A computer and a concentration probe
Balance this equation. If a coefficient of "1" is required, choose "blank" for that box.
C2H4 + O2 → CO2 + H2O
By balancing the equation, we ensure that the number of atoms of each element is the same on both sides of the equation. The balanced equation is:
C₂H₄ + 3O₂ → 2CO₂ + 2H₂O
Let's break down the equation and explain how it is balanced step by step:
C₂H₄ + O₂ → CO₂ + H₂O
To balance the equation, we need to ensure that the number of atoms of each element is the same on both sides.
Starting with carbon (C), we have 2 carbon atoms on the left side (in C₂H₄) and 1 carbon atom on the right side (in CO₂). To balance the carbon, we place a coefficient of 2 in front of CO₂:
C₂H₄ + O₂ → 2 CO₂ + H₂O
Next, let's move on to hydrogen (H). We have 4 hydrogen atoms on the left side (in C₂H₄) and 2 hydrogen atoms on the right side (in H₂O). To balance the hydrogen, we place a coefficient of 2 in front of H₂O:
C₂H₄ + O₂ → 2 CO₂ + 2 H₂O
Finally, we'll look at oxygen (O). On the left side, we have 2 oxygen atoms from O2, and on the right side, we have 4 oxygen atoms from 2CO₂ and 2H₂O. To balance the oxygen, we need to have the same number of oxygen atoms on both sides. Since we have 2 oxygen atoms in O₂, we need to multiply it by 2 to get 4 oxygen atoms:
C₂H₄ + 2 O₂ → 2 CO₂ + 2 H₂O
Now the equation is balanced, with an equal number of atoms of each element on both sides.
Hence, the balanced equation is C₂H₄ + 2 O₂ → 2 CO₂ + 2 H₂O
Learn more about balancing here:
https://brainly.com/question/7181548
#SPJ 4
density is found by dividing
Which of the following distinctions are used to identify sedimentary rock? Select all that apply.
conditions it was formed under
when it was formed
where is was formed
how many layers it consists of
what it is composed of
Answer: Conditions it was formed under, where it was formed, and what it is composed of.
Explanation:
Towards what are the alpha particles being directed?
Which of the following is least to produce potentially harmful products or byproducts?
A. Radioactive decay
B. Nuclear fusion
C. Uncontrolled nuclear fission
D. controlled nuclear fission
Help please!
Which of the following is true for compounds?
A.They can consist of no more than two types of elements.
B. They can be created by chemical reactions.
C. They all have the same properties regardless of their elemental composition.
D.They can be separated into their component elements through physical means.
A compound is a substance composed of two or more different atoms chemically bonded to one another, for example, water (H₂O) consists of 2 atoms of hydrogen (H) and 1 atom of oxygen (O), so it is the compound. Water is created by chemical reaction:
2H₂ + O₂ → 2H₂O
Manganese has a total of 25 electrons, but the following orbital notation for manganese is incorrect. Explain the error in terms of the rules for electron arrangements. Manganese: 1s is filled. 2s is filled. 2p is filled. 3s is filled. 3p is filled. 3d is shown with five orbitals. The first two orbital have two electrons. Orbitals three through five in the 3d sublevel have one electron each.
A 230.0-mL sample of a 0.275 M solution is left on a hot plate overnight; the following morning the solution is 1.15 M. What volume of solvent has evaporated from the 0.275 M solution?
As
M1V1=M2V2Answer: The volume of solvent evaporated is 173.57 mL
Explanation:
[tex]\text{Molarity of the solution}=\frac{\text{Moles of solute}\times 1000}{\text{Volume of solution (in mL)}}[/tex] .....(1)
Molarity of solution = 0.275 M
Volume of solution = 230.0 mL
Putting values in equation 1, we get:
[tex]0.275M=\frac{\text{Moles of solution}\times 1000}{230.0}\\\\\text{Moles of solution}=\frac{0.275\times 230}{1000}=0.0632mol[/tex]
As, the moles of solution remains the same.
When solvent gets evaporated, the volume of the solution is calculated by using equation 1:
Moles of solution = 0.0632 moles
Molarity of the solution = 1.15 M
Putting values in equation 1, we get:
[tex]1.15=\frac{0.0632\times 1000}{\text{Volume of solution}}\\\\\text{Volume of solution}=\frac{0.0632\times 1000}{1.15}=56.43mL[/tex]
Volume of solution evaporated = (230.0 - 56.43) mL = 173.57 mL
Hence, the volume of solvent evaporated is 173.57 mL
what is the maximum number of moles of h2o that can be produced when 2.0 moles of nh3 are completly reacted. Formula: 4NH3+5O2-->4NO+6H2O
When 2.0 moles of NH₃ are completely reacted according to the balanced chemical equation 4NH₃ + 5O₂ -> 4NO + 6H₂O, 3 moles of H₂O are produced using the mole ratio from the equation.
The question asks about a chemical reaction between ammonia (NH₃) and oxygen (O₂) to produce nitrogen oxide (NO) and water (H₂O). The balanced chemical equation for this reaction is 4NH₃(g) + 5O₂(g)
ightarrow 4NO(g) + 6H₂O(l). To find the maximum number of moles of H₂O produced when 2.0 moles of NH₃ are completely reacted, we use the mole ratio from the balanced equation.
According to the balanced equation, 4 moles of NH₃ produce 6 moles of H₂O. Therefore, we set up the following proportion: (6 moles H₂O) / (4 moles NH₃) = x moles H₂O / (2 moles NH₃). By cross-multiplying and solving for x, we find that 3 moles of H₂O will be produced.
Maximum 3 moles of H₂O can be produced from 2.0 moles of NH₃.
To determine the maximum number of moles of H₂O that can be produced when 2.0 moles of NH₃ are completely reacted, we can use the balanced chemical equation provided:
4NH₃ + 5O₂ → 4NO + 6H₂OFrom the balanced equation, we can see that for every 4 moles of NH₃ that react, 6 moles of H₂O are produced.
Therefore, if we have 2.0 moles of NH₃, we can calculate the maximum number of moles of H₂O produced by cross-multiplying and dividing:(2.0 moles NH₃) x (6 moles H₂O / 4 moles NH₃) = 3 moles H₂OTherefore, the maximum number of moles of H₂O that can be produced when 2.0 moles of NH₃ are completely reacted is 3 moles.
Ionic compounds are normally in which physical state at room temperature?
a. solid
b. liquid
c, gas
d. plasma
Answer: Option (a) is the correct answer.
Explanation:
Ionic compounds have atoms bonded through ionic bonds.
An ionic bond is formed when there is transfer of electrons from one atom to another. Also, ionic compounds have opposite charge on their atoms hence, they are attracted by strong intermolecular forces.
Thus, compound whose atoms are holded by strong intermolecular forces of attraction are solid.
Therefore, we can conclude that ionic compounds are normally in solid physical state at room temperature.
an earthquake causes a one 100 mile square area to be fractured into four different geographical areas. two of the areas have a river running through them, the other two have ponds, which of the following is a likely scenario based on the new geography?
The new geographical area would be more fertile land as it becomes rich with water, the biodiversity of that area increases; many new species of Birds and animal came in that area.
Flying animals will be able to cross back and forth between the two areas easily.
In order for combustion to occur, what needs to happen? A. A fuel sits in the presence of a small amount of oxygen. B. The ignition point for a given fuel is met. C. The temperature of the fuel is lowered. D. Oxygen is removed from the area.
B. The ignition point for a given fuel is met.
Combustion is a process in which there is reaction between a substance and oxygen which gives off heat. Thus, the source of oxygen is called the oxidizer while the substance is called the fuel. However, the fuel can be inform of liquid, solid or gas and the process of combustion releases heat.
Which catalyzed reaction breaks up ozone?
Answer:
B. O₃ + O → CS + 2O₂
Explanation:
have a good day :) <3
as the elements in group 18 are considered in order of increasing atomic number, the ionization energy of each successive element
1) decreases
2) increases
3) remains the same
The percent composition of methyl butanoate is 58.8% C, 9.8% H, and 31.4 % O and its molar mass is 102 g/mol. What is its empirical formula? What is its molecular formula?
The concentration of an aqueous solution of iron(II) chloride is 0.0550 M. What is the molarity of each ion in this solution?
Answer:
[tex][Fe^{2+} ][/tex]=0.0550 M
[tex][Cl^{-} ][/tex]=0.110 M
Explanation:
Its all due to stoichiometry: the compound is [tex]FeCl_{2}[/tex], thus upon ionizationm there will be two chloride anions for each iron cation:
[tex]FeCl_{2} \rightarrow[Fe^{2+} ]+2[Cl^{-} ][/tex]
The reaction h2co3 h2o<-> h3o hco3– takes place in water. what happens to the equilibrium when the pressure is increased? (1 point)it favors formation of reactants.it favors formation of products.it does not change.it is conserved.
Answer: It does not change.
Explanation:
[tex]H_2CO_3(aq) +H_2O\rightarrow H_3O^+(aq)+HCO_3^-(aq)[/tex]
According to Le Chatelier's principle, if an equilibrium reaction is subjected to a change, the reaction adjusts itself in a way to undo the change imposed.
The effect of pressure affects the equilibrium only when the reactants or products are in gaseous phase.
As none of the reactants or products is in gaseous state, there is no effect of pressure on equilibrium.
The equilibrium of the reaction H₂CO₃ + H₂O <-> H₃O⁺ + HCO₃⁻ is not affected by changes in pressure because it does not involve gases. This is in contrast to reactions involving gases, where increasing pressure favors the side with fewer moles of gas.
The reaction H₂CO₃ + H₂O <-> H₃O⁺ + HCO₃⁻ takes place in water and has reached equilibrium. When the pressure is increased, the equilibrium will shift according to Le Chatelier's principle. Since there are no gases on either side of the equilibrium, pressure changes will not affect the position of the equilibrium. However, this differs from the equilibrium of a reaction involving gases, such as C(s) + H₂O(g) = CO(g) + H₂(g), where increasing pressure would favor the side with fewer moles of gas, shifting the equilibrium to the left.
24 POINTS!!!!!!!!!!!!!!!!!!!!!!!!!!!
Which graph BEST represents the motion of an airplane flying with equal amounts of thrust and air resistance?
A
B
C
D
If the valence electrons were removed, what would be the ion charge of the element?
Na = _____
-1
+1
-3
+3
Answer:
Sodium (Na) will become Na+
Explanation:
Every atom is neutral in its natural form, meaning they have the same number of protons and electrons. When an electron is removed from an atom, it becomes a cation (positive ion) with a charge of +1. If the atom looses two electrons the new charge of the resulting ion will be +2. On the other hand if an atom gains one electron the resultiong anion (negative ion) will have a charge of -1. Loosing two electrons will form an ion with charge -2.
How many identified elements does the periodic table show?
4
92
118
Answer: C. 118
Explanation:
Depending on what version you are using, most periodic tables have more than 92 elements on a periodic table.
CHEM
Calculate the molarity (M) ov the following solutions
a. 2.0 moles of glucose in 4.0L of solution
b. 4.0 g of KOH in 2.0 L of solution
c. 5.85 g NaCl in 400. mL of solution ...?
The molarity of the solutions are found by dividing the number of moles of solute by the volume of solution in liters. For glucose, the molarity is 0.5 M; for KOH, it is approximately 0.03565 M; and for NaCl, it is approximately 0.25025 M.
The question asks for the calculation of the molarity of different solutions. Molarity is defined as the number of moles of solute divided by the volume of solution in liters.
Calculations:
a. For 2.0 moles of glucose in 4.0L of solution, the molarity (M) is calculated as follows:
M \\= moles of solute / volume of solution in liters
M \\= 2.0 moles / 4.0 L
M \\= 0.5 M
b. For 4.0 g of KOH in 2.0 L of solution, we first need to calculate the number of moles of KOH, which involves finding the molar mass (KOH has a molar mass of approximately 56.11 g/mol):
Moles of KOH \\= mass (g) / molar mass (g/mol)
Moles of KOH \\= 4.0 g / 56.11 g/mol
Moles of KOH \\= ~0.0713 moles
Thus, the molarity of KOH is:
M \\= 0.0713 moles / 2.0 L
M \\= 0.03565 M
c. For 5.85 g of NaCl in 400 mL (or 0.400 L) of solution, firstly convert the mass of NaCl into moles (NaCl has a molar mass of approximately 58.44 g/mol):
Moles of NaCl \\= mass (g) / molar mass (g/mol)
Moles of NaCl \\= 5.85 g / 58.44 g/mol
Moles of NaCl \\= ~0.1001 moles
The molarity of NaCl is:
M \\= 0.1001 moles / 0.400 L
M \\= 0.25025 M
In summary, the molarity of the given solutions are:
0.5 M of glucose
0.03565 M of KOH
0.25025 M of NaCl
What is the relationship between where the element is located within a "block" in the Periodic table and the superscripted value (like the exponent) appearing at the end of the electron configuration for an element ?
Answer:
The relationship between where elements is located in a block and super scripted value appearing at the end of the electronic configuration is that it gives information on the group the element exist in each block.
Explanation:
Blocks in the periodic table are divided as S, P, D AND F blocks. Representing elements with a electronic configuration gives information on the block that the elements falls on . For example Sodium and fluorine configurations are as follows ;
Sodium → 1s²2s²2p∧6 3s∧1
flourine → 1s²2s²2p∧5
The outer shell that ends the configuration determines the block it belongs. In this case sodium belongs to the s block while fluorine belongs to the p blocks. Then the super scripted value which is 1 for sodium depict it belong to group 1 of the s blocks. The super scripted value for fluorine which is 5 shows the element belongs to group 5 in the p blocks.
The block in which an element is located in the Periodic Table determines the type of subshell the last electron occupies. The superscript at the end of the electron configuration indicates the number of electrons in the corresponding subshell.
Explanation:The location of an element within a block in the Periodic Table determines the type of subshell that the last electron occupies. The electron configuration details in what order the electrons fill up in different orbitals in an atom. In an electron configuration, the superscripted value - often referred to as the exponent - indicates the number of electrons in a particular subshell.
For instance, if an element is located in the 's block', the superscript value will represent the number of electrons in an 's' orbital. Similarly, if an element is located in the 'p block', the superscript value at the end of the electron configuration will denote the number of electrons in a 'p' orbital. In a d block, the d orbital's electron count is represented, and for the f block, the f orbital's.
This connection between electron configuration, blocks in the Periodic Table, and location of an element is a fundamental concept in the study of atomic structure and chemistry.
Learn more about Electron Configuration and Periodic Table here:https://brainly.com/question/32364157
#SPJ6
which is the best example of how electromagnetic energy is used in everyday life
Answer:
X-ray in the hospital
Explanation:
Given the data in the accompanying table, what is the reaction order for B?
A) zero
B) first
C) second
D) third
Answer: The order with respect to B is
Explanation: Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.
[tex]Rate=k[A]^x[B]^y[/tex]
k= rate constant
x = order with respect to A
y = order with respect to B
n = x+y = Total order
a) From trial 1: [tex]20=k[0.20]^x[0.10]^y[/tex] (1)
From trial 2: [tex]40=k[0.20]^x[0.20]^y[/tex] (2)
Dividing 2 by 1 :[tex]\frac{40}{20}=\frac{k[0.20]^x[0.20]^y}{k[0.20]^x[0.10]^y}[/tex]
[tex]2=2^y,2^1=2^y[/tex] therefore y=1.
Thus order with respect to B is 1.
Given the data in the accompanying table, the reaction order for B is 1st order. The correct option is B.
We may study how the initial rate of the reaction varies when the initial concentration of B is changed to establish the reaction order for B.
We can detect the link between the rate and the concentration of B by comparing the start rate of the reaction at different initial concentrations of B.
Based on the information provided:
Initial concentration of B: [B] (mol/L)
Initial rate: mol/Ls
When [B] is 0.20 mol/L, the initial rate is 20 mol/Ls.
When [B] is 0.40 mol/L, the initial rate is 160 mol/Ls.
As we can see, increasing the initial concentration of B (from 0.20 mol/L to 0.40 mol/L) doubles the initial rate (from 20 mol/Ls to 160 mol/Ls). This suggests that the starting rate and the concentration of B have a direct proportional connection.
Here, one can conclude that the reaction order for B is 1st order. Therefore, the correct answer is B) first.
For more details regarding reaction order, visit:
https://brainly.com/question/33426359
#SPJ6
Which equation represents the combined gas law?
Answer:
[tex]\frac{P_1*V_1}{T_1}=\frac{P_2*V_2}{T_2}[/tex]
Explanation:
The combined gas law is the combination of three different laws applied to gases:
Gay-Lussac's Law:
[tex]\frac{P_1}{T_1}=\frac{P_2}{T_2}[/tex]
Boyle-Mariotte's Law:
[tex]P_1*V_1=P_2*V_2}[/tex]
Charles's Law:
[tex]\frac{V_1}{T_1}=\frac{V_2}{T_2}[/tex]
The result of the combination is:
[tex]\frac{P_1*V_1}{T_1}=\frac{P_2*V_2}{T_2}[/tex]
Which is a product in the following chemical reaction? CH4 + 2O2 → CO2 + 2H2O
CH4
H4
H2O
O2
The correct answer is H20.
In a chemical reaction, there are always two sides, the reactant side and the product side. The reactants are the elements that are reacting together. They are always written at the left side of a chemical equation, with a plus sign written in between two elements. The products are the new compounds that are formed from the reaction of reactants. They are always written at the right side of a chemical equation and a plus sign is used to join them if they are more than one. An arrow pointing to the products usually connect the two side of the equation. For the question give above, the reactant are CH4 and O2 and the products are CO2 and H2O.
Calculate the mass in amu of 75 atoms of aluminum
The mass in amu of 75 atoms of aluminum is ; 2023.5 amu
Given that ;
1 atom of aluminum = 26.98 atomic mass unit
Determining the mass of 75 aluminum atom
= 26.98 amu * 75 atoms of aluminum
= 2023.5 amu
Atomic mass unit is the mass of (1/12) the mass of an atom of carbon-12 ( the reference standard for isotopes of elements ). from the amu table 1 atom of aluminum = 26.98 amu
Hence we can conclude that the mass in amu of 75 atoms of aluminum is = 2023.5 amu
Learn more : https://brainly.com/question/20506620
The chemical formula for vinegar is C2H4O2 what is the percent composition for each of the elements in vinegar?
The percent composition of each element in vinegar, also known as acetic acid, is as follows: Carbon - 39.9%, Hydrogen - 6.7%, and Oxygen - 53.4%, calculated using their respective atomic masses and the molar mass of acetic acid.
Explanation:The chemical formula for vinegar, which is also known as acetic acid, is C2H4O2. Each molecule of vinegar contains two atoms of Carbon (C), four atoms of Hydrogen (H), and two atoms of Oxygen (O). The percent composition of each element in vinegar can be calculated using their atomic masses and the overall molar mass of vinegar.
The molar mass of acetic acid is 60.06 g/mol. Using this information and the atomic masses of carbon (12.01 g/mol), hydrogen (1.01 g/mol), and oxygen (16.00 g/mol), we can calculate the percent composition by volume of each element in vinegar as follows: Carbon constitutes 39.9%, Hydrogen constitutes 6.7%, and Oxygen constitutes 53.4% of the total composition.
Learn more about Percent Composition here:https://brainly.com/question/34955205
#SPJ12
Which of the following units of volume would be the best to measure the amount of water in your swimming pool?
Liter,
Milliliter,
Nanometer,
Kilo Liter
Consider three 1 L flasks at STP. Flask A contains NH3 gas, flask B contains NO2 gas, and flask C contains N2 gas. Which contains the largest number of molecules? In which flask are the molecules least polar and therefore most ideal in behavior?
Answer:
highest velocity
Explanation:
flask a