Given the following data, find the weight that represents the 73rd percentile. Weights of Newborn Babies 8.2 6.6 5.6 6.4 7.9 7.1 6.5 6.0 7.8 8.0 6.8 8.8 9.3 7.7 8.8

Answers

Answer 1
Final answer:

To find the 73rd percentile of the given data, we need to arrange the weights in ascending order and calculate the rank. Then, we interpolate to find the weight at the desired percentile.

Explanation:

To find the weight that represents the 73rd percentile, we need to follow these steps:

Arrange the weights in ascending order: 5.6, 6.0, 6.4, 6.5, 6.6, 6.8, 7.1, 7.7, 7.8, 7.9, 8.0, 8.2, 8.8, 8.8, 9.3Calculate the rank of the percentile by using the formula: rank = (percentile/100) * (n - 1) + 1, where n is the number of data points. In this case, n = 15.The rank of the 73rd percentile is (73/100) * (15 - 1) + 1 = 11.02.Since the rank is not a whole number, we need to interpolate to find the weight. The weight at rank 11 is 8.0 and the weight at rank 12 is 8.2.Use the formula for interpolation: weight = weight at lower rank + (rank - lower rank) * (weight at higher rank - weight at lower rank), which gives: weight = 8.0 + (11.02 - 11) * (8.2 - 8.0) = 8.02.

Therefore, the weight that represents the 73rd percentile is 8.02.

Learn more about Percentiles here:

https://brainly.com/question/34021797

#SPJ3


Related Questions

Binomial Distribution. Research shows that in the U.S. federal courts, about 90% of defendants are found guilty in criminal trials. Suppose we take a random sample of 25 trials. (For this problem it is best to use the Binomial Tables).Based on a proportion of .90, what is the variance of this distribution?

Answers

Answer:

The variance of this distribution is 0.0036.

Step-by-step explanation:

The variance of n binomial distribution trials with p proportion is given by the following formula:

[tex]Var(X) = \frac{p(1-p)}{n}[/tex]

In this problem, we have that:

About 90% of defendants are found guilty in criminal trials. This means that [tex]p = 0.9[/tex]

Suppose we take a random sample of 25 trials. This means that [tex]n = 25[/tex]

Based on a proportion of .90, what is the variance of this distribution?

[tex]Var(X) = \frac{p(1-p)}{n}[/tex]

[tex]Var(X) = \frac{0.9*0.1}{25} = 0.0036[/tex]

The variance of this distribution is 0.0036.

Fred wants to buy a video game that costs $54. There was a markdown of 20%. How much is the discount?

Answers

Mar 10, 2012 - Markups and Markdowns Word Problems - Independent Practice Worksheet. $6640. $3.201 ... 2) Fred buys a video game disk for $4. There was a discount of 20%.What is the sales price? 20% of 1 pay 8090 ... 5) Timmy wants to buy.a scooter and the price was $50. When ... at a simple interest rate of 54%.

$54 - 20%
= $43.20

You can also calculate how much you save by simply moving the period in 50.00 percent two spaces to the left, and then multiply the result by $54 as follows: $54 x . 50 = $27.00 savings. Furthermore, you can get the final price by simply deducting.

If an angle of 96 degrees is rotated 90 degrees clockwise. what the measure?

Answers

Answer:

The measure is 6°.

Step-by-step explanation:

If an angle of 96 degrees is rotated 90 degrees clockwise then the measure of the new angle will be given by

= 96° - 90° = 6°

A quantum object whose state is given by is sent through a Stern-Gerlach device with the magnetic field oriented in the y-direction. What is the probability that this object will emerge from the + side of this device?

Answers

Answer:

The probability that the object will emerge from the + side of this device is 1/2

Step-by-step explanation:

Orienting the magnetic field in a Stern-Gerlach device in some direction(y - direction) perpendicular to the direction of motion of the atoms in the beam, the atoms will emerge in two possible beams, corresponding to ±(1/2)h. The positive sign is usually referred to as spin up in the direction, the negative sign as spin down in the explanation, the separation has always been in the y direction. There can be some other cases where magnetic field may be orientated in x-direction or z-direction.

If the atomic radius of a metal that has the face-centered cubic crystal structure is 0.137 nm, calculate the volume of its unit cell.

Answers

Answer:

[tex]5.796\times 10^{-29}m^3[/tex]

Step-by-step explanation:

Atomic radius of metal=0.137nm=[tex]0.137\times 10^{-9}[/tex]m

[tex]1nm=10^{-9}m[/tex]

Structure is  FCC

We know that

The relation between edge length and radius  in FCC structure

[tex]a=2\sqrt 2r[/tex]

Where a=Edge length=Side

r=Radius

Using the relation

[tex]a=2\sqrt 2\times 0.137\times 10^{-9}=0.387\times 10^{-9}m[/tex]

We know that

Volume of cube=[tex](side)^3[/tex]

Using the formula

Volume of unit cell=[tex](0.387\times 10^{-9})^3=5.796\times 10^{-29} m^3[/tex]

The volume of a unit cell is approximately 0.0580 nm³.

To find the volume of the unit cell for a metal with a face-centered cubic (FCC) crystal structure given an atomic radius of 0.137 nm, follow these steps:

Atomic Radius Interpretation: In a face-centered cubic unit cell, the atomic radius (r) is related to the edge length (a) of the unit cell by the equation:
a = 2√2 rCalculating the Edge Length: Plug in the given atomic radius (r = 0.137 nm) into the equation:
a = 2√2 x 0.137 nm = 2 x 1.414 x 0.137 nm = 0.387 nmCalculating the Volume of the Unit Cell: The volume (V) of a cube is given by V = a³. Therefore:
V = 0.387 nm x 0.387 nm x 0.387 nm ≈ 0.0580 nm³

Thus, the volume of the unit cell is approximately 0.0580 nm³.

How many solutions are there to this system? A. None B. Exactly 1 C. Exactly 2 D. Exactly 3 E. Infinitely many F. None of the above

Answers

Hello, you haven't provided the system of equations, therefore I will show you how to do it for a particular system and you can follow the same procedure for yours.

Answer:

For E1 -> Exactly one

For E2 -> None

For E3 -> Infinitely many

Step-by-step explanation:

Consider the system of equations E1:  y = -6x + 8 and 3x + y = 4, replacing equation one in two 3x -6x +8 = 4, solving x = 4/3 and replacing x in equation one y = 0. This system of equations have just one solution -> (4/3, 0)

Consider the system of equations E2:  y = -3x + 9 and y = -3x -7, replacing equation one in two -3x + 9 = -3x -7, solving 9 = -3. This system of equations have no solution because the result is a fallacy.

Consider the system of equations E3:  2 = -6x + 4y and -1 = -3x -2y, taking equation one and solving y = 1/2 + 3/2x, replacing equation one in two -1 = -3x -1 +3x, solving -1 = -1. This system of equations have infinitely many solution because we find a true equation when solving .

A factory makes rectangular sheets of cardboard, each with an area 2 1/2 square feet. Each sheet of cardboard can be cut into smaller pieces of cardboard measuring 1 1/6 square feet. How many smaller pieces of cardboard does each sheet of cardboard provide?

Answers

Answer: each sheet of cardboard provides 2 pieces of smaller pieces of cardboard

Step-by-step explanation:

The area of each rectangular sheet of cardboard that the factory makes is 2 1/2 square feet. Converting

2 1/2 square feet to improper fraction, it becomes 5/2 square feet.

Each sheet of cardboard can be cut into smaller pieces of cardboard measuring 1 1/6 square feet. Converting

1 1/6 square feet to improper fraction, it becomes 7/6 square feet.

Therefore, the number of smaller pieces of cardboard that each sheet of cardboard provides is

5/2 ÷ 7/6 = 5/2 × 6/7 = 15/7

= 2 1/7 pieces

answer is 15 smaller pieces  Step-by-step explanation:

Suppose that operators A^ and B^ are both Hermitian, i.e, A^` = A^ and B^` = B^.
Answer the following and show your work:

(a) Is A^² Hermitian?
(b) Is A^B^ Hermitian?
(c) Is A^B^+ B^A^ Hermitian?
(d) Is it possible for A^ to have complex eigenvalues, or must they be real?

Answers

Answer:

a) A^² is a Hermitian operator

b) A^B^ is not a Hermitian operator

c)  A^B^+ B^A^  is a Hermitian operator

d) It is not possible to be complex it must be a real number

Step-by-step explanation:

In order to understand this solution we need to define the concept Hermitian

HERMITIAN

 This can be defined as a matrix whose elements are real and symmetrical i.e. it a square matrix that is equal to its own conjugate, or we can simply put that its a matrix in which those pairs of element that are symmetrically placed with respect to the principal diagonal are complex conjugates.i.e the diagonal elements( Hermitian operators) are real numbers while others are complex numbers.

The solution to the question above are on the first and second uploaded image.

     

If a customer at a particular grocery store uses coupons, there is a 50% probability that the customer will pay with a debit card. Thirty percent of customers use coupons and 35% of customers pay with debit cards. Given that a customer does not pay with a debit card, the probability that the same customer does not use coupons is ________. A) 0.52 B) 0.60 C) 0.77 D) 0.85

Answers

Answer:

A. 0.52

Step-by-step explanation:

Let D be the event that person used Debit card and C b the event that person used coupon.

We have to find the probability of customer does not use coupons given that a customer does not pay with a debit card,

P(C'/D')=P(C')P(D'/C')/[P(C')P(D'/C')+P(D')P(D'/C')]

We are given that P(D)=0.35, P(C)=0.30 and P(D/C)=0.5.

P(D')=1-0.35=0.65

P(C')=1-0.3=0.7

P(D'/C')=0.5.

P(C'/D')=0.7(0.5)/[0.7(0.5)+0.65(0.5)]

P(C'/D')=0.35/[0.35+0.325]

P(C'/D')=0.35/[0.35+0.325]

P(C'/D')=0.35/0.675

P(C'/D')=0.5185=0.52

Thus, the probability of customer does not use coupons given that a customer does not pay with a debit card is 0.52.

A punch recipe requires 2/5 of a cup of pineapple juice for every 2 1/2 cups of soda. What is the unit rate of soda to pineapple juice in the punch?

Answers

Answer:

The unit rate is 6 1/4 cups of soda per cup of pineapple juice

Step-by-step explanation:

we know that

To find out the unit rate of soda to pineapple juice in the punch, divide the cups of soda by the cups of pineapple juice

so

[tex]2\frac{1}{2} :\frac{2}{5}[/tex]

Convert mixed number to an improper fraction

[tex]2\frac{1}{2}=2+\frac{1}{2}=\frac{2*2+1}{2}=\frac{5}{2}[/tex]

substitute

[tex]\frac{5}{2} :\frac{2}{5}[/tex]

Multiply in cross

[tex]\frac{25}{4}= 6.25[/tex]

Convert to mixed number

[tex]6.25=6+0.25=6+\frac{1}{4}= 6\frac{1}{4}[/tex]

That means

The unit rate is 6 1/4 cups of soda per cup of pineapple juice

Answer:

6 1/4

Step-by-step explanation:

An education researcher collects data on how many hours students study at various local colleges. The researcher calculates an average to summarize the data. The researcher is using ______.A)measure of central tendency
B) descriptive statistical method
C) intuitive statistical method
D) inferential statistical method

Answers

Answer:

Correct option is (B) descriptive statistical method

Step-by-step explanation:

Descriptive statistics branch in statistics deals with the representation of the data using distinct brief coefficients. These coefficients are used as either the representative of the sample or the population.

The descriptive statistics branch is divided into two sub branches:

Measure of central tendencyMeasure of dispersion.

The three measures of central tendency are:

Mean (or Average)MedianMode.

The measures of dispersion are:

VarianceStandard deviationRangeKurtosisSkewness

The education researcher computes the average number of hours student study at various local colleges.

The average of a data is the mean value which is the measure of central tendency.

Thus, the researcher is using descriptive statistical method to summarize the data.

Final answer:

The education researcher is using descriptive statistical methods by calculating an average of study hours, which is a measure of central tendency, a fundamental aspect of descriptive statistics.

Explanation:

An education researcher who collects data on how many hours students study at various local colleges and then calculates an average to summarize this data is using descriptive statistical methods. Descriptive statistics involve organizing and summarizing data to provide a clear overview of its characteristics. Examples of descriptive statistics include measures of central tendency (mean, median, mode), which indicate the typical value within a data set, and measures of variability (range, variance, standard deviation), which show how spread out the data points are. The calculation of an average, or mean, falls under the measure of central tendency, making it a key component of descriptive statistics.

List the probability value for each possibility in the binomial experiment calculated at the beginning of this lab, which was calculated with the probability of a success being ½. (Complete sentence not necessary; round your answers to three decimal places)P(x=0) P(x=6)
P(x=1) P(x=7)
P(x=2) P(x=8)
P(x=3) P(x=9)
P(x=4) P(x=10)
P(x=5)

Answers

Answer:

a. P(X = 0)= 0.001

b. P(X = 1)= 0.001

c. P(X=2)= 0.044

d. P(X=3)= 0.117

e. P(X=4)= 0.205

f. P(X=5)= 0.246

g. P(X=6)= 0.205

h. P(X=7)= 0.117

i. P(X=8)= 0.044

j. P(X=9)= 0.001

k. P(X=10)= 0.001

Step-by-step explanation:

Hello!

You have the variable X with binomial distribution, the probability of success is 0.5 and the sample size is n= 10 (I suppose)

If the probability of success p=0.5 then the probability of failure is q= 1 - p= 1 - 0.5 ⇒ q= 0.5

You are asked to calculate the probabilities for each observed value of the variable. In this case is a discrete variable with definition between 0 and 10.

You have two ways of solving this excersice

1) Using the formula

[tex]P(X)= \frac{n!}{(n-X)!X!} * (p)^X * (q)^{n-X}[/tex]

2) Using a table of cummulative probabilities of the binomial distribution.

a. P(X = 0)

Formula:

[tex]P(X=0)= \frac{10!}{(10-0)!0!} * (0.5)^0 * (0.5)^{10-0}[/tex]

P(X = 0) = 0.00097 ≅ 0.001

Using the table:

P(X = 0) = P(X ≤ 0) = 0.0010

b. P(X = 1)

Formula

[tex]P(X=1)= \frac{10!}{(10-1)!1!} * (0.5)^1 * (0.5)^{10-1}[/tex]

P(X = 1) = 0.0097 ≅ 0.001

Using table:

P(X = 1) = P(X ≤ 1) - P(X ≤ 0) = 0.0107-0.0010= 0.0097 ≅ 0.001

c. P(X=2)

Formula

[tex]P(X=2)= \frac{10!}{(10-2)!2!} * (0.5)^2 * (0.5)^{10-2}[/tex]

P(X = 2) = 0.0439 ≅ 0.044

Using table:

P(X = 2) = P(X ≤ 2) - P(X ≤ 1) = 0.0547 - 0.0107= 0.044

d. P(X = 3)

Formula

[tex]P(X = 3)= \frac{10!}{(10-3)!3!} * (0.5)^3 * (0.5)^{10-3}[/tex]

P(X = 3)= 0.11718 ≅ 0.1172

Using table:

P(X = 3) = P(X ≤ 3) - P(X ≤ 2) = 0.1719 - 0.0547= 0.1172

e. P(X = 4)

Formula

[tex]P(X = 4)= \frac{10!}{(10-4)!4!} * (0.5)^4 * (0.5)^{10-4}[/tex]

P(X = 4)= 0.2051

Using table:

P(X = 4) = P(X ≤ 4) - P(X ≤ 3) = 0.3770 - 0.1719= 0.2051

f. P(X = 5)

Formula

[tex]P(X = 5)= \frac{10!}{(10-5)!5!} * (0.5)^5 * (0.5)^{10-5}[/tex]

P(X = 5)= 0.2461 ≅ 0.246

Using table:

P(X = 5) = P(X ≤ 5) - P(X ≤ 4) = 0.6230 - 0.3770= 0.246

g. P(X = 6)

Formula

[tex]P(X = 6)= \frac{10!}{(10-6)!6!} * (0.5)^6 * (0.5)^{10-6}[/tex]

P(X = 6)= 0.2051

Using table:

P(X = 6) = P(X ≤ 6) - P(X ≤ 5) = 0.8281 - 0.6230 = 0.2051

h. P(X = 7)

Formula

[tex]P(X = 7)= \frac{10!}{(10-7)!7!} * (0.5)^7 * (0.5)^{10-7}[/tex]

P(X = 7)= 0.11718 ≅ 0.1172

Using table:

P(X = 7) = P(X ≤ 7) - P(X ≤ 6) = 0.9453 - 0.8281= 0.1172

i. P(X = 8)

Formula

[tex]P(X = 8)= \frac{10!}{(10-8)!8!} * (0.5)^8 * (0.5)^{10-8}[/tex]

P(X = 8)= 0.0437 ≅ 0.044

Using table:

P(X = 8) = P(X ≤ 8) - P(X ≤ 7) = 0.9893 - 0.9453= 0.044

j. P(X = 9)

Formula

[tex]P(X = 9)= \frac{10!}{(10-9)!9!} * (0.5)^9 * (0.5)^{10-9}[/tex]

P(X = 9)=0.0097 ≅ 0.001

Using table:

P(X = 9) = P(X ≤ 9) - P(X ≤ 8) = 0.999 - 0.9893= 0.001

k. P(X = 10)

Formula

[tex]P(X = 10)= \frac{10!}{(10-10)!10!} * (0.5)^{10} * (0.5)^{10-10}[/tex]

P(X = 10)= 0.00097 ≅ 0.001

Using table:

P(X = 10) = P(X ≤ 10) - P(X ≤ 9) = 1 - 0.9990= 0.001

Note: since 10 is the max number this variable can take, the cummulated probability until it is 1.

I hope it helps!

A person takes a trip, driving with a constant peed of 89.5 km/h, except for a 22.0-min rest stop. If the peron's average speed is 77.8 km/h, (a) how much time is spent on the trip and (b) how far does the person travel?

Answers

Answer:

a) The person traveled 2.83 hours.

b) The person travels 220.17 kilometers.

Step-by-step explanation:

We have that the speed is the distance divided by the time. Mathematically, that is

[tex]s = \frac{d}{t}[/tex]

(a) how much time is spent on the trip and

The peron's average speed is 77.8 km/h, which means that [tex]s = 77.8[/tex]

The person distance traveled is:

22 min is 22/60 = 0.37h.

So for  the time t1, the person traveled at a speed of 89.5 km/h. Which has a distance of 89.5*t1.

For 0.37h, the person was at a stop, so she did not travel. This means that the total distance is

[tex]d = 89.5t1 + 0 = 89.5t1[/tex]

The total time is the time traveling t and the stoppage time 0.37. So

[tex]t = t1 + 0.37[/tex]

We want to find t1, which is the time that the person was driving.

So

[tex]s = \frac{d}{t}[/tex]

[tex]77.8 = \frac{89.5t1}{t1 + 0.37}[/tex]

[tex]77.8t1 + 77.8*0.37 = 89.5t1[/tex]

[tex]11.7t1 = 28.786[/tex]

[tex]t1 = \frac{28.786}{11.7}[/tex]

[tex]t1 = 2.46[/tex]

The total time is

[tex]t = t1 + 0.37 = 2.46 + 0.37 = 2.83[/tex]

The person traveled for 2.83 hours.

(b) how far does the person travel?

The person traveled 2.46 hours at an average speed of 77.8 km/h. So

[tex]s = \frac{d}{t}[/tex]

[tex]77.8 = \frac{d}{2.83}[/tex]

[tex]d = 77.8*2.83 = 220.17[/tex]

The person travels 220.17 kilometers.

How much
fencing does
the farmer
need to
enclose the
area below?
30 2/9 50 5/8 will mark brainest new to this can any one help ​

Answers

The farmer will need:

[tex]\boxed{191\frac{11}{12}yd}[/tex]

In order to enclose the area shown in the figure below.

Explanation:

The diagram below shows the representation of this problem. Let:

[tex]x: The \ length \ of \ the \ rectangular \ pastures \\ \\ y: The \ width \ of \ the \ rectangular \ pastures[/tex]

We know that:

[tex]x=5\frac{5}{8}yd \\ \\ y=30\frac{2}{9}yd[/tex]

So the fencing the farmer needs can be calculated as the perimeter of the two adjacent rectangular pastures:

[tex]P=2(x+y)+y \\ \\ P=2(50\frac{5}{8}+30\frac{2}{9})+30\frac{2}{9} \\ \\ P=100\frac{10}{8}+60\frac{4}{9}+30\frac{2}{9} \\ \\ P=100\frac{10}{8}+90\frac{6}{9} \\ \\ P=100\frac{5}{4}+90\frac{2}{3} \\ \\ P=190(\frac{15+8}{12}) \\ \\ P=190(\frac{23}{12}) \\ \\ \\ Expressing \ as \ a \ mixed \ fraction: \\ \\ P=190+1+\frac{11}{12} \\ \\ P=191+\frac{11}{12} \\ \\ \boxed{P=191\frac{11}{12}yd}[/tex]

Learn more:

Enclosing areas: https://brainly.com/question/1904034

#LearnWithBrainly

In a West Texas school district the school year began on August 1 and lasted until May 31. On August 1 a Soft Drink company installed soda machines in the school cafeteria. It found that after t months the machines generated income at a rate of f(t) = 300t/2t2 + 8 dollars per month. Find the total income, $Tscc, produced during the second semester beginning on January 1.

Answers

Answer:

$95.78

Step-by-step explanation:

f(t) = 300t / (2t² + 8)

t = 0 corresponds to the beginning of August.  t = 1 corresponds to the end of August.  t = 2 corresponds to the end of September.  So on and so forth.  So the second semester is from t = 5 to t = 10.

$T₂ = ∫₅¹⁰ 300t / (2t² + 8) dt

$T₂ = ∫₅¹⁰ 150t / (t² + 4) dt

$T₂ = 75 ∫₅¹⁰ 2t / (t² + 4) dt

$T₂ = 75 ln(t² + 4) |₅¹⁰

$T₂ = 75 ln(104) − 75 ln(29)

$T₂ ≈ 95.78

The Nielsen Media Research Company uses people meters to record the viewing habits of about 5000 households, and today those meters will be used to determine the proportion of households tuned to CBS Evening News.

Answers

Answer:

Cross-sectional study.

Step-by-step explanation:

- In a cross-sectional study, data are observed, measured, and collected at one point in time.

- In a prospective (or longitudinal) study, data are collected in the future from

groups sharing common factors.

- In a retrospective (or case-control) study, data are collected from the past by going

back in tirme (through exanmination of records, interviews, arıd so on).

Hope this Helps!!

In this problem, y = c1ex + c2e−x is a two-parameter family of solutions of the second-order DE y'' − y = 0. Find c1 and c2 given the following initial conditions. (Your answers will not contain a variable.) y(1) = 0, y'(1) = e c1 = Incorrect: Your answer is incorrect. c2 = Incorrect: Your answer is incorrect. Find a solution of the second-order IVP consisting of this differential equation and the given initial conditions. y = Incorrect: Your answer is incorrect.

Answers

Answer:

c₁ = 1/2

c₂ = - e²/2

y = (1/2)*(eˣ - e²⁻ˣ)

Step-by-step explanation:

Given

y = c₁eˣ + c₂e⁻ˣ

y(1) = 0

y'(1) = e

We get y' :

y' = (c₁eˣ + c₂e⁻ˣ)'  ⇒  y' = c₁eˣ - c₂e⁻ˣ

then we find y(1) :

y(1) = c₁e¹ + c₂e⁻¹ = 0

⇒  c₁ = - c₂/e² (I)

then we obtain y'(1):

y'(1) = c₁e¹ - c₂e⁻¹ = e    (II)

⇒  (- c₂/e²)*e - c₂e⁻¹ = e

⇒  - c₂e⁻¹ - c₂e⁻¹ = - 2c₂e⁻¹ = e

⇒  c₂ = - e²/2

and

c₁ = - c₂/e² = - (- e²/2) / e²

⇒  c₁ = 1/2

Finally, the equation will be

y = (1/2)*eˣ - (e²/2)*e⁻ˣ = (1/2)*(eˣ - e²⁻ˣ)

Applying the initial conditions, it is found that the solution is:

[tex]y = \frac{1}{2}e^{x} - \frac{e^2}{2}e^{-x}[/tex]

------------------------

The solution for the PVI is given by:

[tex]y = c_1e^{x} + c_2e^{-x}[/tex]

------------------------

The condition [tex]y(1) = 0[/tex] means that when [tex]x = 0, y = 1[/tex], and thus, we get:

[tex]c_1e + c_2e^{-1} = 0[/tex]

[tex]c_1e+ \frac{c_2}{e} = 0[/tex]

[tex]c_1e^{2} + c_2 = 0[/tex]

[tex]c_2 = -c_1e^{2}[/tex]

------------------------

The derivative is:

[tex]y^{\prime}(x) = c_1e^{x} - c_2e^{-x}[/tex]

Applying the condition [tex]y^{\prime}(1) = e[/tex], we get:

[tex]c_1e - \frac{c_2}{e} = e[/tex]

Considering [tex]c_2 = -c_1e^{2}[/tex]:

[tex]c_1e + c_1\frac{e^2}{e} = e[/tex]

[tex]c_1e + c_1e = e[/tex]

[tex]2c_1e = e[/tex]

[tex]2c_1 = 1[/tex]

[tex]c_1 = \frac{1}{2}[/tex]

------------------------

The second constant is:

[tex]c_2 = -c_1e^{2} = -\frac{e^2}{2}[/tex]

And the solution is:

[tex]y = \frac{1}{2}e^{x} - \frac{e^2}{2}e^{-x}[/tex]

A similar problem is given at https://brainly.com/question/13244107

Ruby has $0.86 worth of pennies and nickels. She has 4 more nickels than pennies. Determine the number of pennies and the number of nickels that Ruby has.

Answers

Answer:

15 Nickels, 11 Pennies

Step-by-step explanation:

Simplify your life and take out the decimals

5*N + P = 86

P + 4 = N (4 more nickels than pennies)

By substitution of the second eq into the first: 5*(P+4) + P = 86

5*P + 20 + P = 86

6P = 66

P = 11, so N = 4 + 11 = 15

Answer:Ruby has 11 pennies and 15 nickels.

Step-by-step explanation:

The worth of a penny is 1 cent. Converting to dollars, it becomes

1/100 = $0.01

The worth of a nickel is 5 cents. Converting to dollars, it becomes

5/100 = $0.05

Let x represent the number of pemnies that Ruby has.

Let y represent the number of nickels that Ruby has.

She has 4 more nickels than pennies. This means that

y = x + 4

Ruby has $0.86 worth of pennies and nickels. This means that

0.01x + 0.05y = 0.86 - - - - - - - - - - - 1

Substituting y = x + 4 into equation 1, it becomes

0.01x + 0.05(x + 4) = 0.86

0.01x + 0.05x + 0.2 = 0.86

0.06x = 0.86 - 0.2 = 0.66

x = 0.66/0.06

x = 11

y = x + 4 = 11 + 4

y = 15

the average age of men who had walked on the moon was 39 years, 11months, 15days. Is the value aparameter or a statistic?

Answers

Answer:

Parameter                                            

Step-by-step explanation:

We are given the following in the question:

The average age of men who had walked on the moon was 39 years, 11 months, 15 days.

Population and sample:

Population is the collection of all observation for variable of interest or individual of interest.Sample is a subset for population.

Parameter and statistic:

Any variable or value describing a population is known as parameter.Any value describing a sample is known as statistic.

Population of interest:

men who had walked on the moon

Value:

average age of men who had walked on the moon

Thus, the give value describes a population and hence, it is a parameter.

ests for tuberculosis like all other diagnostic tests are not perfect. QFT-G is one of such tests for tuberculosis. Suppose that for the population of adults that is taking the test, 5% have tuberculosis. The test correctly identifies 74.6% of the time adults with a tuberculosis and correctly identifies those without tuberculosis 76.53% of the time. Suppose that POS stands for the test gives a positive result and S means that the adult really has tuberculosis. Represent the "76.53%" using notation. Group of answer choices P(S) P(Sc) P(POSc | Sc) P( POSc | C)

Answers

Final answer:

The 76.53% percentage, which represents the rate at which the QFT-G test correctly identifies those without tuberculosis, can be represented using notation as P(POSc | Sc). This is a conditional probability noting the likelihood of a negative test result when the individual does not have tuberculosis.

Explanation:

In the context of probabilities and statistics, you've asked about the interpretation of the 76.53% correctly identified as non-tuberculosis afflicted individuals in terms of notation. Based on the notation you provided and the description of the problem, the 76.53% would be represented as P(POSc | Sc).

This can literally be translated as the probability that the QFT-G test will result as negative (i.e., no tuberculosis, or POSc), given that the person is indeed not afflicted with tuberculosis (i.e., Sc). This is a conditional probability, expressing how likely we are to get a negative test result, given that the person doesn't really have tuberculosis.

Learn more about Conditional Probability here:

https://brainly.com/question/32171649

#SPJ3

A rain gutter is to be made of aluminum sheets that are 12 inches wide by turning up the edges 90 degrees.What depth will provide maximum​ cross-sectional area and hence allow the most water to​ flow?

Answers

Answer:

18 in^2

Step-by-step explanation:

1  )The three sides of the gutter add up to 12

            2x+ y = 12  

2)  Subtract 2x from both sides.

           y = 12 — 2x  

3 )Find the area of the rectangle in terms of x and simplify.

    Area = xy = x(12 — 2x) = -2x^2+12x = f(x)  

4 )  x=-b/2a

     x co-ordinate of the vertex= -12/2(-2)=3

5 )Plug in 3 for x into they equation.

    y co-ordinate of the vertex= 12 — 2(3) = 6  

6  )  Plug in 3 for x and 6 for y.  

      Area= xy = 3(6) = 18  

RESULT  

            18 in^2

 

 

 

 

Kristina walks 7 1/2 miles in 5 hours. At this rate, how many miles can Kristina walk in 9 hours

Answers

Answer:

13.5

Step-by-step explanation:

7 1/2=7.5

7.5/5*9=13.5

The augmented matrix is given for a system of equations. If the system is consistent, find the general solution. Otherwisestate that there is no solution. Use x1, x2, x3 as variables.

Answers

Answer:

The augmented matrix has been given in the attachment

Step-by-step explanation:

The steps for the determination of INCONSISTENCY  are as shown in the attachment.

Use the roster method to write each of the given sets. (Enter EMPTY for the empty set.)
(a) The set of natural numbers x that satisfy x + 4 = 1.
(b) Use set-builder notation to write the following set.
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Answers

Answer:

a) Empty set

b)  [tex]\{x : x \in N \text{ and } x < 13\}[/tex]                                        

Step-by-step explanation:

Roster form is a comma separated list form of set.

a) The set of natural numbers x that satisfy x + 4 = 1.  

[tex]x + 4 = 1\\x = -3 \notin N[/tex]

Thus, x is an empty set.

b) set-builder notation for the set  {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

We use x to represent this set. Now x belongs to natural number and is less than equal to 12.

Thus, it can be written as:

[tex]\{x : x \in N \text{ and } x < 13\}[/tex]

A. Find n so that the number sentence below is true. 2^-6*2^n=2^9.
N=_____________


B. Use the laws of exponents to demonstrate why 2^3•4^3=2^9 is true and explain.

This is true because

Answers

n = 15

Step-by-step explanation:

Step 1: Calculate n by using the law of exponents that a^m × a^n = a^m+n

For 2^-6*2^n=2^9, a = 2, m = -6 and m + n = 9

⇒ -6 + n = 9

⇒ n = 15

Step 2: Given 2³ × 4³=2^9. Use law of exponents to prove it.

⇒ 2³ × 4³ can also be written as 2³ × (2²)³ = 2³ × 2^6 [This is based on the law of exponents (a^m)^n = (a)^m×n]

⇒ 2³ × 2^6 = 2^ (3 + 6) = 2^9 [Using the law of exponents a^m × a^n = a^m+n]

How to find the area of a square ABC D

Answers

Answer:

The answer to your question is 13 u²

Step-by-step explanation:

We know that the small triangle is surrounded by right triangles so we can use the Pythagorean theorem to find the lengths  of the small triangle

                 AD² = 3² + 2²

Simplify

                 AD² = 9 + 4

                 AD² = 13

                 AD = [tex]\sqrt{13}[/tex]

Find the area of the square

Area = side x side

Area = AD x AD

Area = [tex]\sqrt{13} x \sqrt{13}[/tex]

Area = 13 u²                  

On a map of Texas, the
distance between Houston
and Austin is 2 3/4 inches. The
scale on the map is
1 inch = 50 miles. What is
the actual distance between
Houston and Austin?​ will mark brainest can u show ur work if not the answer is ok ty please help me been on this a hour

Answers

1 inch on the map = 50 miles on the Earth.

A certain trip on the map is 2-3/4 inches.

-- first inch = 50 miles

-- second inch = another 50 miles

-- 3/4 inch = 3/4 of 50 miles (37.5 miles)

Total:

Here's an equation;

1 map-inch = 50 real-miles

Multiply each side by 2-3/4 :

2-3/4 inches = (2-3/4) x (50 miles)

2-3/4 map-inches = 137.5 real-miles

The actual distance between Houston and Austin is 137.5 miles.

We are given that;

The distance between Houston and Austin = 2 3/4 inches

Now,

To find the actual distance between Houston and Austin, we need to multiply the map distance by the scale factor.

The map distance is 2 3/4 inches, which is equivalent to 11/4 inches. The scale factor is 1 inch = 50 miles, which means that every inch on the map corresponds to 50 miles in reality. So, we have:

11/4 x 50 = (11 x 50) / 4

= 550 / 4

= 137.5

Therefore, by unit conversion answer will be 137.5 miles.

Learn more about the unit conversion here:

brainly.com/question/11543684

#SPJ6

what is the solution to the equation A/2= -5

Answers

Answer:

A = -10

Step-by-step explanation:

A/2 = -5

Multiply both sides by the denominator of the fraction

We have A/2 x2 = -5 x 2

A = -10

Answer:

-10

Step-by-step explanation:

It is the easiest equation.

A/2= -5

At first, we have to multiply both the sides by 2. Therefore, we can get,

[tex]\frac{A*2}{2}[/tex] = (-5 × 2)

or, A = -10

Therefore, the value of A is -10. It remains negative because we cannot multiply both the sides by -1. If we do that, we cannot determine the constant.

Answer: A = -10

2.82 For married couples living in a certain suburb, the probability that the husband will vote on a bond referendum is 0.21, the probability that the wife will vote on the referendum is 0.28, and the probability that both the husband and the wife will vote is 0.15. What is the probability that (a) at least one member of a married couple will vote? (b) a wife will vote, given that her husband will vote? (c) a husband will vote, given that his wife will not vote?

Answers

Final answer:

The probability that at least one member of a married couple will vote is 0.34 or 34%. The probability of a wife voting given that her husband will vote is approximately 0.7143 or 71.43%. The probability of a husband voting given his wife will not vote is 0.06 or 6%.

Explanation:

The subject of this question is probability within the realm of mathematics. To find the probability of at least one member of a married couple voting, we can use the formula P(A or B) = P(A) + P(B) - P(A and B).

Therefore, the probability is 0.21 (husband voting) + 0.28 (wife voting) - 0.15 (both voting), which equals 0.34.

For (b), the probability that the wife will vote, given that her husband will vote, is P(Wife|Husband) = P(Wife and Husband)/P(Husband).

So, this probability is 0.15/0.21, which equals approximately 0.7143.

For (c), the probability that the husband will vote, given that his wife will not vote, is P(Husband|Wife not voting) = P(Husband) - P(Husband and Wife).

So, this probability is 0.21 - 0.15, which yields 0.06 or 6%.

When analyzing data on the number of employees in small companies in one​ town, a researcher took square roots of the counts. Some of the resulting​ values, which are reasonably​ symmetric, were 4​, 5​, 5​, 7​, 7​, 8​, and 11.
What were the original​ values, and how are they​ distributed?

Answers

Answer:

The original​ values are : 16, 25, 25, 49, 49, 64, 121.

Step-by-step explanation:

We know that  a researcher took square roots of the counts. Some of the resulting​ values, which are reasonably​ symmetric, were 4​, 5​, 5​, 7​, 7​, 8​, and 11.  We calculate the original​ values:

[tex]4^2=16\\5^2=25\\5^2=25\\7^2=49\\7^2=49\\8^2=64\\11^2=121\\[/tex]

The original​ values are : 16, 25, 25, 49, 49, 64, 121.

We conclude that the  original data is not simmetric.

The original values obtained by reversing the square root transformation are 16, 25, 25, 49, 49, 64, and 121. These values show variability in the number of employees across different small companies in the town. The transformed dataset was made more symmetrical for statistical analysis.

When a researcher applies a square root transformation to a dataset, the purpose is often to make the data more symmetrical and easier to analyze using certain statistical methods.

Given the transformed values 4, 5, 5, 7, 7, 8, and 11, we can reverse the transformation to find the original values.

The square of each transformed value yields the original data points:

4² = 165² = 255² = 257² = 497² = 498² = 6411² = 121

Thus, the original values are 16, 25, 25, 49, 49, 64, and 121. These values are distributed with some repeated data points and a range from 16 to 121.

This distribution indicates variability in the number of employees across the small companies studied.

Other Questions
Why is the answer A? 1.The electromagnetic spectrum contains many types of __________. A) waves B) Objects C) Particles2.The colors we see are all part of ___________ ______________. A) X rays B) UV waves C) visible light 3. We can see because of ___________ ______________. A) UV waves B) infrared light C) visible light4. When visible light passes through a prism or a drop of water, the light _________ and we see a rainbow of color.A) Bends B) Reflects C) Bounces Twin research studies suggest that shared environments have a strong influence in shaping personalities. T F Marketing involves which of the following : A. Advertising B. Transporting products C. Taking surveys D. All of the above Important details in the New Orleans in the 1940? The conference method estimates cost functions: A. Using quantitative methods that can be very time consuming and costly B. Based on analysis and opinions gathered from various departments C. Using time-and-motion studies D. By analyzing the relationship between inputs and outputs in physical terms im the Indian Removal what were the native peoples connection to the land? mass = mmass = 2mT = 15T = 151. How does the centripetal acceleration of A compare to that of B?A. ABB.A Which best describes the relationship between internal energy and thermal energy? Thermal energy is a measure of the internal energy of a substance. Internal energy is a measure of the thermal energy of a substance. Internal energy is the portion of thermal energy that can be transferred. Thermal energy is the portion of internal energy that can be transferred. Neural control affects the maximal force output of a muscle by determining which and how many motor units are involved in a muscle contraction and the rate at which the motor units are fired. These two factors are known as what, respectively? a. rate coding; EMG b. EMG; firing rates c. recruitment; rate coding d. firing rates; recruitment an organisms ability to maintain a stable internal environment in the midst of external environment change is known as What is the value of F(x) = 4x+9When x= 5 URGENT! PLEASE HELP!Find the roots of f(x)=x^2+10x96Question 6 options: x=8 or x=12 x=6 or x=16 x=6 or x = 16 x =8 or x =12 The United States Coast Guard assumes the mean weight of passengers in commercial boats is 185 pounds. The previous value was lower, but was raised after a tragic boating accident. The standard deviation of passenger weights is 26.7 pounds. The weights of a random sample of 48 commercial boat passengers were recorded. The sample mean was determined to be 177.6 pounds. Find the probability that a random sample of passengers will have a mean weight that is as extreme or more extreme (either above or below the mean) than was observed in this sample. (Round your answer to 3 decimal places. Example: If the answer is 0.8976 then you would enter 0.898 in the answer box.) A woman marries her butler. Before they were married, she paid him $60,000 per year. He continues to wait on her as before (but as a husband rather than as a wage earner). She earns $1,000,000 per year both before and after her marriage. If GDP were changed so that it truly measured the sum of all final economic activity, the marriage would: first decrease and then increase GDP. decrease GDP. increase GDP. leave GDP unchanged. In uniform circular motion, the acceleration is perpendicular to the velocity at every instant. Is this true when the motion is not uniformthat is, when the speed is not constant? The following transactions pertain to the operations of Blair Company for 2014:1. Acquired $23,400 cash from the issue of common stock.2. Performed services for $43,000 cash.3. Paid a $27,200 cash advance for a one-year contract to rent equipment.4. Recognized $32,200 of accrued salary expense.5. Accepted a $1,600 cash advance for services to be performed in the future.6. Provided $16,900 of services on account.7. Incurred $7,350 of other operating expenses on account.8. Collected $5,400 cash from accounts receivable.9. Paid a $9,000 cash dividend to the stockholders.10. Paid $18,000 cash on accounts payable.a. Classify the cash flows from these transactions as :Operating activities (OA),Investing activities (IA), orFinancing activities (FA).Use NA for transactions that do not affect the statement of cash flows.b. Prepare a Statement of Cash flows.(There is no beginning cash balance.) (Amounts to be deducted should be indicated with a minus sign.) Suppose you were a typical industrial worker in the United States during the late nineteenth century. Describe the conditions under which you would probably be working and how you might resist. If the fundamental frequency of a violin string is 440 HzHz, what is the frequency of the second harmonic? Indicators of a possible asset or income concealment include all of the following except: a. Missing, inaccurate, or damaged records b. Travel to off-shore tax havens or locations that allow secret bank accounts c. Transactions frequently made in cash but normally made on account d. Unusual increases in reported assets e. All of the above are indicators of a possible asset or income concealment