strengthen their understanding of vocabulary, word formation, and spelling through a variety of exercises including word scrambles, pattern recognition, spelling reviews, and word categorization.

Explanation:

The student appears to be working on a language arts activity related to vocabulary and word structure. The question likely requires them to engage with various linguistic exercises such as word scrambles, identifying patterns in spelling or pronunciation, reviewing correct spellings, and categorizing words. Such tasks are designed to help students learn about word formation, synonyms, antonyms, and the nuances of English spelling.



Word Scrambles and Patterns

For word scrambles, students are expected to rearrange the letters to form meaningful words. In doing this, they might uncover a hidden word that pertains to the lesson's focus. Identifying patterns in words might involve recognizing prefixes, suffixes, or roots that appear consistently across different words.



Reviewing Spelling

The student is also asked to choose the word with the correct spelling. This likely involves comparing similar words and identifying the correctly spelled one, perhaps with the aid of a dictionary for verification.



Categorizing Words

In the task of sorting words into groups, students might have to classify words based on different criteria such as part of speech, phonetic features, or spelling patterns. This reinforces their understanding of language structure and proper spelling conventions.

Whats an explicit rule for this? 14, 20, 26, 32, etc. Write an explicit formula for the nth term an.

Answers

Answer:

a(n)=14+6(n-1)

Step-by-step explanation:

The first term is 14. This would be an arithmetic sequence, so you will add 6 to every term: the common difference is 6.

14+6= 20

20+6=26

You have the formula a(n)= a(1)+d(n-1)

a(n)= 14+6(n-1)

14 for the first term, 6 for the common difference.

what is the solution to the equation A/2= -5

Answers

Answer:

A = -10

Step-by-step explanation:

A/2 = -5

Multiply both sides by the denominator of the fraction

We have A/2 x2 = -5 x 2

A = -10

Answer:

-10

Step-by-step explanation:

It is the easiest equation.

A/2= -5

At first, we have to multiply both the sides by 2. Therefore, we can get,

[tex]\frac{A*2}{2}[/tex] = (-5 × 2)

or, A = -10

Therefore, the value of A is -10. It remains negative because we cannot multiply both the sides by -1. If we do that, we cannot determine the constant.

Answer: A = -10

Someone please help me!

Answers

Answer:

The answer to your question is below

Step-by-step explanation:

43.-

x = [tex]\sqrt{27^{2} + 22^{2}- 2(27)(22)cos 73}[/tex]

x = [tex]\sqrt{865.66}[/tex]

x = 29.42

44.-

x = [tex]\sqrt{10^{2} + 14^{2} -2(10)(14)cos 66}[/tex]

x = [tex]\sqrt{182.11}[/tex]

x = 13.49

45.-

cos x = [tex]\frac{11^{2} - 17^{2} - 10^{2}}{-2(11)(17)}[/tex]

cos x = 0.7166

     x = 44.22°

46.-

x = [tex]\sqrt{16^{2} + 12^{2} -2(16)(12)cos75}[/tex]

x = [tex]\sqrt{300.61}[/tex]

x = 17.34

47.-

cos P = [tex]\frac{6^{2} - 13^{2} -11^{2}}{-2(13)(11)}[/tex]

cos P = 0.888

     P = 27.36°

sinR/13 = sinP/6

sin R = 13sin27.36/6

sinR = 0.996

   R = 84.71°

Q = 180 - 84.71 - 27.36

Q = 67.93°

48.-

D = 180 - 25 - 113

D = 42°

CD = 9Sin113/sin42

CD = 12.38

ED = 9sin25/sin42

ED = 5.68

A rain gutter is to be made of aluminum sheets that are 12 inches wide by turning up the edges 90 degrees.What depth will provide maximum​ cross-sectional area and hence allow the most water to​ flow?

Answers

Answer:

18 in^2

Step-by-step explanation:

1  )The three sides of the gutter add up to 12

            2x+ y = 12  

2)  Subtract 2x from both sides.

           y = 12 — 2x  

3 )Find the area of the rectangle in terms of x and simplify.

    Area = xy = x(12 — 2x) = -2x^2+12x = f(x)  

4 )  x=-b/2a

     x co-ordinate of the vertex= -12/2(-2)=3

5 )Plug in 3 for x into they equation.

    y co-ordinate of the vertex= 12 — 2(3) = 6  

6  )  Plug in 3 for x and 6 for y.  

      Area= xy = 3(6) = 18  

RESULT  

            18 in^2

 

 

 

 

How to find the area of a square ABC D

Answers

Answer:

The answer to your question is 13 u²

Step-by-step explanation:

We know that the small triangle is surrounded by right triangles so we can use the Pythagorean theorem to find the lengths  of the small triangle

                 AD² = 3² + 2²

Simplify

                 AD² = 9 + 4

                 AD² = 13

                 AD = [tex]\sqrt{13}[/tex]

Find the area of the square

Area = side x side

Area = AD x AD

Area = [tex]\sqrt{13} x \sqrt{13}[/tex]

Area = 13 u²                  

the average age of men who had walked on the moon was 39 years, 11months, 15days. Is the value aparameter or a statistic?

Answers

Answer:

Parameter                                            

Step-by-step explanation:

We are given the following in the question:

The average age of men who had walked on the moon was 39 years, 11 months, 15 days.

Population and sample:

Population is the collection of all observation for variable of interest or individual of interest.Sample is a subset for population.

Parameter and statistic:

Any variable or value describing a population is known as parameter.Any value describing a sample is known as statistic.

Population of interest:

men who had walked on the moon

Value:

average age of men who had walked on the moon

Thus, the give value describes a population and hence, it is a parameter.

Binomial Distribution. Research shows that in the U.S. federal courts, about 90% of defendants are found guilty in criminal trials. Suppose we take a random sample of 25 trials. (For this problem it is best to use the Binomial Tables).Based on a proportion of .90, what is the variance of this distribution?

Answers

Answer:

The variance of this distribution is 0.0036.

Step-by-step explanation:

The variance of n binomial distribution trials with p proportion is given by the following formula:

[tex]Var(X) = \frac{p(1-p)}{n}[/tex]

In this problem, we have that:

About 90% of defendants are found guilty in criminal trials. This means that [tex]p = 0.9[/tex]

Suppose we take a random sample of 25 trials. This means that [tex]n = 25[/tex]

Based on a proportion of .90, what is the variance of this distribution?

[tex]Var(X) = \frac{p(1-p)}{n}[/tex]

[tex]Var(X) = \frac{0.9*0.1}{25} = 0.0036[/tex]

The variance of this distribution is 0.0036.

If an angle of 96 degrees is rotated 90 degrees clockwise. what the measure?

Answers

Answer:

The measure is 6°.

Step-by-step explanation:

If an angle of 96 degrees is rotated 90 degrees clockwise then the measure of the new angle will be given by

= 96° - 90° = 6°

A. Find n so that the number sentence below is true. 2^-6*2^n=2^9.
N=_____________


B. Use the laws of exponents to demonstrate why 2^3•4^3=2^9 is true and explain.

This is true because

Answers

n = 15

Step-by-step explanation:

Step 1: Calculate n by using the law of exponents that a^m × a^n = a^m+n

For 2^-6*2^n=2^9, a = 2, m = -6 and m + n = 9

⇒ -6 + n = 9

⇒ n = 15

Step 2: Given 2³ × 4³=2^9. Use law of exponents to prove it.

⇒ 2³ × 4³ can also be written as 2³ × (2²)³ = 2³ × 2^6 [This is based on the law of exponents (a^m)^n = (a)^m×n]

⇒ 2³ × 2^6 = 2^ (3 + 6) = 2^9 [Using the law of exponents a^m × a^n = a^m+n]

There are 39 members on the Central High School student government council. When a vote took place on a certain proposal, all of the seniors and none of the freshmen voted for it. Some of the juniors and some of the sophomores voted for the proposal and some voted against it.
If a simple majority of the votes cast is required for the proposal to be adopted, which of the following statements, if true, would enable you to determine whether the proposal was adopted?

a. There are more seniors than freshmen on the council.
b. A majority of the freshmen and a majority of the sophomores voted for the proposal.
c. There are 18 seniors on the council.
d. There are the same number of seniors and freshmen combined as there are sophomores and juniors combined.
e. There are more juniors than sophomores and freshmen combined, and more than 90% of the juniors voted against the proposal.

Answers

Answer:

Option a

Step-by-step explanation:

Given that all of the seniors and none of the freshmen voted for it.

Some of the juniors and some of the sophomores voted for the proposal and some voted against it.

If the proposal was to be adopted then a simple of majority of votes should have been cast.

Since all seniors voted for it, and no freshmen number of freshmen has to be less than seniors then only majority would have voted.

Regarding juniors and sophomores we assume some voted and some against thus approximately nullifying their votes.

So the correct option would be

a. There are more seniors than freshmen on the council.

Option b wrong since only some voted for it.

C is wrong because actual seniors were not given.

D is wrong because while seniors voted for sophomores voted against.

e is wrong since sophomores and freshmen nullified each other

A player of a video game is confronted with a series of 3 opponents and a(n) 77% probability of defeating each opponent. Assume that the results from opponents are independent (and that when the player is defeated by an opponent the game ends).

Round your answers to 4 decimal places.

a. What is the probability that a player defeats all 3 opponents in a game?

b. What is the probability that a player defeats at least two opponents in a game?

c. If the game is played 2 times, what is the probability that the player defeats all 3 opponents at least once?

Answers

Answer:

a.) 0.4565

b.) 0.8656

c.) 0.4615

Step-by-step explanation:

We solve this using the probability distribution formula of combination.

nCr * p^r * q^n-r

Where

n = number of trials

r = successful trials

probability of success = p = 77% =0.77

Probability of failure= q = 1-0.77 = 0.23

a.) When exactly 3 opponents are defeated, When n = 3 and r = 3, probability becomes:

= 3C3 * 0.77³ * 0.23^0

= 1 * 0.456533 * 1

= 0.456533 = 0.4565 (4.d.p)

b.) When at least 2 opponents are defeated, that is when r = 2 and when r = 3,

When r = 2, probability becomes:

= 3C2 * 0.77² * 0.23¹

= 3 * 0.5929 * 0.23

= 0.409101

When 3 opponents are defeated, we calculated it earlier to be 0.456533

Hence, probability that at least 2 opponents are defeated

= 0.409101 + 0.456533

= 0.865634 = 0.8656(2.d.p)

c.) If 2 games are played, probability he defeat all 3 at least once in the game will be the sum (probability of defeating all 3 opponents in the first game and not defeating all 3 in the second game) + (probability of defeating all three opponents in both games)

Probability of defeating all three opponents in the first game = 0.456533

Probability of not defeating all three opponents in the second game = 1 - 0.456533 = 0.543467

Hence ,

probability of defeating all 3 opponents in the first game and not defeating all 3 in the second game = 0.465633 * 0.543467 = 0.253056

probability of defeating all three opponents in both games

= 0.456533 * 0.456533

=0.208422

Probability he defeats all three opponents at least once in 2games

= 0.253056 + 0.208422

=0.461478 = 0.4615(4.d.p)

In this problem, y = c1ex + c2e−x is a two-parameter family of solutions of the second-order DE y'' − y = 0. Find c1 and c2 given the following initial conditions. (Your answers will not contain a variable.) y(1) = 0, y'(1) = e c1 = Incorrect: Your answer is incorrect. c2 = Incorrect: Your answer is incorrect. Find a solution of the second-order IVP consisting of this differential equation and the given initial conditions. y = Incorrect: Your answer is incorrect.

Answers

Answer:

c₁ = 1/2

c₂ = - e²/2

y = (1/2)*(eˣ - e²⁻ˣ)

Step-by-step explanation:

Given

y = c₁eˣ + c₂e⁻ˣ

y(1) = 0

y'(1) = e

We get y' :

y' = (c₁eˣ + c₂e⁻ˣ)'  ⇒  y' = c₁eˣ - c₂e⁻ˣ

then we find y(1) :

y(1) = c₁e¹ + c₂e⁻¹ = 0

⇒  c₁ = - c₂/e² (I)

then we obtain y'(1):

y'(1) = c₁e¹ - c₂e⁻¹ = e    (II)

⇒  (- c₂/e²)*e - c₂e⁻¹ = e

⇒  - c₂e⁻¹ - c₂e⁻¹ = - 2c₂e⁻¹ = e

⇒  c₂ = - e²/2

and

c₁ = - c₂/e² = - (- e²/2) / e²

⇒  c₁ = 1/2

Finally, the equation will be

y = (1/2)*eˣ - (e²/2)*e⁻ˣ = (1/2)*(eˣ - e²⁻ˣ)

Applying the initial conditions, it is found that the solution is:

[tex]y = \frac{1}{2}e^{x} - \frac{e^2}{2}e^{-x}[/tex]

------------------------

The solution for the PVI is given by:

[tex]y = c_1e^{x} + c_2e^{-x}[/tex]

------------------------

The condition [tex]y(1) = 0[/tex] means that when [tex]x = 0, y = 1[/tex], and thus, we get:

[tex]c_1e + c_2e^{-1} = 0[/tex]

[tex]c_1e+ \frac{c_2}{e} = 0[/tex]

[tex]c_1e^{2} + c_2 = 0[/tex]

[tex]c_2 = -c_1e^{2}[/tex]

------------------------

The derivative is:

[tex]y^{\prime}(x) = c_1e^{x} - c_2e^{-x}[/tex]

Applying the condition [tex]y^{\prime}(1) = e[/tex], we get:

[tex]c_1e - \frac{c_2}{e} = e[/tex]

Considering [tex]c_2 = -c_1e^{2}[/tex]:

[tex]c_1e + c_1\frac{e^2}{e} = e[/tex]

[tex]c_1e + c_1e = e[/tex]

[tex]2c_1e = e[/tex]

[tex]2c_1 = 1[/tex]

[tex]c_1 = \frac{1}{2}[/tex]

------------------------

The second constant is:

[tex]c_2 = -c_1e^{2} = -\frac{e^2}{2}[/tex]

And the solution is:

[tex]y = \frac{1}{2}e^{x} - \frac{e^2}{2}e^{-x}[/tex]

A similar problem is given at https://brainly.com/question/13244107

If a customer at a particular grocery store uses coupons, there is a 50% probability that the customer will pay with a debit card. Thirty percent of customers use coupons and 35% of customers pay with debit cards. Given that a customer does not pay with a debit card, the probability that the same customer does not use coupons is ________. A) 0.52 B) 0.60 C) 0.77 D) 0.85

Answers

Answer:

A. 0.52

Step-by-step explanation:

Let D be the event that person used Debit card and C b the event that person used coupon.

We have to find the probability of customer does not use coupons given that a customer does not pay with a debit card,

P(C'/D')=P(C')P(D'/C')/[P(C')P(D'/C')+P(D')P(D'/C')]

We are given that P(D)=0.35, P(C)=0.30 and P(D/C)=0.5.

P(D')=1-0.35=0.65

P(C')=1-0.3=0.7

P(D'/C')=0.5.

P(C'/D')=0.7(0.5)/[0.7(0.5)+0.65(0.5)]

P(C'/D')=0.35/[0.35+0.325]

P(C'/D')=0.35/[0.35+0.325]

P(C'/D')=0.35/0.675

P(C'/D')=0.5185=0.52

Thus, the probability of customer does not use coupons given that a customer does not pay with a debit card is 0.52.

Suppose that you are hiking on a terrain modeled by z=xy+y^3−x^2. You are at the point (2,1,−1).

(a) Determine the slope you would encounter if you headed due West from your position. What angle of inclination does this correspond to?

(b) Determine the slope you would encounter if you headed due North-West from your position. What angle of inclination does this correspond to?

(c) Determine the slope you would encounter if you headed due South-West from your position. What angle of inclination does this correspond to?

(d) Determine the steepest slope you could encounter from your position and the direction of that slope (as a unit vector).

Answers

Answer:

a)  D_u .  ∀ f ( 2 , 1 ) = 3 , Q = 72 degrees

b) D_u .  ∀ f ( 2 , 1 ) = 4*sqrt(2) , Q = 80 degrees

c) D_u .  ∀ f ( 2 , 1 ) = - sqrt(2) , Q = -54.74 degrees

d) u = 1 / sqrt(34) *(-3i +5j) ,  D_u .  ∀ f ( 2 , 1 )  = +/- sqrt (34) , Q = 80.27 degrees

Step-by-step explanation:

Given:

- The terrain is modeled as a surface:

                                   f(x , y) = x*y + y^3 - x^2

At point P( 2 , 1 , -1 ) is the current position:

Find:

(a) Determine the slope you would encounter if you headed due West from your position. What angle of inclination does this correspond to?

(b) Determine the slope you would encounter if you headed due North-West from your position. What angle of inclination does this correspond to?

(c) Determine the slope you would encounter if you headed due South-West from your position. What angle of inclination does this correspond to?

(d) Determine the steepest slope you could encounter from your position and the direction of that slope (as a unit vector).

Solution:

- We will compute the gradient of the vector ∀ f @ point P( 2 , 1 , -1 ) as follows:

                                ∀ f ( x , y ) = (y - 2x ) i + ( x + 3y^2) j

- Evaluate at point P ( 2 , 1 ):

                               ∀ f ( 2 , 1 ) = (1 - 2*2 ) i + ( 2 + 3*1^2) j    

                               ∀ f ( 2 , 1 ) = -3 i + 5 j        

- We will use the result of ∀ f @ point P( 2 , 1 , -1 ) for the all the parts.

a)

- The direction due west can be written as a unit vector u_w = - i .

- Now compute the directional derivative in the direction of u_w = - i

                                D_u .  ∀ f ( 2 , 1 ) =-3 i + 5 j . - i

                                D_u .  ∀ f ( 2 , 1 ) = 3

- Now compute the angle of inclination Q for the following direction:

                                Q = arctan(3) = 71.57 = 72 degrees

 Hence, along the direction due west from position we ascend with an inclination of approximately 72 degrees.

b)

- The direction due north-west can be written as a unit vector u_w = - i + j .

- Now compute the directional derivative in the direction of u_w = - i + j

                                D_u .  ∀ f ( 2 , 1 ) =-3 i + 5 j . (- i + j) / sqrt(2)

                                D_u .  ∀ f ( 2 , 1 ) = 8 / sqrt(2) = 4*sqrt(2)

- Now compute the angle of inclination Q for the following direction:

                                Q = arctan(4*sqrt(2)) = 79.98 = 80 degrees

 Hence, along the direction due north-west from position we ascend with an inclination of approximately 80 degrees.    

c)

- The direction due south-west can be written as a unit vector u_w = - i - j .

- Now compute the directional derivative in the direction of u_w = - i - j

                                D_u .  ∀ f ( 2 , 1 ) =-3 i + 5 j . (- i - j) / sqrt(2)

                                D_u .  ∀ f ( 2 , 1 ) = -2 / sqrt(2) = - sqrt(2)

- Now compute the angle of inclination Q for the following direction:

                                Q = arctan(-sqrt(2)) = -54.74 degrees

 Hence, along the direction due south-west from position we descend with an inclination of approximately 55 degrees.    

d)

- We know that ∀ f ( 2 , 1 ) gradient points in the direction greatest increase, hence, So from P the direction of greatest increase is  ∇f(P) = -3i +5j. The unit vector pointing in this direction is:

                                  u = 1 / sqrt(34) *(-3i +5j)

- so we have:

                     D_u .  ∀ f ( 2 , 1 ) =  u . ∀ f ( 2 , 1 ) = (-3i +5j) . (-3i +5j) / sqrt(34)

                     = +/- sqrt (34)

- Hence, the steepest ascent or decent is of :

                     Q = arctan ( sqrt(34)) = 80.27 degrees

For the next two questions, let the null and alternative hypotheses be LaTeX: H_0H 0: LaTeX: \mu=\:8μ = 8 and LaTeX: H_aH a : LaTeX: \mu>8μ > 8. Assume that the population standard deviation LaTeX: \sigmaσ is not known. Becca collects a sample of size LaTeX: n=9n = 9 and computes LaTeX: \overline{x}=11x ¯ = 11 and LaTeX: s=6s = 6. Is LaTeX: \sigmaσ known?

Answers

Answer:

[tex]t=\frac{11-8}{\frac{6}{\sqrt{9}}}=1.5[/tex]    

[tex]p_v =P(t_{(8)}>1.5)=0.086[/tex]  

If we compare the p value and the significance level assumed [tex]\alpha=0.05[/tex] we see that [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to fail reject the null hypothesis, we can conclude that the mean is higher than 8 at 5% of signficance.  

Step-by-step explanation:

Data given and notation  

[tex]\bar X=11[/tex] represent the mean height for the sample  

[tex]s=6[/tex] represent the sample standard deviation for the sample  

[tex]n=9[/tex] sample size  

[tex]\mu_o =8[/tex] represent the value that we want to test

[tex]\alpha=0.05[/tex] represent the significance level for the hypothesis test.   (assumed)

t would represent the statistic (variable of interest)  

[tex]p_v[/tex] represent the p value for the test (variable of interest)  

State the null and alternative hypotheses.  

We need to conduct a hypothesis in order to check if the mean is higher than 8, the system of hypothesis would be:  

Null hypothesis:[tex]\mu \leq 8[/tex]  

Alternative hypothesis:[tex]\mu > 8[/tex]  

If we analyze the size for the sample is < 30 and we don't know the population deviation so is better apply a t test to compare the actual mean to the reference value, and the statistic is given by:  

[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex]  (1)  

t-test: "Is used to compare group means. Is one of the most common tests and is used to determine if the mean is (higher, less or not equal) to an specified value".  

Calculate the statistic

We can replace in formula (1) the info given like this:  

[tex]t=\frac{11-8}{\frac{6}{\sqrt{9}}}=1.5[/tex]    

P-value

The first step is calculate the degrees of freedom, on this case:  

[tex]df=n-1=9-1=8[/tex]  

Since is a one side upper test the p value would be:  

[tex]p_v =P(t_{(8)}>1.5)=0.086[/tex]  

Conclusion  

If we compare the p value and the significance level assumed [tex]\alpha=0.05[/tex] we see that [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to fail reject the null hypothesis, we can conclude that the mean is higher than 8 at 5% of signficance.  

Final answer:

To determine if the population standard deviation is known, we can use the formula for the standard error of the mean (SEM) and use the t-distribution for a sample size of 9.

Explanation:

To determine if the population standard deviation LaTeX: \sigma\sigma is known, we can use the formula for the standard error of the mean (SEM):



SE = \frac{s}{\sqrt{n}}



If the sample size is less than or equal to 30, we can use the t-distribution to find the critical value for a given level of significance. If the sample size is greater than 30, we can use the z-distribution. In this case, since the sample size is 9, the t-distribution should be used.



Thus, with a sample size of 9 and the population standard deviation not known, \sigma\sigma is not known.

Learn more about Standard Error of the Mean here:

https://brainly.com/question/14524236

#SPJ3

Suppose that operators A^ and B^ are both Hermitian, i.e, A^` = A^ and B^` = B^.
Answer the following and show your work:

(a) Is A^² Hermitian?
(b) Is A^B^ Hermitian?
(c) Is A^B^+ B^A^ Hermitian?
(d) Is it possible for A^ to have complex eigenvalues, or must they be real?

Answers

Answer:

a) A^² is a Hermitian operator

b) A^B^ is not a Hermitian operator

c)  A^B^+ B^A^  is a Hermitian operator

d) It is not possible to be complex it must be a real number

Step-by-step explanation:

In order to understand this solution we need to define the concept Hermitian

HERMITIAN

 This can be defined as a matrix whose elements are real and symmetrical i.e. it a square matrix that is equal to its own conjugate, or we can simply put that its a matrix in which those pairs of element that are symmetrically placed with respect to the principal diagonal are complex conjugates.i.e the diagonal elements( Hermitian operators) are real numbers while others are complex numbers.

The solution to the question above are on the first and second uploaded image.

     

A punch recipe requires 2/5 of a cup of pineapple juice for every 2 1/2 cups of soda. What is the unit rate of soda to pineapple juice in the punch?

Answers

Answer:

The unit rate is 6 1/4 cups of soda per cup of pineapple juice

Step-by-step explanation:

we know that

To find out the unit rate of soda to pineapple juice in the punch, divide the cups of soda by the cups of pineapple juice

so

[tex]2\frac{1}{2} :\frac{2}{5}[/tex]

Convert mixed number to an improper fraction

[tex]2\frac{1}{2}=2+\frac{1}{2}=\frac{2*2+1}{2}=\frac{5}{2}[/tex]

substitute

[tex]\frac{5}{2} :\frac{2}{5}[/tex]

Multiply in cross

[tex]\frac{25}{4}= 6.25[/tex]

Convert to mixed number

[tex]6.25=6+0.25=6+\frac{1}{4}= 6\frac{1}{4}[/tex]

That means

The unit rate is 6 1/4 cups of soda per cup of pineapple juice

Answer:

6 1/4

Step-by-step explanation:

A chemical plant has an emergency alarm system. When an emergency situation exists, the alarm sounds with probability 0.95. When an emergency situation does not exist, the alarm sounds with probability 0.02. A real emergency situation is a rare event, with probability 0.004. Given that the alarm has just sounded, what is the probability that a real emergency situation exists?

Answers

Answer:

6.56% probability that a real emergency situation exists.

Step-by-step explanation:

We have these following probabilities:

A 0.4% probability that a real emergency situation exists.

A 99.6% probability that a real emergency situation does not exist.

If an emergency situation exists, a 95% probability that the alarm sounds.

If an emergency situation does not exist, a 2% probability that the alarm sounds.

The problem can be formulated as the following question:

What is the probability of B happening, knowing that A has happened.

It can be calculated by the following formula

[tex]P = \frac{P(B).P(A/B)}{P(A)}[/tex]

Where P(B) is the probability of B happening, P(A/B) is the probability of A happening knowing that B happened and P(A) is the probability of A happening.

In this problem:

What is the probability of a real emergency situation existing, given that the alarm has sounded.

P(B) is the probability of there being a real emergency situation. So [tex]P(B) = 0.004[/tex].

P(A/B) is the probability of the alarm sounding when there is a real emergency situation. So P(A/B) = 0.95.

P(A) is the probability of the alarm sounding. This is 95% of 0.4%(real emergency situation) and 2% of 99.6%(no real emergency situation). So

P(A) = 0.95*0.04 + 0.02*0.996 = 0.05792

Given that the alarm has just sounded, what is the probability that a real emergency situation exists?

[tex]P = \frac{P(B).P(A/B)}{P(A)} = \frac{0.004*0.95}{0.05792} = 0.0656[/tex]

6.56% probability that a real emergency situation exists.

Use the roster method to write each of the given sets. (Enter EMPTY for the empty set.)
(a) The set of natural numbers x that satisfy x + 4 = 1.
(b) Use set-builder notation to write the following set.
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Answers

Answer:

a) Empty set

b)  [tex]\{x : x \in N \text{ and } x < 13\}[/tex]                                        

Step-by-step explanation:

Roster form is a comma separated list form of set.

a) The set of natural numbers x that satisfy x + 4 = 1.  

[tex]x + 4 = 1\\x = -3 \notin N[/tex]

Thus, x is an empty set.

b) set-builder notation for the set  {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

We use x to represent this set. Now x belongs to natural number and is less than equal to 12.

Thus, it can be written as:

[tex]\{x : x \in N \text{ and } x < 13\}[/tex]

When analyzing data on the number of employees in small companies in one​ town, a researcher took square roots of the counts. Some of the resulting​ values, which are reasonably​ symmetric, were 4​, 5​, 5​, 7​, 7​, 8​, and 11.
What were the original​ values, and how are they​ distributed?

Answers

Answer:

The original​ values are : 16, 25, 25, 49, 49, 64, 121.

Step-by-step explanation:

We know that  a researcher took square roots of the counts. Some of the resulting​ values, which are reasonably​ symmetric, were 4​, 5​, 5​, 7​, 7​, 8​, and 11.  We calculate the original​ values:

[tex]4^2=16\\5^2=25\\5^2=25\\7^2=49\\7^2=49\\8^2=64\\11^2=121\\[/tex]

The original​ values are : 16, 25, 25, 49, 49, 64, 121.

We conclude that the  original data is not simmetric.

The original values obtained by reversing the square root transformation are 16, 25, 25, 49, 49, 64, and 121. These values show variability in the number of employees across different small companies in the town. The transformed dataset was made more symmetrical for statistical analysis.

When a researcher applies a square root transformation to a dataset, the purpose is often to make the data more symmetrical and easier to analyze using certain statistical methods.

Given the transformed values 4, 5, 5, 7, 7, 8, and 11, we can reverse the transformation to find the original values.

The square of each transformed value yields the original data points:

4² = 165² = 255² = 257² = 497² = 498² = 6411² = 121

Thus, the original values are 16, 25, 25, 49, 49, 64, and 121. These values are distributed with some repeated data points and a range from 16 to 121.

This distribution indicates variability in the number of employees across the small companies studied.

If the atomic radius of a metal that has the face-centered cubic crystal structure is 0.137 nm, calculate the volume of its unit cell.

Answers

Answer:

[tex]5.796\times 10^{-29}m^3[/tex]

Step-by-step explanation:

Atomic radius of metal=0.137nm=[tex]0.137\times 10^{-9}[/tex]m

[tex]1nm=10^{-9}m[/tex]

Structure is  FCC

We know that

The relation between edge length and radius  in FCC structure

[tex]a=2\sqrt 2r[/tex]

Where a=Edge length=Side

r=Radius

Using the relation

[tex]a=2\sqrt 2\times 0.137\times 10^{-9}=0.387\times 10^{-9}m[/tex]

We know that

Volume of cube=[tex](side)^3[/tex]

Using the formula

Volume of unit cell=[tex](0.387\times 10^{-9})^3=5.796\times 10^{-29} m^3[/tex]

The volume of a unit cell is approximately 0.0580 nm³.

To find the volume of the unit cell for a metal with a face-centered cubic (FCC) crystal structure given an atomic radius of 0.137 nm, follow these steps:

Atomic Radius Interpretation: In a face-centered cubic unit cell, the atomic radius (r) is related to the edge length (a) of the unit cell by the equation:
a = 2√2 rCalculating the Edge Length: Plug in the given atomic radius (r = 0.137 nm) into the equation:
a = 2√2 x 0.137 nm = 2 x 1.414 x 0.137 nm = 0.387 nmCalculating the Volume of the Unit Cell: The volume (V) of a cube is given by V = a³. Therefore:
V = 0.387 nm x 0.387 nm x 0.387 nm ≈ 0.0580 nm³

Thus, the volume of the unit cell is approximately 0.0580 nm³.

List the probability value for each possibility in the binomial experiment calculated at the beginning of this lab, which was calculated with the probability of a success being ½. (Complete sentence not necessary; round your answers to three decimal places)P(x=0) P(x=6)
P(x=1) P(x=7)
P(x=2) P(x=8)
P(x=3) P(x=9)
P(x=4) P(x=10)
P(x=5)

Answers

Answer:

a. P(X = 0)= 0.001

b. P(X = 1)= 0.001

c. P(X=2)= 0.044

d. P(X=3)= 0.117

e. P(X=4)= 0.205

f. P(X=5)= 0.246

g. P(X=6)= 0.205

h. P(X=7)= 0.117

i. P(X=8)= 0.044

j. P(X=9)= 0.001

k. P(X=10)= 0.001

Step-by-step explanation:

Hello!

You have the variable X with binomial distribution, the probability of success is 0.5 and the sample size is n= 10 (I suppose)

If the probability of success p=0.5 then the probability of failure is q= 1 - p= 1 - 0.5 ⇒ q= 0.5

You are asked to calculate the probabilities for each observed value of the variable. In this case is a discrete variable with definition between 0 and 10.

You have two ways of solving this excersice

1) Using the formula

[tex]P(X)= \frac{n!}{(n-X)!X!} * (p)^X * (q)^{n-X}[/tex]

2) Using a table of cummulative probabilities of the binomial distribution.

a. P(X = 0)

Formula:

[tex]P(X=0)= \frac{10!}{(10-0)!0!} * (0.5)^0 * (0.5)^{10-0}[/tex]

P(X = 0) = 0.00097 ≅ 0.001

Using the table:

P(X = 0) = P(X ≤ 0) = 0.0010

b. P(X = 1)

Formula

[tex]P(X=1)= \frac{10!}{(10-1)!1!} * (0.5)^1 * (0.5)^{10-1}[/tex]

P(X = 1) = 0.0097 ≅ 0.001

Using table:

P(X = 1) = P(X ≤ 1) - P(X ≤ 0) = 0.0107-0.0010= 0.0097 ≅ 0.001

c. P(X=2)

Formula

[tex]P(X=2)= \frac{10!}{(10-2)!2!} * (0.5)^2 * (0.5)^{10-2}[/tex]

P(X = 2) = 0.0439 ≅ 0.044

Using table:

P(X = 2) = P(X ≤ 2) - P(X ≤ 1) = 0.0547 - 0.0107= 0.044

d. P(X = 3)

Formula

[tex]P(X = 3)= \frac{10!}{(10-3)!3!} * (0.5)^3 * (0.5)^{10-3}[/tex]

P(X = 3)= 0.11718 ≅ 0.1172

Using table:

P(X = 3) = P(X ≤ 3) - P(X ≤ 2) = 0.1719 - 0.0547= 0.1172

e. P(X = 4)

Formula

[tex]P(X = 4)= \frac{10!}{(10-4)!4!} * (0.5)^4 * (0.5)^{10-4}[/tex]

P(X = 4)= 0.2051

Using table:

P(X = 4) = P(X ≤ 4) - P(X ≤ 3) = 0.3770 - 0.1719= 0.2051

f. P(X = 5)

Formula

[tex]P(X = 5)= \frac{10!}{(10-5)!5!} * (0.5)^5 * (0.5)^{10-5}[/tex]

P(X = 5)= 0.2461 ≅ 0.246

Using table:

P(X = 5) = P(X ≤ 5) - P(X ≤ 4) = 0.6230 - 0.3770= 0.246

g. P(X = 6)

Formula

[tex]P(X = 6)= \frac{10!}{(10-6)!6!} * (0.5)^6 * (0.5)^{10-6}[/tex]

P(X = 6)= 0.2051

Using table:

P(X = 6) = P(X ≤ 6) - P(X ≤ 5) = 0.8281 - 0.6230 = 0.2051

h. P(X = 7)

Formula

[tex]P(X = 7)= \frac{10!}{(10-7)!7!} * (0.5)^7 * (0.5)^{10-7}[/tex]

P(X = 7)= 0.11718 ≅ 0.1172

Using table:

P(X = 7) = P(X ≤ 7) - P(X ≤ 6) = 0.9453 - 0.8281= 0.1172

i. P(X = 8)

Formula

[tex]P(X = 8)= \frac{10!}{(10-8)!8!} * (0.5)^8 * (0.5)^{10-8}[/tex]

P(X = 8)= 0.0437 ≅ 0.044

Using table:

P(X = 8) = P(X ≤ 8) - P(X ≤ 7) = 0.9893 - 0.9453= 0.044

j. P(X = 9)

Formula

[tex]P(X = 9)= \frac{10!}{(10-9)!9!} * (0.5)^9 * (0.5)^{10-9}[/tex]

P(X = 9)=0.0097 ≅ 0.001

Using table:

P(X = 9) = P(X ≤ 9) - P(X ≤ 8) = 0.999 - 0.9893= 0.001

k. P(X = 10)

Formula

[tex]P(X = 10)= \frac{10!}{(10-10)!10!} * (0.5)^{10} * (0.5)^{10-10}[/tex]

P(X = 10)= 0.00097 ≅ 0.001

Using table:

P(X = 10) = P(X ≤ 10) - P(X ≤ 9) = 1 - 0.9990= 0.001

Note: since 10 is the max number this variable can take, the cummulated probability until it is 1.

I hope it helps!

An education researcher collects data on how many hours students study at various local colleges. The researcher calculates an average to summarize the data. The researcher is using ______.A)measure of central tendency
B) descriptive statistical method
C) intuitive statistical method
D) inferential statistical method

Answers

Answer:

Correct option is (B) descriptive statistical method

Step-by-step explanation:

Descriptive statistics branch in statistics deals with the representation of the data using distinct brief coefficients. These coefficients are used as either the representative of the sample or the population.

The descriptive statistics branch is divided into two sub branches:

Measure of central tendencyMeasure of dispersion.

The three measures of central tendency are:

Mean (or Average)MedianMode.

The measures of dispersion are:

VarianceStandard deviationRangeKurtosisSkewness

The education researcher computes the average number of hours student study at various local colleges.

The average of a data is the mean value which is the measure of central tendency.

Thus, the researcher is using descriptive statistical method to summarize the data.

Final answer:

The education researcher is using descriptive statistical methods by calculating an average of study hours, which is a measure of central tendency, a fundamental aspect of descriptive statistics.

Explanation:

An education researcher who collects data on how many hours students study at various local colleges and then calculates an average to summarize this data is using descriptive statistical methods. Descriptive statistics involve organizing and summarizing data to provide a clear overview of its characteristics. Examples of descriptive statistics include measures of central tendency (mean, median, mode), which indicate the typical value within a data set, and measures of variability (range, variance, standard deviation), which show how spread out the data points are. The calculation of an average, or mean, falls under the measure of central tendency, making it a key component of descriptive statistics.

A person takes a trip, driving with a constant peed of 89.5 km/h, except for a 22.0-min rest stop. If the peron's average speed is 77.8 km/h, (a) how much time is spent on the trip and (b) how far does the person travel?

Answers

Answer:

a) The person traveled 2.83 hours.

b) The person travels 220.17 kilometers.

Step-by-step explanation:

We have that the speed is the distance divided by the time. Mathematically, that is

[tex]s = \frac{d}{t}[/tex]

(a) how much time is spent on the trip and

The peron's average speed is 77.8 km/h, which means that [tex]s = 77.8[/tex]

The person distance traveled is:

22 min is 22/60 = 0.37h.

So for  the time t1, the person traveled at a speed of 89.5 km/h. Which has a distance of 89.5*t1.

For 0.37h, the person was at a stop, so she did not travel. This means that the total distance is

[tex]d = 89.5t1 + 0 = 89.5t1[/tex]

The total time is the time traveling t and the stoppage time 0.37. So

[tex]t = t1 + 0.37[/tex]

We want to find t1, which is the time that the person was driving.

So

[tex]s = \frac{d}{t}[/tex]

[tex]77.8 = \frac{89.5t1}{t1 + 0.37}[/tex]

[tex]77.8t1 + 77.8*0.37 = 89.5t1[/tex]

[tex]11.7t1 = 28.786[/tex]

[tex]t1 = \frac{28.786}{11.7}[/tex]

[tex]t1 = 2.46[/tex]

The total time is

[tex]t = t1 + 0.37 = 2.46 + 0.37 = 2.83[/tex]

The person traveled for 2.83 hours.

(b) how far does the person travel?

The person traveled 2.46 hours at an average speed of 77.8 km/h. So

[tex]s = \frac{d}{t}[/tex]

[tex]77.8 = \frac{d}{2.83}[/tex]

[tex]d = 77.8*2.83 = 220.17[/tex]

The person travels 220.17 kilometers.

Kristina walks 7 1/2 miles in 5 hours. At this rate, how many miles can Kristina walk in 9 hours

Answers

Answer:

13.5

Step-by-step explanation:

7 1/2=7.5

7.5/5*9=13.5

2.82 For married couples living in a certain suburb, the probability that the husband will vote on a bond referendum is 0.21, the probability that the wife will vote on the referendum is 0.28, and the probability that both the husband and the wife will vote is 0.15. What is the probability that (a) at least one member of a married couple will vote? (b) a wife will vote, given that her husband will vote? (c) a husband will vote, given that his wife will not vote?

Answers

Final answer:

The probability that at least one member of a married couple will vote is 0.34 or 34%. The probability of a wife voting given that her husband will vote is approximately 0.7143 or 71.43%. The probability of a husband voting given his wife will not vote is 0.06 or 6%.

Explanation:

The subject of this question is probability within the realm of mathematics. To find the probability of at least one member of a married couple voting, we can use the formula P(A or B) = P(A) + P(B) - P(A and B).

Therefore, the probability is 0.21 (husband voting) + 0.28 (wife voting) - 0.15 (both voting), which equals 0.34.

For (b), the probability that the wife will vote, given that her husband will vote, is P(Wife|Husband) = P(Wife and Husband)/P(Husband).

So, this probability is 0.15/0.21, which equals approximately 0.7143.

For (c), the probability that the husband will vote, given that his wife will not vote, is P(Husband|Wife not voting) = P(Husband) - P(Husband and Wife).

So, this probability is 0.21 - 0.15, which yields 0.06 or 6%.

Other Questions
A researcher asks an assistant to conduct a study on her behalf. She specifically tells her assistant only to share the results anonymously and not include the names of the students along with their scores. Such an experiment would be considered a_____________. Work done in Louisianas coastal wetlands is an example of ____.(Will Be marked as Brainliest)a. a hot spotb. an ecoregionc. a habitat islandd. conservatione. ecological restoration in what ways can the influences of greek culture can be seen in Mr. Sanchez's daily life? give an example please help I will give BIG BRAIN AND 5 STARS AND THANKS The narrator MOST LIKELY waits for the summer winds to blow because In 3/4 pound of a spice mix, there is 5/6 cup of cinnamon. How much cinnamon does the spice mix contain per pound? A. 5/8 B. 9/10 C. 1 1/9 D. 1 3/5 what is the mola dirt of a salt solution made by dissolving 250.0 grams of NaCl in 775 mL of solution? Which type of residential setting may care for one to three clients in a family-like atmosphere, including meals and social activities with the family? Plzzzzzzzzzzzzzzzzzzzzzzzzzzzz help will give brainliest:):):) When social unrest and disorder in a country causes drastic changes in its business environment that adversely affect the profit and other goals of a business enterprise, the business enterprise is said to be facing which of the following type of risk?A) DemographicB) TechnologicalC) PhysiologicalD) EthicalE) Political An experiment calls for you to use 100 mL of 0.25 M HNO3 solution. All you have available is a bottle of 3.4 M HNO3. How many milliliters of the 3.4 M HNO3 solution do you need to prepare the desired solution? PLEASE HELP ASAP!!! I NEED CORRECT ANSWERS ONLY PLEASE!!!Find mH.Write your answer as an integer or as a decimal rounded to the nearest tenth.mH= Mona and Shakira play on a basketball team. In one game, Shakira scored twice as many points as Mona. Together they scored 24 points in that game. How many points did each girl score? What made the Scopes Trial a public spectacle? Analyze information fromthe text in your answer. In the seventh month after the first return, the people of Israel: a. gathered in Jerusalem reconstructed the altar laid the foundation of the Temple b. offered burnt offerings gathered in Jerusalem, reconstructed the altar, laid the foundation of the Temple, and offered c. burnt offerings gathered in Jerusalem, reconstructed the altar, and offered burnt offerings When Albert Fall, secretary ofthe interior, accepted bribesfrom private businesses to accessland with large amounts of oil. Koby's solution for 4(x - 3) = x + 2 is shown at theright. Did he solve the equation correctly? Explain whyor why not.4(x - 3) = 3x +24x - 12 = 1/x + 22. (4X 12) = 2 ( 3x + 28x - 12 = x + 28x = x + 147x = 14x=2 A baseball enthusiast believes pitchers who strike out a lot of batters also walk a lot of batters. He reached this conclusion by going to the library and examining the records of all major league pitchers between 1990 and 1995. What type of study is his decision based on? A) B) C) An observational study based on a sample survey D) An experiment. Anecdotal evidence. An observational study based on available data. Which expression means 9.7 split into a certain number of equal parts?9.7n9.7 + n9.7 minus nStartFraction 9.7 over n EndFraction ________ is the study that seeks to discover systematic relationships between culture and psychological variables. During his career, Anthony has worked as a juvenile police officer, corrections counselor in a state prison, and executive director of an urban re-development program. In view of this, which description best describes Anthony's career path?A. Anthony has been a pure sociologist. B. Anthony has assumed the role of being a basic sociologist. C. Anthony has been an applied sociologist. D. Anthony can best be described as a social reformer.