Answer:
y ≈ 240.3 ft
Step-by-step explanation:
The mnemonic SOH CAH TOA reminds you that the relation between an angle and the sides adjacent and opposite is ...
Tan = Opposite/Adjacent
In this triangle, the interior angle at lower right is the same as the one marked at upper left: 31°. y is the side opposite that angle, and 400 ft is the side adjacent. Then the relation is ...
tan(31°) = y/(400 ft)
Multiplying by 400 ft gives ...
y = (400 ft)·tan(31°) ≈ 240.3 ft
_____
The triangle interior angle at lower right and the angle marked 31° are "alternate interior angles" relative to the transversal marked x and the (parallel) horizontal lines in the figure. Alternate interior angles always have the same measure.
In geometry problems like this one, it means the angle of elevation (above the horizontal) is equal to the angle of depression (below the horizontal).
What is the value of 2g(-1)?
f(x) = 4x + 10; g(x) = 2x - 5
2g(-1) =
Answer:
-14
Step-by-step explanation:
Put -1 where x is in the definition of g(x) and do the arithmetic.
2g(-1) = 2(2·(-1) -5) = 2(-2-5) = 2(-7) = -14
Explain why a rotation of 270∘ clockwise will result in the same transformation as a rotation of 90∘ counterclockwise
Because there is a maximum rotation of 360°, so if you rotate x° clockwise it's the same as if you rotate (360-x)° counterclockwise.
at track practice Bethany ran 5 more miles this week than last week. write an expression to show the total miles she ran both weeks
Answer:
x+5=m
Let x be the number of miles that were run the first time.
Add five to the original number
M is the total number of miles for both weeks
a snowman is made of three spherical snowballs with a diameters of 3 feet, 2 feet, and 1 foot. what is the total volume of the snowman?represent your answer in terns of pi
Answer:
The total volume of the snowman is [tex]6\pi\ ft^{3}[/tex]
Step-by-step explanation:
we know that
The volume of a sphere is equal to
[tex]V=\frac{4}{3}\pi r^{3}[/tex]
step 1
Find the volume of the spherical snowball with a diameter of 3 feet
Find the radius
[tex]r=3/2=1.5\ ft[/tex] ----> the radius is half the diameter
substitute
[tex]V=\frac{4}{3}\pi (1.5)^{3}[/tex]
[tex]V1=\frac{9}{2}\pi\ ft^{3}[/tex]
step 2
Find the volume of the spherical snowball with a diameter of 2 feet
Find the radius
[tex]r=2/2=1\ ft[/tex] ----> the radius is half the diameter
substitute
[tex]V=\frac{4}{3}\pi (1)^{3}[/tex]
[tex]V2=\frac{4}{3}\pi\ ft^{3}[/tex]
step 3
Find the volume of the spherical snowball with a diameter of 1 feet
Find the radius
[tex]r=1/2=0.5\ ft[/tex] ----> the radius is half the diameter
substitute
[tex]V=\frac{4}{3}\pi (0.5)^{3}[/tex]
[tex]V3=\frac{1}{6}\pi\ ft^{3}[/tex]
step 4
Find the total volume
[tex]V=V1+V2+V3[/tex]
substitute the values
[tex]V=\frac{9}{2}\pi+\frac{4}{3}\pi+\frac{1}{6}\pi=\frac{27+8+1}{6}\pi=6\pi\ ft^{3}[/tex]
Antuan deposited $2590 into a 3 year CD at an interest rate of 2.3% compounded quarterly.
What is the ending balance after the three years? Show your work.
Answer:
$2774.47
Step-by-step explanation:
To find how much Antuan's ending balance will be, we can use the formula for compound interest.
[tex]A=P(1+\dfrac{r}{n})^{nt}[/tex]
The values that we currently have are:
P = 2590
t = 3
n = 4 quarterly
r = 2.3% or 0.023
Now we can plug these values into our formula.
[tex]A=P(1+\dfrac{r}{n})^{nt}[/tex]
[tex]A=2590(1+\dfrac{0.023}{4})^{4(3)}[/tex]
[tex]A=2590(1+0.00575)^{12}[/tex]
[tex]A=2590(1.00575)^{12}[/tex]
[tex]A=2774.47[/tex]
So Antuan's ending balance will be $2774.47.
Can you just help me with 1 of the figures in my math problem and explain how you got it please!!
Part 1: Polygons and circles
a. Help Dakota with her homework. Use diagrams of inscribed polygons to approximate the area of each circle. Assume that all of the circles have a radius of 1.
The attachment isn't working so I to try to describe it as best as I can:
The inscribed Polygon is a triangular shape B=1.73 and H= 0.5
Answer:
area of triangle: 1.2975
area of circle: π ≈ 3.1416
Step-by-step explanation:
The side length (B) is used to compute the perimeter of the triangle. For the 3-sided triangle, the perimeter is ...
P = 3B = 3·1.73 = 5.19
The "height" (H) measured from the center of the circle to the middle of one side is called the "apothem" (a). The area of the triangle (A) is the product of half that and the perimeter:
A = (1/2)aP = (1/2)·0.5·5.19 = 1.2975 . . . . . . square units
The diagonals of kite KITE intersect at point P. If M
The diagonals of kite KITE intersect at point P. This would be at 44 degrees then.
Answer: 44 degrees
..._..._..._..._..._..._
appreciate
What is another way to write the calculation add 9 and 4, and then multiply by 3? A) (3)(9)+4 B) 3(9+4) C) 3x4+9 D) 3x9+4
Answer: B) 3(9+4)
Step-by-step explanation:
B is the correct answer because of the PEMDAS rule telling in what order to solve an expression with more than one operation. (parenthesis, exponents, multiplication, division, addition, subtraction). Therefore, with parentheses coming before multiplication in the PEMDAS rule it would be adding 9+4 and then mulriplying it by three.
in science class, Priscilla heats water and measures the temperature of the water every 2 minutes\or data are shown in the table.
Time in mutes 0 2 4 6 8 10
Tempt in C 25 30 35 40 45 50
What was the temperature of the water at 5 minutes?
Explain
Answer:
37.5 °C
Step-by-step explanation:
The temperature appears to be increasing linearly at the rate of 5 °C in 2 minutes, or 2.5 °C per minute.
1 minute after 4 minutes, when the temperature is 35 °C, we expect it to be 2.5 °C higher, or 37.5 °C.
You are putting a fence around a square outdoor stage with an area of 289 square feet. What is the length of one side of the stage?
The length of one side of the stage is 17 feet.
To find the length of one side of a square, we take the square root of the area because the area of a square is equal to side length squared.
So, the calculation is as follows:
Area of square = side imes side
289 square feet = side imes side
Therefore, side =√289
Calculating the square root of 289 gives us the side length:
side = 17 feet
So, to determine the length of one side of a square stage with an area of 289 square feet, we calculate the square root of the area, which results in 17 feet.
Which Contacts section results from the intersection of the plane and the double nap cone shown in the figure
Answer:
your choice is correct: hyperbola
Step-by-step explanation:
When the plane intersects both naps of the cone, the result is a hyperbola. When only a single nap is intersected (and the plane is parallel to the edge of the cone), the curve is a parabola. An ellipse or circle results when the plane crosses both edges of the cone on the same nap.
Answer:
ellipse
Step-by-step explanation:
the shape is a rhombus if and only if the diagonals are perpendicular and the sides are congruent
Answer:
The statement is True
Step-by-step explanation:
Rhombus is a quadrilateral with the following characteristics;
All sides are congruent by definition.The diagonals bisect the angles.The diagonals are perpendicular bisectors of each other.Adjacent angles are supplementary.All the four sides are equal.Write an area word problem so that the solution is 36 square units
Answer:
Find the area of a cardboard box with a length of 9 inches and a width of 4 inches.
Step-by-step explanation:
9 in × 4 in = 36 in²
What is 1/2x=18
can you please show steps. Thank you
Answer:
x = 36
Step-by-step explanation:
Multiply both sides of the equation by the inverse of the coefficient of x.
(2/1)·(1/2)x = (2/1)·18 . . . . . . . coefficient of x is 1/2, so we multiply by 2/1
x = 36
_____
This "multiplicative inverse" is also called the reciprocal. It has the property that when multiplied by the coefficient of x, the result is 1, the multiplicative identity element. So, your equation becomes ...
1·x = 36
The property of the multiplicative identity element is that anything multiplied by it is that thing. So, 1x = x, and your equation becomes
x = 36
This is the solution you're looking for.
The answer is 36 !!!!!
[tex]64 {x}^{2}- 25y^{2} [/tex]
Factor.
[tex]\bf \textit{difference of squares} \\\\ (a-b)(a+b) = a^2-b^2 \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ 64x^2-25y^2~~ \begin{cases} 64=8\cdot 8\\ \qquad 8^2\\ 25=5\cdot 5\\ \qquad 5^2 \end{cases}\implies 8^2x^2-5^2y^2\implies (8x)^2-(5y)^2 \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill (8x-5y)(8x+5y)~\hfill[/tex]
Help! Please!
Let x=a+bi and y=c+di
2x+3y
Answer:65
Step-by-step explanation:
f(x)=2x is transformed to g(x)=5⋅2x. How was the graph affected?
shifted up by 5 units
shifted down by 5 units
stretched by a factor of 5 units
compressed by a factor of 5 units
Answer:
vertically stretched by a factor of 5
Step-by-step explanation:
Multiplying the function value by 5 makes each vertical coordinate 5 times the value it was, so it is 5 times as far away from the x-axis. This has the appearance of stretching the graph vertically by a factor of 5.
_____
Comment on the answer choices
The stretch factor is a "pure number", a ratio of new units to old units. It is "5", not "5 units."
For example, if f(x) is 1 ft (1 unit, where the unit is a foot), then g(x) = 5 ft, the value of f(x) multiplied by 5. It is not 5 ft^2, as you would get if f(x) were multiplied by 5 units, or 5 ft.
GIVING MANY POINTS!
Let p=x^999 − x^100+3x^9 − 5 and q=x + 1. Since q has degree 1, it follows that the remainder when p is divided by q is a constant function k, for some k. What is the value of k?
The polynomial remainder theorem gives an immediate answer. It says that the remainder upon dividing [tex]p(x)[/tex] by [tex]x-c[/tex] is exactly [tex]p(c)[/tex]. In this case [tex]q=x+1\implies c=-1[/tex], and we have
[tex]k=p(-1)=(-1)^{999}-(-1)^{100}+3(-1)^9-5=-1-1-3-5=-10[/tex]
(f/h)(2)
f(x)=3x-4
h(x)=8-3x
Answer:
1
Step-by-step explanation:
find f(2)
f(2) = 3(2) - 4 = 6 - 4 = 2
Now find h(2)
h(2) = 8 - 3(2) = 8 - 6 = 2
Now find f(2)/h(2)
2/2 = 1
The composite figure is made up of a rectangular prism and a a0 .a1
Answer:
volume of the given shape = 896 cubic centimeters.
Step-by-step explanation:
Given a composite figure is made up of a rectangular prism and a square pyramid.
Now we need to find the volume of that composite shape.
So we can find volume of each part then add both to get total volume.
Volume of rectangular prism = (length)(width)(height) = (8)(8)(13)= 832 cubic centimeter
Base area of square pyramid = (length)(width)=(8)(8)=64
Volume of square pyramid. [tex]=\frac{1}{3}\left(Base\ area\right)\left(Height\right)[/tex]
[tex]=\frac{1}{3}\left(64\right)\left(3\right)[/tex]
[tex]=64[/tex]
Then total volume of the given shape = 832+64 = 896 cubic centimeters.
Answer:
a0 - square
a1 - pyramid
Step-by-step explanation:
Mr. Yarmus purchased 3 cups of coffee for his friends. He paid $7.29 in total, including an 8 percent sales in tax. What was the cost per cup of coffee, excluding tax???? PLZZ I will give you 100 pointd
Answer:
$2.25
Step-by-step explanation:
Let c represent the cost of a cup of coffee. Then the total amount paid for 3 cups is ...
3c + 3c·0.08 = 7.29
3.24c = 7.29
c = 7.29/3.24 = 2.25
A cup of coffee costs $2.25.
_____
Comment on "I will give you 100 pointd"
I don't know what a "pointd" is, but I suggest you not make promises you cannot keep.
f(x)=9x^3+2x2-5x+4 and g(x) =5x^3-7x+4.What is f(x)-g(x)?
show all steps and final answer
Answer:
The answer is 4x^3 + 2x^2 + 2x
Step-by-step explanation:
To find a subtracted function, simply change all of the signs in the second function and then combine like terms.
f(x) - g(x) = 9x^3 + 2x^2 - 5x + 4 - 5x^3 + 7x - 4
f(x) - g(x) = 4x^3 + 2x^2 + 2x
plz fill the blanks
The number 72 lies between the perfect squares ----------- . So, the square root of 72 lies between the numbers ----------- , which means the square root of 72 is ------------ number.
Answer:6√2 8-9 Irrational number
Answer:
64 and 81, 8 and 9, irrational
Evelyn sold 11 boxes of chocolate cookies. Each box contained 12 cookies. Round to the nearest ten and then multiply to find the total number of cookies.
Answer: 100 cookies approximately.
Step-by-step explanation:
To round to the nearest ten:
- If the digit located in the units place of the number is [tex]<5[/tex], then you must round the number down.
- If the digit located in the units place of the number is [tex]\geq5[/tex], then you must round the number up.
The digit located in the units place of the number 11 is 1 and [tex]1<5[/tex], therefore you must round the number down to: 10
The digit located in the units place of the number 12 is 2 and [tex]2<5[/tex], therefore you must round the number down to: 10
Multiply 10 by 10 to estimate the total number of cookies:
[tex]Total_{(cookies)}=10*10\\Total_{(cookies)}=100[/tex]
(100 cookies approximately)
Of all the books at a certain library, if you select one at random, then there is a 90% chance that it has illustrations. Of all the illustrations in all the books, if you select one at random, then there is a 90% chance that it is in color. If the library has 10,000 books, then what is the minimum number of books that must contain colored illustrations?
Final answer:
The minimum number of books that must contain colored illustrations is 8100.
Explanation:
To find the minimum number of books that must contain colored illustrations, we can use the concept of conditional probability.
The probability of a book having illustrations is 90%, and the probability of an illustration being in color is also 90%. These two probabilities are independent events.
To find the minimum number of books with colored illustrations, we can multiply the probabilities together.
Therefore, the minimum number of books that must contain colored illustrations is 90% x 90% x 10000 = 8100.
Plz help me with questions 9&10. Show your work and explain how you got your answer so I understand because I just don’t understand this math we’re doing.
Answer:
10.) 116.6
Step-by-step explanation:
10.) add 100^2 + 60^2 = c^2
10,000 + 3600 = c^2
√13,600 = √c^2
116.6 = c
hope this helps!!
Given four functions, which one will have the smallest y-intercept?
f(x)
g(x)
h(x)
j(x)
Answer:
g(x)
Step-by-step explanation:
y-intercept is the y cutting point, at x = 0.
1. f(x)
This will be an exponential function that starts from 6 and moves upward exponentially. So y-intercept is 6.
2. g(x)
We can see that at x = 0, the value of the function is 2, so that is the y cutting point. So y-intercept is 2.
3. h(x)
We can clearly see from the graph that the y-cutting point is at 4. So y-intercept is 4.
4. j(x)
We can plug in x = 0 into the equation to find y intercept.
[tex]j(x)=10(2)^x\\=10(2)^0\\=10(1)\\=10[/tex]
So y - intercept is 10.
Smallest y-intercept is that of g(x).
The perimeter of a rectangle is 14.
Write the function that describes its area in terms of one of the sides
If one side is a, the formula will be S=______
To express the area of a rectangle with a perimeter of 14 in terms of one side, use the function S = 7a - a² where S is the area and a is one side length.
Explanation:To find the function that describes the area of a rectangle in terms of one of its sides with a given perimeter, we can follow these steps. Let's say one side length is a; we will then call the other side length b. The perimeter of a rectangle is given by the formula P = 2a + 2b, where P is the perimeter, and a and b are the lengths of the sides of the rectangle.
Given that the perimeter is 14, we can express b in terms of a as follows:
b = (14 - 2a) / 2
Next, to find the area (S) in terms of a, we multiply the two side lengths together.
S = a × b
Substitute b into the area formula:
S = a × ((14 - 2a) / 2)
Simplifying the formula gives us the function for the area in terms of side a:
S = (14a - 2a²) / 2
Which simplifies further to:
S = 7a - a²
Learn more about Area of a Rectangle here:https://brainly.com/question/15218510
#SPJ11
Joyce paid $96.00 for an item at the store that was 20 percent off the original price. What was the original price?
Answer:
$120
Step-by-step explanation:
✯Hello✯
↪ If we know that the original price was 20% more than what was payed for it we can form an equation
↪ 80%(x)=96 when we solve this x=120
↪ The original price was 120
↪ We can check this by working out 20% of 120 which is 24 and 120-24-96
HOPE THIS HELPS
❤Gianna❤
What is the radius of a circle whose equation is x2 + y2 + 8x – 6y + 21 = 0? units
Answer:
2
Step-by-step explanation:
x²+8x+y²-6y= -21;
(x+4)²+(y-3)²-25= -21;
(x+4)²+(y-3)²=2²;
it means r²=2²; ⇒ r=2.