For the reaction KClO2⟶KCl+O2 KClO2⟶KCl+O2 assign oxidation numbers to each element on each side of the equation. K in KClO2:K in KClO2: K in KCl:K in KCl: Cl in KClO2:Cl in KClO2: Cl in KCl:Cl in KCl: O in KClO2:O in KClO2: O in O2:O in O2: Which element is oxidized? KK OO ClCl Which element is reduced? OO KK Cl

Answers

Answer 1

Answer:

K in KClO2 = +1

Cl in KClO2 = +3

O in KClO2 = -2

K in KCl = +1

Cl in KCl = -1

O in O2 = 0

Chlorine is going from +3 to -1 so it is being reduced

Oxygen is going from -2 to 0 so it is being oxidized

Explanation:

Potassium is a constant +1

Chlorine could be -1, +1, +3, +5, or +7

Oxygen can be either -2 or +2

Every reactant has to equal zero if there is not a given charge.

Each element can only have certain charges, for example in the previous answer K = +5. Potassium can only be the charge of +1

Answer 2

Chlorine was reduced and oxygen was oxidized in the reaction as shown.

The oxidation number of an atom in a compound is the charge that the atom appears to have as determined by a certain set of rules.

On the left hand side, the oxidation numbers of the elements are;

K = +1

Cl = +3

O = -2

On the right hand side;

K = +1

Cl = -1

O = zero

The element that was oxidized is oxygen. Its oxidation number increased from -2 to zero. The element that was reduced is chlorine. Its oxidation number decreased from +3 to -1.

Learn more: https://brainly.com/question/17320375


Related Questions

The rate constant k of the second-order reaction CH3CHO→CH4+CO is 6.73×10−3Lmol s. The concentration of CH3CHO at t=50.0 seconds is 0.151 mol/L. What was the initial concentration of CH3CHO?

Answers

Answer:

The initial concentration of ethanal was 0.1590 mol/L.

Explanation:

Integrated rate law for second order kinetic:

[tex]k=\frac{1}{t}(\frac{1}{[A]}-\frac{1}{[A]_o})[/tex]

k = Rate constant =[tex]6.73\times 10^{-3} L mol s[/tex]

t = Time elapsed  = 50.0 s

[tex][A]_o[/tex] =initial concentration of ethanal

[A] = Concentration of ethanal left after time t = 0.151 mol/L

On substituting the value:

[tex]6.73\times 10^{-3} L mol s=\frac{1}{50.0 s}(\frac{1}{0.151 mol/L}-\frac{1}{[A_o]})[/tex]

[tex][A]_o=0.1590 mol/L[/tex]

The initial concentration of ethanal was 0.1590 mol/L.

A 298 lb person must receive Heparin, determine the number of units given every hour (Heparin 8.0 units/kg per hour). Enter your answer with 1 decimal place and no units (the understood unit in this problem is units).

Answers

Answer:

1,081.1 units of heparin should be given to 298 lb person.

Explanation:

We are given:

Weight of the person = 298 lb = 135.143 kg

Conversion factor used:

1 lb = 0.4535 kg

Number of unit of heparin to be given in an hour = 8.0 units/kg

Number of units given to the patient weighing 135.143 kg :

[tex]8.0 units/kg\times 135.143 kg=1,081.144 units\approx 1,081.1 units[/tex]

1,081.1 units of heparin should be given to 298 lb person.

Iodine is prepared both in the laboratory and commercially by adding Cl2(g)Cl2(g) to an aqueous solution containing sodium iodide. 2NaI(aq)+Cl2(g)⟶I2(s)+2NaCl(aq) 2NaI(aq)+Cl2(g)⟶I2(s)+2NaCl(aq) How many grams of sodium iodide, NaI,NaI, must be used to produce 89.1 g89.1 g of iodine, I2?I2? mass: g NaI

Answers

Answer : The mass of sodium iodide used to produced must be, 105.22 grams.

Explanation : Given,

Mass of [tex]I_2[/tex] = 89.1 g

Molar mass of [tex]I_2[/tex] = 253.8 g/mole

Molar mass of [tex]NaI[/tex] = 149.89 g/mole

First we have to calculate the moles of [tex]I_2[/tex].

[tex]\text{Moles of }I_2=\frac{\text{Mass of }I_2}{\text{Molar mass of }I_2}=\frac{89.1g}{253.8g/mole}=0.351moles[/tex]

Now we have to calculate the moles of [tex]NaI[/tex].

The balanced chemical reaction is,

[tex]2NaI(aq)+Cl_2(g)\rightarrow I_2(s)+2NaCl(aq)[/tex]

From the balanced chemical reaction, we conclude that

As, 1 mole of [tex]I_2[/tex] obtained from 2 moles of [tex]NaI[/tex]

So, 0.351 moles of [tex]I_2[/tex] obtained from [tex]2\times 0.351=0.702[/tex] moles of [tex]NaI[/tex]

Now we have to calculate the mass of [tex]NaI[/tex].

[tex]\text{Mass of }NaI=\text{Moles of }NaI\times \text{Molar mass of }NaI[/tex]

[tex]\text{Mass of }NaI=(0.702mole)\times (149.89g/mole)=105.22g[/tex]

Therefore, the mass of sodium iodide used to produced must be, 105.22 grams.

Final answer:

To produce 89.1 grams of iodine (I2), 178.2 grams of sodium iodide (NaI) must be used.

Explanation:

To find the number of grams of sodium iodide (NaI) needed to produce 89.1 g of iodine (I2), we need to use the stoichiometric coefficients from the balanced chemical equation:

2NaI(aq) + Cl2(g) ⟶ I2(s) + 2NaCl(aq)

From the equation, we can see that 2 moles of NaI react to produce 1 mole of I2. The molar mass of NaI is 149.89 g/mol. We can set up a proportion:

(2 mol NaI / 1 mol I2) = (x g NaI / 89.1 g I2)

Solving for x:

x = (2 mol NaI / 1 mol I2) * (89.1 g I2 / 1 mol I2) = 178.2 g NaI

Therefore, 178.2 grams of sodium iodide (NaI) must be used to produce 89.1 grams of iodine (I2).

Learn more about Calculating mass using stoichiometry here:

https://brainly.com/question/19380653

#SPJ3

The balanced combustion reaction for C6H6 is 2C6H6(l)+15O2(g)⟶12CO2(g)+6H2O(l)+6542 kJ If 8.600 g C6H6 is burned and the heat produced from the burning is added to 5691 g of water at 21 ∘ C, what is the final temperature of the water?

Answers

Final answer:

In this chemistry problem, we first calculate the heat produced by the combustion of C6H6, and then we use the heat equation to find the final temperature of the water which comes out to be 53.14 °C.

Explanation:

The subject of this question pertains to the field of chemistry, specifically physical chemistry dealing with energy changes in chemical reactions, and this seems to be a high school-level problem based on the complexities involved. The principle used here is q=mc∆T, which allows us to calculate how much heat is transferred when the water temperature changes.

First, the amount of heat produced by the combustion of 8.6 g of C6H6 should be calculated based on its enthalpy change (heat produced per mole). Given the heat of combustion, -6542 kJ for 2 moles of C6H6, the heat of combustion for 8.6g of C6H6 can be calculated by (8.6 g / (78.11 g/mol) mol ) * (-6542 kJ / 2 mol) = -227.11 kJ.

The heat absorbed by the water can then be calculated using the heat equation: q=mc∆T. Here, m = mass of water = 5691 g, c = specific heat capacity of water = 4.18 J/g°C. The heat is converted to kilojoules: q = -227.11 kJ * 1000 = -227110 J. Hence, the equation becomes -227110 = 5691*4.18*∆T. After rearranging and solving, the final temperature (T) will be 53.14 °C.

Learn more about Heat Transfer here:

https://brainly.com/question/13433948

#SPJ3

Directions: Using the definition of molarity, the given balanced equations, and stoichiometry, solve the following problems.

Sodium chloride solution and water react to produce sodium hydroxide and chlorine gas according to the following balanced equation: 2NaCl(aq) + 2H20(l) <-> 2Na0H(aq) + Cl2(g)
a. How many liters of 0.4 M sodium chloride do you need in order to have 3.0 moles of chlorine gas?
b. Find the number of moles of water needed to produce 3.0 L of chlorine gas at STP.

Answers

Answer:

15L of 0.40M NaCl(aq) solution

Explanation:

2NaCl(aq) + 2H₂O(l) → 2NaOH(aq) + Cl₂(g)

2Na⁺(aq) + 2Clˉ(aq) + 2H₂O(l) → 2Na⁺(aq) + 2OHˉ(aq) + Cl₂(g)

Na⁺(aq) is a spectator ion in the given reaction and does not enter into the reaction process…

Net Ionic Equation is then 2Clˉ(aq) + 2H₂O(l) → 2OHˉ(aq) + Cl₂(g)

From Rxn, 2 moles Clˉ(aq) is needed to produce 1 mole of  Cl₂(g)

Therefore, 6 moles Clˉ(aq) is needed to produce 3 moles of Cl₂(g)

That is, 6 moles NaCl(aq) → 6 moles Clˉ(aq) = 0.40M x V(NaCl)liters  

V(NaCl) liters = 6 moles Clˉ(aq)/(0.40mole/liter) = 15 liters of 0.40M NaCl(aq)

Final answer:

7.5 liters of 0.4M sodium chloride solution are needed to produce 3.0 moles of chlorine gas, and 0.134 moles of water are needed to produce 3.0 liters of chlorine gas at STP.

Explanation:

The question is related to molarity and stoichiometry. Let's solve part (a) and (b).

Part A:

Molarity is represented by moles of solute / liters of solution. The balanced equation gives a 1:1 ratio between NaCl and Cl2. The question gives us 3.0 moles of Cl2 gas, implying that we need the same moles of NaCl.

So, Moles = Molarity x Volume, Volume = Moles / Molarity, Volume = 3.0 moles / 0.4 M = 7.5 liters of NaCl solution are needed.

Part B:

For part (b), we see from the stoichiometry of the balanced reaction that the number of moles of water is equal to the number of moles of chlorine. According to the ideal gas law (PV=nRT), at standard temperature and pressure (STP), 1 mole of any gas occupies 22.4L. So, 3.0L of Cl2 gas corresponds to 3.0 L / 22.4 L/mole = 0.134 moles. Therefore, you'll need 0.134 moles of water.

Learn more about Molarity & Stoichiometry here:

https://brainly.com/question/9402899

#SPJ3

Electron configurations are a shorthand form of an orbital diagram, describing which orbitals are occupied for a given element. For example, 1s22s22p1 is the electron configuration of boron. Use this tool to generate the electron configuration of arsenic (As).

Answers

Answer:

[Ar] 4s² 3d¹⁰ 4p³

Explanation:

Arsenic has an atomic number of 33, thus 33 protons and 33 electrons. The electron configuration is:

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p³

The shorthand notation includes the previous noble gas to represent the inner electrons. The gas previous to arsenic is argon, with 18 electrons. The shorthand notation for arsenic is:

[Ar] 4s² 3d¹⁰ 4p³

Arsenic (Ar) is located in the 5th period (row) and 15th group (column) of the periodic table. Its atomic number is 33, which means it has 33 electrons. The electrons' configuration is: [tex]1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^3[/tex].

This is the electron configuration of arsenic (Ar). It indicates that arsenic has two electrons in the 1s orbital, two electrons in the 2s orbital, six electrons in the 2p orbital, two electrons in the 3s orbital, six electrons in the 3p orbital, two electrons in the 4s orbital, ten electrons in the 3d orbital, and three electrons in the 4p orbital.

The electronic configuration of Arsenic is [tex]1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^3[/tex].

To learn more about Arsenic, follow the link:

https://brainly.com/question/32094477

#SPJ6

When titrating a strongmonoprotic acid and KOH at 25°C, theA) pH will be less than 7 at the equivalence point.B) pH will be greater than 7 at the equivalence point.C) titration will require more moles of base than acid to reach the equivalence point.D) pH will be equal to 7 at the equivalence point.E) titration will require more moles of acid than base to reach the equivalence

Answers

Answer:

D => pH will be equal to 7 at equivalence point

Explanation:

For Strong Acid + Strong Base titrations, pH = 7 as neither ion of the salt produced will undergo hydrolysis as would weak electrolyte titrations.

BOTH CASES ARE PRESENTED FOR CONTRAST ...

Stong monoprotic acid being titrated with NaOH ...

=> HX + NaOH => NaCl + H₂O

=> NaCl => Na⁺ + Cl⁻

=> Na⁺ + H₂O => No Rxn ( formation of NaOH will not occur as a strong electrolyte prefers to remain 100% ionized)

=> X⁻ + H₂O => No Rxn (formation of HX will not occur as a strong electrolyte prefers to remain 100% ionized)

This leaves only the Auto Ionization of Water as the reaction affecting the pH of the solution at the equivalence point of a strong acid + strong base titration. That is ...

HOH ⇄ H⁺ + OH⁻ & [H⁺] = [OH⁻] = 1 x 10⁻⁷M

pH = -log[H⁺] = -log(1 x 10⁻⁷) = -(-7) = 7  

----------------------------------

Weak Acid + Strong Base titration => pH > 7 at equivalence point

Assume => HA = weak acid

=> HA + NaOH => NaA + H₂O

=> NaA => Na⁺ + A⁻  &  A⁻ is the conjugate base of a weak acid HA

=> Na⁺ + H₂O => No Rxn ( formation of NaOH will not occur as a strong electrolyte prefers to remain 100% ionized)

=> A⁻ +  H₂O => HA + OH⁻  => Excess OH⁻ at equivalence pt => pH > 7

-------------------------------------

Weak Base + Strong Acid titration => pH < 7 at equivalence point

Weak Bases => ammonia (NH₃) or ammonia derivatives (RNH₂)* in water.

(ammonia in water) => :NH₃ + H₂O => NH₄OH ⇄ NH₄⁺ + OH⁻

(ammonia derivative in water) => RN:-H₂ + H₂O => RNH₃OH ⇄ RNH₃⁺ + OH⁻

Titration of weak base with strong acid ...

=> NH₄OH + HX => NH₄X + H₂O

=> NH₄X => NH₄⁺ + X⁻

=> X⁻ + H₂O => No Rxn (formation of HX will not occur as a strong electrolyte prefers to remain 100% ionized)

=> NH₄⁺ + HOH ⇄ NH₄OH + H⁺ => Weak base is in molecular form with excess hydronium ions (H₃O⁺ = H⁺) at equivalence point => pH < 7.

----------------------

*RNH₂ is a primary amine used in the illustration, but the above process will also occur for secondary (R₂N:-H) and tertiary amines (R₃N:) in water also.

Classify each of these reactions. Ba(ClO3)2(s)⟶BaCl2(s)+3O2(g)Ba(ClO3)2(s)⟶BaCl2(s)+3O2(g) acid–base neutralization precipitation redox none of the above 2NaCl(aq)+K2S(aq)⟶Na2S(aq)+2KCl(aq)2NaCl(aq)+K2S(aq)⟶Na2S(aq)+2KCl(aq) acid–base neutralization precipitation redox none of the above CaO(s)+CO2(g)⟶CaCO3(s)CaO(s)+CO2(g)⟶CaCO3(s) acid–base neutralization precipitation redox none of the above KOH(aq)+AgNO3(aq)⟶KNO3(aq)+AgOH(s)KOH(aq)+AgNO3(aq)⟶KNO3(aq)+AgOH(s) acid–base neutralization precipitation redox none of the above

Answers

Final answer:

The first reaction is a redox reaction, the second and third reactions are none of the above, and the fourth reaction is a precipitation reaction.

Explanation:

The reactions asked in the question can be classified as follows:

Ba(ClO₃)₂(s)⟶BaCl₂(s)+3O₂(g): This is a redox reaction. It involves a transfer of electrons which is characterized by changes in oxidation states. Here, chlorine is reduced from +5 in ClO₃⁻ to -1 in Cl⁻, and oxygen is oxidized from -2 in ClO₃⁻ to 0 in O₂.2NaCl(aq)+K₂S(aq)⟶Na₂S(aq)+2KCl(aq): This is a type of double displacement reaction known as 'metathesis', but it can't be classified as acid-base neutralization, redox, or precipitation, so it would fall under none of the above.CaO(s)+CO₂(g)⟶CaCO₃(s): It's a combination reaction resulting in the formation of a single product, calcium carbonate. Given the options, this reaction would also be classified as none of the above.KOH(aq)+AgNO₃(aq)⟶KNO₃(aq)+AgOH(s): This is a precipitation reaction where soluble ions in solution react to form an insoluble product, AgOH(s), which precipitates out of solution.Learn more about Chemical reaction classification here:

https://brainly.com/question/8117294

#SPJ3

Final answer:

The first reaction is an oxidation-reduction (combustion) reaction, the second reaction is a precipitation reaction, the third reaction is an acid-base neutralization reaction, and the fourth reaction is also an acid-base neutralization reaction.

Explanation:

The first reaction, Ba(ClO3)2(s)⟶BaCl2(s)+3O2(g), is a decomposition reaction also known as oxidation-reduction (combustion). The solid compound breaks down into a solid product and a gas.

The second reaction, 2NaCl(aq)+K2S(aq)⟶Na2S(aq)+2KCl(aq), is a precipitation reaction. The combination of two aqueous solutions forms an insoluble product.

The third reaction, CaO(s)+CO2(g)⟶CaCO3(s), is an acid-base neutralization reaction. The solid oxide reacts with a gas to form a solid carbonate.

The fourth reaction, KOH(aq)+AgNO3(aq)⟶KNO3(aq)+AgOH(s), is also an acid-base neutralization reaction. The aqueous solutions react to form a solid hydroxide and an aqueous salt.

Learn more about Chemical Reactions here:

https://brainly.com/question/34137415

#SPJ11

The equilibrium constant, Kc, for the following reaction is 1.29×10-2 at 600 K. COCl2(g) CO(g) + Cl2(g) Calculate the equilibrium concentrations of reactant and products when 0.323 moles of COCl2(g) are introduced into a 1.00 L vessel at 600 K.

Answers

Answer : The equilibrium concentrations of [tex]COCl_2,CO\text{ and }Cl_2[/tex] are, 0.2646, 0.0584 and 0.0584.

Explanation : Given,

Moles of  [tex]COCl_2[/tex] = 0.323 mole

Volume of solution = 1 L

Initial concentration of [tex]COCl_2[/tex] = 0.323 M

Let the moles of [tex]CO\text{ and }Cl_2[/tex] be, 'x'. So,

Concentration of [tex]CO[/tex] = x M

Concentration of [tex]Cl_2[/tex] = x M

The given balanced equilibrium reaction is,

                             [tex]COCl_2(g)\rightleftharpoons CO(g)+Cl_2(g)[/tex]

Initial conc.          0.323 M          0          0

At eqm. conc.    (0.323-x) M    (x M)       (x M)

The expression for equilibrium constant for this reaction will be,

[tex]K_c=\frac{[CO][Cl_2]}{[COCl_2]}[/tex]

Now put all the given values in this expression, we get :

[tex]1.29\times 10^{-2}=\frac{(x)\times (x)}{(0.323-x)}[/tex]

By solving the term 'x', we get :

x = 0.0584

Thus, the concentrations of [tex]COCl_2,CO\text{ and }Cl_2[/tex] at equilibrium are :

Concentration of [tex]COCl_2[/tex] = (0.323-x) M  = (0.323-0.0584) M = 0.2646 M

Concentration of [tex]CO[/tex] = x M = 0.0584 M

Concentration of [tex]Cl_2[/tex] = x M = 0.0584 M

Therefore, the equilibrium concentrations of [tex]COCl_2,CO\text{ and }Cl_2[/tex] are, 0.2646, 0.0584 and 0.0584.

26. The heat of neutralization of HCl(aq) by NaOH(aq) is produced. If 50.00 mL of 1.05 M NaOH is added to 25.00 mL of 1.86 M HCl, with both solutions originally at what will be the final solution temperature? (Assume that no heat is lost to the surrounding air and that the solution produced in the neutralization reaction has a density of and a specific heat capacity of) Petrucci, Ralph H.. General Chemistry (p. 291). Pearson Education. Kindle Edition.

Answers

Answer:

T₂ = 33.2⁰C

Explanation:

Needed in problem text is the temperature of the acid and base solutions before reaction and the accepted (published) molar heat of neutralization (strong acids) for HCl by NaOH. => Assuming solution temperature is 25⁰C* for both acid and base solutions before reaction and the molar heat of neutralization for HCl by NaOH is 55.7Kj/mole,**  then …

* Standard Thermodynamic conditions => 25⁰C (298K) & 1.00 Atm.

**(https://chemdemos.uoregon.edu/demos/Heat-of-Neutralization-HClaq-NaOHaq)  

NaOH + HCl => NaCl + H₂O

=> 50ml(1.05M NaOH) + 25ml(1.86M HCl)  

=> 0.05(1.05)mole NaOH + 0.025(1.86)mole HCl

=> 0.0525mole NaOH + 0.0465mole HCl

=> (0.0525 – 0.0465)mole NaOH excess + 0.0465mole NaCl + H₂O + Heat

=> 0.0060mole NaOH in excess + 0.0465mole NaCl + H₂O + Heat

Note => NaOH neutralizes 0.0465mole HCl (Limiting Reactant) and produces 0.0465mole NaCl  & H₂O + Heat of Neutralization.

----------------------------------------------------------

Heat flow (Q) = Heat received by solvent water from the NaOH + HCl reaction  

=> Q = mcΔT = mc(T₂ - T₁) = specific heat produced by 0.0465mole HCl

=> Q(m) = Molar Heat of Neutralization = Q/mole = mcΔT/n

- m = mass of solvent water receiving heat = (50ml + 25ml)1g/ml = 75g

- c = specific heat of water = 4.184j/g⁰C

- T₂ - T₁ = T₂ - 25⁰C

- Q(m) = 55,700 joules/mole (published heat of neutralization)

- n = moles of HCl neutralized = 0.0465mole HCl

=>Q(m) = mcΔT/n = 55,700j/mole = (75g)(4.184j/g⁰C)(T₂ - 25⁰C) /0.0465mole

Solving for T₂ => T₂ = 33.2⁰C

Final answer:

The final temperature for the neutralization of HCl by NaOH cannot be determined without specific values for initial temperatures, heat of neutralization, specific heat capacity, and density. For a similar reaction with provided values, the final temperature can be calculated based on the produced heat and the specific heat capacity.

Explanation:

The question pertains to the heat of neutralization of HCl(aq) by NaOH(aq). To find out the final temperature of the solution, we would typically calculate the amount of heat produced during the reaction and use it together with the specific heat capacity of the solution. However, the details required for calculation (initial temperatures, heat of neutralization value, specific heat capacity, density) are not provided in the question. In an example provided in the reference, when 50.0 mL of 1.00 M HCl and 50.0 mL of 1.00 M NaOH, both at 22.0 °C in a coffee cup calorimeter, the mixture reached 28.9 °C. The exothermic reaction between HCl and NaOH produces NaCl and H₂O, and the heat produced can be calculated using the change in temperature, the mass of the solution, and the specific heat capacity.

You want to remove as much CO2 gas as possible from a water solution. Which of the following treatments would?
a. cool the solution
b. filter the solution
c. boil the solution
d. aerate the solution

Answers

a. Cool the solution
The correct answer is: cool the solution

(a) Write the balanced neutralization reaction that occurs between H2SO4 and KOH in aqueous solution. Phases are optional. (b) Suppose 0.750 L of 0.480 M H2SO4 is mixed with 0.700 L of 0.290 M KOH. What concentration of sulfuric acid remains after neutralization?

Answers

These are two questions and two answers

Answer:

    Question 1:

H₂SO₄ (aq) + 2KOH (aq) → K₂SO₄ (aq) + 2H₂O (l)

    Question 2:

0.201 M

Explanation:

Question 1:

The neutralization reaction that occurs between H₂SO₄ and KOH is an acid-base reaction.

The products of an acid-base reaction are salt and water.

This is the sketch of such neutralization reaction:

1) Word equation:

sulfuric acid + potassium hydroxide → potassium sulfate + water

                 ↑                               ↑                              ↑                       ↑

               acid                          base                        salt                   water

2) Skeleton equation (unbalanced)

H₂SO₄ + KOH → K₂SO₄ + H₂O

#) Balanced chemical equation (including phases)

H₂SO₄ (aq) + 2KOH (aq) → K₂SO₄ (aq) + 2H₂O (l) ← answer

Question 2:

1) Mol ratio:

Using the stoichiometric coefficients of the balanced chemical equation you get the mol ratio:

1 mol H₂SO₄ (aq) : 2 mol KOH (aq) : 1 mol K₂SO₄ (aq) : mol 2H₂O (l)

2) Moles of H₂SO₄:

V = 0.750 literM = 0.480 mol/literM = n/V ⇒ n = M×V = 0.480 mol/liter × 0.750 liter = 0.360 mol

3) Moles of KOH:

V = 0.700 literM = 0.290 mol/literM = n/V ⇒ n = M × V = 0.290 mol/liter × 0.700 liter = 0.203 mol

4) Determine the limiting reagent:

a) Stoichiometric ratio:

   1 mol H₂SO₄ / 2 mol NaOH = 0.500 mol H₂SO4 / mol NaOH

b) Actual ratio:

   0.360 mol H₂SO4 / 0.203 mol NaOH = 1.77 mol H₂SO₄ / mol NaOH

Since hte actual ratio of H₂SO₄  is greater than the stoichiometric ratio, you conclude that H₂SO₄ is in excess.

5) Amount of H₂SO₄ that reacts:

Since, KOH is the limiting reactant, using 0.203 mol KOH and the stoichiometryc ratio 1 mol H₂SO₄ / 2 mol KOH, you get:

         x / 0.203 mol KOH = 1 mol H₂SO₄ / 2 mol KOH ⇒

         x = 0.203 / 2 = 0.0677 mol of H₂SO₄

6) Concentration of H₂SO₄ remaining:

Initial amount - amount that reacted = 0.360 mol - 0.0677 mol = 0.292 mol

Total volume = 0.700 liter + 0.750 liter = 1.450 liter

Concetration = M

        M = n / V = 0.292 mol / 1.450 liter = 0.201 M ← answer

Final answer:

The balanced neutralization reaction between H2SO4 and KOH is H2SO4 + 2KOH → K2SO4 + 2H2O. To calculate the concentration of sulfuric acid remaining after neutralization, use the moles of KOH reacted and the mole ratio in the balanced equation.

Explanation:

(a) The neutralization reaction between H2SO4 (sulfuric acid) and KOH (potassium hydroxide) in aqueous solution can be represented as:

H2SO4 + 2KOH → K2SO4 + 2H2O

(b) To determine the concentration of sulfuric acid remaining after neutralization, we need to calculate the moles of KOH reacted using the given volumes and concentrations. Since H2SO4 has a 1:2 mole ratio with KOH in the equation, half of the moles of KOH reacted will be the moles of sulfuric acid neutralized. Therefore, the concentration of sulfuric acid remaining can be calculated by subtracting the moles of sulfuric acid neutralized from the initial concentration.

Learn more about Neutralization reaction here:

https://brainly.com/question/11403609

#SPJ3

When 10.g of CH3COOH is combusted in a sealed calorimeter, it releases enough energy to heat 2000. g of water from 23.5 °C to 34.3 °C. a. Calculate the energy released per 10 g of CH3COOH. b. Calculate the energy released per mole of CH3COOH.

Answers

Answer:

a. 90.288 kJ.

b. - 54.06 kJ/mol.

Explanation:

a. Calculate the energy released per 10 g of CH₃COOH.

We can calculate the amount of heat (Q) released to water using the relation:

Q = m.c.ΔT,

where, Q is the amount of heat released to water (Q = ??? J).

m is the mass of water (m = 2000.0 g).

c is the specific heat capacity of solution (c = 4.18 J/g.°C).

ΔT is the difference in T (ΔT = final temperature - initial temperature = 34.3°C - 23.5°C = 10.8°C).

∴ Q = m.c.ΔT = (2000.0 g)(4.18 J/g.°C)(10.8°C) = 90288 J = 90.288 kJ.

b. Calculate the energy released per mole of CH₃COOH.

To find ΔH:

∵ ΔH = Q/n

no. of moles of CH₃COOH (n) = mass/atomic mass = (10.0 g)/((60.052 g/mol) = 0.167 mol.

∴ ΔH = - Q/n = - (90.288 kJ)/(0.167 mol) = - 54.06 kJ/mol.

The negative sign is not from calculation, but it is an indication that the reaction is exothermic.

Lattice energy is __________. A. the energy required to convert a mole of ionic solid into its constituent ions in the gas phase B. the sum of ionization energies of the components in an ionic solid C. the sum of electron affinities of the components in an ionic solid D. the energy required to produce one mole of an ionic compound from its constituent elements in their standard states E. the energy given off when gaseous ions combine to form one mole of an ionic solid

Answers

Answer: Option (A) is the correct answer.

Explanation:

Lattice energy is defined as the energy needed by an ionic solid to break its constituent components into gaseous ions.

For example, [tex]NaCl(s) \rightarrow Na^{+}(g) + Cl^{-}(g)[/tex]

Two factors that help in determining lattice energy are changes on the ions and size of ions.

So, larger is the charge on ions, smaller will be the size of ions. As a result, more energy is required to break the bond between ions. Hence, lattice energy will also increase.

Whereas when smaller is the charge on ions, larger will be the size of ions. As a result, less energy is required to break the bond between ions. Hence, lattice energy will also decrease.

Final answer:

Lattice energy is the energy required to convert a mole of ionic solid into its constituent ions in the gas phase. It is an important factor in the ionic bond strength and varies depending on the charges of the ions and the distances between them. The lattice energy can be calculated via Coulomb's law.

Explanation:

Lattice energy is the energy required to convert a mole of ionic solid into its constituent ions in the gas phase, as option A suggests. Just to give an example, for the ionic solid MX, the lattice energy is the enthalpy change of the process: AH lattice MX (s) Mn+ (g) + X(g). Lattice energy gives us an insight into ionic bond strength, which varies depending on the charges of the ions and the distances between them.

The lattice energy of an ionic crystal can be expressed by an equation derived from Coulomb's law, which governs the forces between electric charges. The lattice energy increases as the charges of the ions increase and the sizes of the ions decrease. For instance, the lattice energy of LiF is 1023 kJ/mol, whereas that of MgO is significantly higher at 3900 kJ/mol due to increased charges.

Learn more about Lattice Energy here:

https://brainly.com/question/34679410

#SPJ3

Which of the following reactions will not occur as written? Which of the following reactions will not occur as written? Sn (s) + 2AgNO3 (aq) → 2Ag (s) + Sn(NO3)2 (aq) Zn (s) + Pb(NO3)2 (aq) → Pb (s) + Zn(NO3)2 (aq) Co (s) + 2HI (aq) → H2 (g) + CoI2 (aq) Mg (s) + Ca(OH)2 (aq) → Ca (s) + Mg(OH)2 (aq) Co (s) + 2AgCl (aq) → 2Ag (s) + CoCl2 (aq)

Answers

Answer: Option (4) is the correct answer.

Explanation:

According to the reactivity series, a more reactive metal has the ability to replace a less reactive metal in a chemical reaction.

It is known that calcium is more reactive than magnesium. So, in a chemical reaction magnesium can never replace calcium.

For example, [tex]Mg(s) + Ca(OH)_2(aq) \rightarrow Ca(s) + Mg(OH)_2(aq)[/tex]

Therefore, this given reaction is not possible. But rest all given reactions are possible.

Thus, we can conclude that out of the given options [tex]Mg(s) + Ca(OH)_2(aq) \rightarrow Ca(s) + Mg(OH)_2(aq)[/tex] reaction will not occur as written.

Final answer:

OPTION D.

The reaction Mg (s) + Ca(OH)₂ (aq) → Ca (s) + Mg(OH)₂ (aq) will not occur as written because in the activity series of metals, magnesium (Mg) is more reactive than calcium (Ca), and hence, Mg cannot displace Ca from its compound.

Explanation:

In the given set of reactions, Mg (s) + Ca(OH)₂ (aq) → Ca (s) + Mg(OH)₂ (aq) will not occur as written. The explanation is based on activity series of metals. In this series, magnesium (Mg) is more reactive than calcium (Ca). So, Mg cannot displace Ca from its compound. In other words, a more reactive metal can displace a less reactive metal from its compound in a solution, but not the other way round. The other reactions would occur as represented since in each of them the free metal is more reactive than the one in the compound.

Learn more about Chemical Reactions here:

https://brainly.com/question/34137415

#SPJ3

What are the major products produced in the combustion of C10H22 under the following conditions? Write balanced chemical equations for each. a. An excess of oxygen b. A slightly limited oxygen supply c. A very limited supply of oxygen d. The compound is burned in air

Answers

Answer: The chemical reactions are given below.

Explanation:

Combustion reaction is defined as the chemical reaction in which a hydrocarbon reacts with oxygen gas to produce carbon dioxide gas and water molecule.

[tex]\text{hydrocarbon}+O_2\rightarrow CO_2+H_2O[/tex]

If supply of oxygen gas is limited, it is known as incomplete combustion and carbon monoxide gas is also produced as a product.

For a: An excess of oxygen

Here, complete combustion reaction takes place. The chemical equation follows:

[tex]2C_{10}H_{22}+31O_2\rightarrow 20CO_2+22H_2O[/tex]

For b: A slightly limited oxygen supply

Here, incomplete combustion takes place and carbon monoxide is also formed.

[tex]C_{10}H_{22}+13O_2\rightarrow 5CO+5CO_2+11H_2O[/tex]

For c: A very limited supply of oxygen

Here, incomplete combustion takes place and only carbon monoxide with water are formed as the products.

[tex]2C_{10}H_{22}+21O_2\rightarrow 20CO+22H_2O[/tex]

For d: The compound is burned in air

When a compound is burned in air, it means that unlimited supply of oxygen is there. So, complete combustion reaction takes place and carbon dioxide gas is formed as a product.

[tex]2C_{10}H_{22}+31O_2\rightarrow 20CO+22H_2O[/tex]

Hence, the chemical reactions are given below.

Answer:

WAIT SORRY I CANT DECLICK ill try to answer doe a.

Explanation:

An amino acid A, isolated from the acid-catalyzed hydrolysis of a peptide antibiotic, gave a positive ninhydrin test and had a specific optical rotation (HCl solution) of 37.5 mL/(g·dm). Compound A was not identical to any of the 20 essential amino acids. The isoelectric point of compound A was found to be 9.4. Compound A can be prepared by the reaction of L-glutamine with Br2 in NaOH followed by acidification. Suggest a structure for A.

Answers

A possible structure for compound A is γ-Bromoglutamic acid (2-amino-4-bromobutanedioic acid).

What is this structure?

Ninhydrin test: A positive ninhydrin test indicates the presence of a primary or secondary amine. Glutamine has a primary amine, which would explain the positive test.

Specific optical rotation: The specific rotation (37.5 mL/(g·dm)) suggests chirality, which glutamine also possesses.

Not one of the 20 essential amino acids: This eliminates most common amino acids.

Isoelectric point (pI) of 9.4: This is consistent with γ-bromoglutamic acid, as the additional bromine group introduces a new acidic side chain (pKa ≈ 4.5) that lowers the pI compared to glutamine (pI ≈ 5.6).

Synthesis from L-glutamine and Br2/NaOH: This reaction is known to selectively brominate at the γ-carbon of glutamine, making it a plausible route for obtaining γ-bromoglutamic acid.

Calcium hydride (CaH2) reacts with water to form hydrogen gas: CaH2(s) + 2H2O(l) → Ca(OH)2(aq) + 2H2(g) How many grams of CaH2 are needed to generate 48.0 L of H2 gas at a pressure of 0.995 atm and a temperature of 32 °C?

Answers

Answer:

40.g CaH2

Explanation:

1. ideal gas law(PV = nRT) → use ideal gas law first when volume is given

P = 0.995atm

V = 48.0L H2

n = ?

R = 0.0821L atm/molK

T = 32 + 273 = 305K

n = (0.995atm x 48.0L H2)/(0.0821L atm/molK x 305K) → do not simplify as small decimals might change the answer

2. Conversions

2 H2 and 1 CaH2 → 1/2

(mole of H2) x 1/2 x (molar mass of CaH2)

(0.995atm x 48.0L H2)/(0.0821L atm/molK x 305K) x 1/2 x (40.08 + 2.02) = 40.g CaH2

the longer answer will be 40.14887882 but as the minimum sigfig given in the question is 2, it is 40.g CaH2.

Hope it helped!

Which one of the following is an oxidation-reduction reaction?
NaOH + HNO3 --> H2O + KNO3
NaOH + HNO3 --> H2O + KNO3
SO3 + H2O --> H2SO4
CaCl2 + Na2CO3 --> CaCO3 + 2 NaCl
CH4 + 2 O2 --> CO2 + 2 H2O
Al2(SO4)3 + 6 KOH --> 2 Al(OH)3 + 3 K2SO4

Answers

Answer:

CH4 + 2 O2 --> CO2 + 2 H2O

Explanation:

CH4 + 2 O2 --> CO2 + 2 H2O is the only reaction where an element (oxygen) undergoes a change in oxidation state. In this reaction oxygen changes disproportionately to O⁻². That is ...

O₂ → CO₂ + 4e⁻ ==> oxidation

O₂ + 4e⁻  →  H₂O ==> reduction

2O₂ + 4e⁻  →  CO₂ + H₂O + 4e⁻  ==> Net oxidation-reduction

=>  4e⁻ gained by one mole O₂ in formation of CO₂ = 4e⁻ lost by the other mole O₂ in forming H₂O.

Then...

Including CH₄ (whose elements do not undergo changes in oxidation states) requires doubling reaction to balance by mass thus giving ...

2CH₄ + 2O₂ + 8e⁻  →  2CO₂ + 2H₂O + 8e⁻

Cancelling 8 reduction electrons on left with 8 oxidation electrons on right gives...

2CH₄ + 2O₂  →  2CO₂ + 2H₂O

Answer:

CH₄ + 2O₂ ⟶ CO₂ + 2H₂O  

Explanation:

To identify an oxidation-reduction reaction, you must determine the oxidation number of every atom involved in the reaction and see if it changes.

The only reaction where two elements change oxidation number is the oxidation of methane.

Here's the oxidation number of every atom involved:.

[tex]\stackrel{\hbox{-4}}{\hbox{C}}\stackrel{\hbox{+1}}{\hbox{H}}_{4} +\stackrel{\hbox{0}}{\hbox{O}}_{2} \, \longrightarrow \, \stackrel{\hbox{+4}}{\hbox{C}}\stackrel{\hbox{-2}}{\hbox{O}}_{2} + \stackrel{\hbox{+1}}{\hbox{H}}_{2}\stackrel{\hbox{-2}}{\hbox{O}}[/tex]

We see that some elements change oxidation numbers.

C:  -4 ⟶ +4; increase in oxidation number = oxidation

O:  0 ⟶  -2; decrease in oxidation number = reduction

H: +1 ⟶   +1; no change.

The reaction is an oxidation-reduction reaction, because carbon is oxidized, and oxygen is reduced.

Given the following information: Mass of proton = 1.00728 amu Mass of neutron = 1.00866 amu Mass of electron = 5.486 × 10^-4 amu Speed of light = 2.9979 × 10^8 m/s Calculate the nuclear binding energy (absolute value) of 3Li^6. which has an atomic mass of 6.015126 amu. J/mol.

Answers

Answer: The nuclear binding energy of the given element is [tex]2.938\times 10^{12}J/mol[/tex]

Explanation:

For the given element [tex]_3^6\textrm{Li}[/tex]

Number of protons = 3

Number of neutrons = (6 - 3) = 3

We are given:

[tex]m_p=1.00728amu\\m_n=1.00866amu\\A=6.015126amu[/tex]

M = mass of nucleus = [tex](n_p\times m_p)+(n_n\times m_n)[/tex]

[tex]M=[(3\times 1.00728)+(3\times 1.00866)]=6.04782amu[/tex]

Calculating mass defect of the nucleus:

[tex]\Delta m=M-A\\\Delta m=[6.04782-6.015126)]=0.032694amu=0.032694g/mol[/tex]

Converting this quantity into kg/mol, we use the conversion factor:

1 kg = 1000 g

So,  [tex]0.032694g/mol=0.032694\times 10^{-3}kg/mol[/tex]

To calculate the nuclear binding energy, we use Einstein equation, which is:

[tex]E=\Delta mc^2[/tex]

where,

E = Nuclear binding energy = ? J/mol

[tex]\Delta m[/tex] = Mass defect = [tex]0.032694\times 10^{-3}kg/mol[/tex]

c = Speed of light = [tex]2.9979\times 10^8m/s[/tex]

Putting values in above equation, we get:

[tex]E=0.032694\times 10^{-3}kg/mol\times (2.9979\times 10^8m/s)^2\\\\E=2.938\times 10^{12}J/mol[/tex]

Hence, the nuclear binding energy of the given element is [tex]2.938\times 10^{12}J/mol[/tex]

The binding energy of the lithium nucleus is 2.94 * 10^14 J/mol.

What is binding energy?

The term binding energy refers to the energy that hold the nucleons in the atom together.

We know that the atomic mass of the Li is 6.015126 amu. Note that there are three protons and three neutrons. Hence;

Mass of protons= 3(1.00728 amu) = 3.02184

Mass of neutrons = 3(1.00866 amu)  = 3.02598

Mass defect = (3.02184 + 3.02598) - 6.015126 amu = 0.032694 amu =  0.032694 g/mol

Now;

E = mc^2 = (0.032694 g/mol * (3 * 10^8)^2) = 2.94 * 10^14 J/mol

Learn more about binding energy: https://brainly.com/question/11334504

What is the net ionic equation of the reaction of MgSO4 with Pb(NO3)2? Express you answer as a chemical equation including phases. View Available Hint(s)

Answers

Answer : The net ionic equation will be,

[tex]Pb^{2+}(aq)+SO_4^{2-}(aq)\rightarrow PbSO_4(s)[/tex]

Explanation :

In the net ionic equations, we are not include the spectator ions in the equations.

Spectator ions : The same number of ions present on reactant and product side which do not participate in a reactions.

The given balanced ionic equation will be,

[tex]MgSO_4(aq)+Pb(NO_3)_2(aq)\rightarrow Mg(NO_3)_2(aq)+PbSO_4(s)[/tex]

The ionic equation in separated aqueous solution will be,

[tex]Mg^{2+}(aq)+SO_4^{2-}(aq)+Pb^{2+}(aq)+2NO^{3-}(aq)\rightarrow PbSO_4(s)+Mg^{2+}(aq)+2NO^{3-}(aq)[/tex]

In this equation, [tex]Mg^{2+}\text{ and }NO_3^-[/tex] are the spectator ions.

By removing the spectator ions from the balanced ionic equation, we get the net ionic equation.

The net ionic equation will be,

[tex]Pb^{2+}(aq)+SO_4^{2-}(aq)\rightarrow PbSO_4(s)[/tex]

The biochemistry that takes place inside cells depends on various elements, such as sodium, potassium, and calcium, that are dissolved in water as ions. These ions enter cells through narrow pores in the cell membrane known as ion channels. Each ion channel, which is formed from a specialized protein molecule, is selective for one type of ion. Measurements with microelectrodes have shown that a 0.30-nm-diameter potassium ion (K+) channel carries a current of 1.8 pA. How many potassium ions pass through if the ion channel opens for 1.0 ms? What is the current density in the ion channel?

Answers

Answer:

Explanation:

The biochemistry that takes place inside cells depends on various elements, such as sodium, potassium, and

calcium, that are dissolved in water as ions. These ions enter cells through narrow pores in the cell membrane

known as ion channels. Each ion channel, which is formed from a specialized protein molecule, is selective

for one type of ion. Measurements with microelectrodes have shown that a 0.30-nm-diameter potassium ion (K+) channel carries a current of 1.8 pA.

Part A. How many potassium ions pass through if the ion channel opens for 1.0 ms?

Part B. What is the current density in the ion channel?

Solution: In 1.0 ms, the charge that passes through is

Q = I ∆t =

( 1.8 × 10−12 A ) (1.0 × 10−3 s )

= 1.8 × 10−15 C

Since each ion has a +1 charge (measured in electron charges), this represents

NK+ = Q e = (1.8 × 10−15 C ) (1.60 × 10−19 C) = 11250

The current density is calculated from the current and the size of the channel.

J = I A = ( 1.8 × 10−12 A ) ( π (0.30 × 10−9 m/2)2 ) = 2.55 × 107 A/m2

A) The number of potassium ions that will pass through the ion channel; 11250

B) The current density in the ion channel = 2.55 × 10⁷ A/m²

Given data;

Measurement with microelectrodes = 0.30-nm- diameter

K⁺ = 1.8 pA

a) calculate the number of potassium ions that passes through the ion channel

given that the channel opens for 1.0 ms

first step ; determine the value of charge ( Q )

Q = I*Δt = ( 1.8 × 10⁻¹² A )*(1.0 × 10⁻³ s ) = 1.8 × 10⁻¹⁵ C

where ; I = 1.8 × 10⁻¹² A

           Δt =  1.0 × 10⁻³ s

next step : determine number of K⁺ ions passing through

NK⁺ = Q*e = ( 1.8 × 10⁻¹⁵ C )*( 1.60 × 10⁻¹⁹ C)  = 11250

∴ number of K⁺ ions passing through = 11250 ions.

B) determine the current density in the ion channel

current density = current  * size of channel

                         = ( 1.8 * 10⁻¹² ) * ( π * ( 0.30 * 10⁻⁹ )²

                         = 2.55 × 10⁻⁷ A/m²

Hence we can conclude that the  number of potassium ions that will pass through the ion channel; 11250 and  The current density in the ion channel = 2.55 × 10⁷ A/m²

Learn more ; https://brainly.com/question/15154043

Given that the density of the saturated solution is found to be 1.16 g/mL. The molar mass of copper sulfate pentahydrate is 249.68 g/mol, calculate grams of copper sulfate pentahydrate that will dissolve in 100 g of water at 0oC (show calculations for full credit)

Answers

Explanation:

Since, it is given that density is 1.16 grams per milliliter and molar mass of copper sulfate pentahydrate is 249.68 g/mol.

Now, as we known that density is the amount of mass present in a unit volume.

Mathematically,         Density = [tex]\frac{\text{molar mass}}{volume}[/tex]

Hence, calculate the volume as follws.

                    Density = [tex]\frac{\text{molar mass}}{volume}[/tex]

                  1.16 g/mL = [tex]\frac{249.68 g/mol}{volume}[/tex]          

                 volume = 215.24 mL

As, 215.24 mL can dissolve in 249.68 g/mol of complex. So, in 100 mL volume amount dissolved will be calculated as follows.

                       [tex]\frac{249.68 g/mol}{215.24 mL} \times 100[/tex]

                    = 116 grams        

Thus, we can conclude that 116 grams of copper sulfate pentahydrate that will dissolve in 100 g of water at 0[tex]^{o}C[/tex].                              

Final answer:

To calculate the grams of copper sulfate pentahydrate that dissolve in 100 g of water at 0°C, solubility data at that temperature is needed, which is not provided in the question.

Explanation:

The student is asking to calculate the grams of copper sulfate pentahydrate that will dissolve in 100 grams of water at 0°C, given that the density of the saturated solution is 1.16 g/mL and the molar mass of copper sulfate pentahydrate is 249.68 g/mol. Since the volume of solution can be derived from the mass of the water and the density of the solution, we can calculate the amount of copper sulfate pentahydrate dissolved in this volume by using dimensional analysis. However, to perform this calculation, we need the solubility data for copper sulfate pentahydrate at 0°C, which is not provided in the question. Without this information, we cannot proceed with the calculation.

When CO2(g) reacts with H2(g) to form CO(g) and H2O(g) , 9.85 kcal of energy are absorbed for each mole of CO2(g) that reacts. Write a balanced equation for the reaction with an energy term in kcal as part of the equation.

Answers

Answer: The balanced chemical equation is written below.

Explanation:

A balanced chemical equation is defined as the equation in which total number of individual atoms on the reactant side must be equal to the total number of individual atoms on the product side.

For the reaction of carbon dioxide with hydrogen gas, 9.85 kcal of energy is absorbed. So, this energy term will be written on the reactant side.

Thus, the balanced chemical equation for the reaction of carbon dioxide with hydrogen gas follows:

[tex]CO_2(g)+H_2(g)+9.85kcal\rightarrow CO(g)+H_2O(g)[/tex]

Hence, the balanced chemical equation is written above.

Calculate the enthalpy of the following reaction: 4 B (s) + 3 O2 (g) → 2 B2O3 (s) given the following pertinent information: (A) B2O3 (s) + 3 H2O (g) → 3 O2 (g) + B2H6 (g), ΔHoA = +2035 kJ (B) 2 B (s) + 3 H2 (g) → B2H6 (g), ΔHoB = +36 kJ (C) H2 (g) + LaTeX: \frac{1}{2} 1 2 O2 (g) → H2O (l), ΔHoC = −285 kJ (D) H2O (l) → H2O (g), ΔHoD = +44 kJ

Answers

Answer:

4B + 3O₂ => 2B₂O₃; ΔH° = -3673Kj

Explanation:

Work these type problems in pairs of rxns… That is, add Rxn-1 & Rxn-2 => Rxn-1,2; then add Rxn-3 to Rxn-1,2 => Rxn- 1,2,3. Rxn-4 is not needed to obtain target rxn.  

Target Rxn => 4B + 3O₂ => 2B₂O₃

Given …

(1) B₂O₃ + 2H₂O => 3O₂ + B₂H₆

       => reverse and double

       => 2B₂H₆ + 6O₂ => 2B₂O₃ + 6H₂O

(2) 2B + 3H₂ => B₂H₆ => double and add to Rxn-1 => 4B + 6H₂ => 2B₂H₆

         2B₂H₆ + 6O₂ => 2B₂O₃ + 6H₂O

              4B + 6H₂ => 2B₂H₆

              ________________________

∑(1,2)    4B + 6O₂ + 6H₂ => 2B₂O₃ + 6H₂O; ΔH°₁₂ = -2035Kj + (+72Kj) = -1963Kj

(3) => H₂ + ½O₂ => H₂O

       => reverse and multiply by 6, then add to (1,2) => 6H₂O => 6H₂ + 3O₂

                           6H₂O => 6H₂ + 3O₂

           4B + 6O₂ + 6H₂ => 2B₂O₃ + 6H₂O  

   ________________________

∑[(1,2,3) 4B + 3O₂ => 2B₂O₃; ΔH°₁₂₃ = -1963Kj + 6(-285Kj) = -3673Kj

A KCl solution is prepared by dissolving 40.0 g KCl in 250.0 g of water at 25°C. What is the vapor pressure of the solution if the vapor pressure of water at 25°C is 23.76 mm Hg?

Answers

Answer:

22.0 mmHg

Explanation:

The vapor pressure of a solution is a colligative property, which means that it is determined by the number of particles (molecules or ions) of solute present in a solution.

Raoult's law permits the calculations of the change of the vapor pressure of a solvent when a solute is added.

The equation is:

P solvent - P solution = ΔP = X solute × P solven

Where:

P solvent = vapor pressure of the pure solvent.P solution = vapor pressure of the solutionX solute = molar fraction of the solute

In the case of ionic solutes, you must take into account the number of ions that result from the ionization.

Calculating the molar fraction:

number of moles = mass in grams / molar massnumber of moles of KCl: 40.0 g / 74.5513 g/mol = 0.567 molmoles of ions = 2× number of moles of KCl = 1.134 molmoles of water: 250.0g / 18.015 g/mol = 13.877 mol

total moles = 1.134 mol + 13.877 mol = 15.011 mol

X solute = moles of ions / total moles = 1.134 mol / 15.011 mol = 0.0755

Calculating the change in the vapor pressure of the solution:

ΔP = X solute × P solvent = 0.0755 × 23.76 mmHg = 1.78 mmHg

Vapor pressure of the solution:

P solution = P solvent + ΔP = 23.76 mmHg - 1.79 mm Hg = 21.97mmHg

Rounding to three significant figures (because 40.0g has three significant figures): 22.0 mmHg ← answer.

Raoult's law states that for a given solution, the partial pressure of each component is equal to the mole fraction in that solution. The vapor pressure of the solution is 22 mmHg.

The vapor pressure is defined as the force exerted by the vapors in the walls of a container. It is a colligative property, such that the amount of substance increased or decreased is dependent on the amount of solute present.

The equation can be represented as:

P[tex]_{\text{solvent}}[/tex] - P[tex]_{\text{solution}}[/tex] = [tex]\Delta[/tex] P = X [tex]_{\text{solute}}[/tex] x P[tex]_{\text{solvent}}[/tex]

where,

P[tex]_{\text{solvent}}[/tex] =  vapor pressure of the pure solventP[tex]_{\text{solution}}[/tex] = vapor pressure of the solutionX[tex]_{\text{solute}}[/tex] = molar fraction of the solute

Now, calculating the mole fraction, where:

Moles of ions = 2 × number of moles of KCl = 1.134 molNumber of moles KCl = [tex]\dfrac{40}{74.55}&= 0.567[/tex] molesTotal moles are: 1.134 mol + 13.877 mol = 15.011 molX[tex]_{\text{solute}}[/tex] = [tex]\dfrac{1.134}{15.01}&= 0.075[/tex]

Now, the vapor pressure of the solution can be calculated as:

[tex]\Delta[/tex] P = X[tex]_{\text{solute}}[/tex] x  P[tex]_{\text{solvent}}[/tex]

[tex]\Delta[/tex] P = 0.0755 × 23.76 mmHg = 1.78 mmHg

Hence, the vapor pressure of the solution:

P[tex]_{\text{solution}}[/tex] = [tex]\Delta[/tex] P + P[tex]_{\text{solvent}}[/tex]

P[tex]_{\text{solution}}[/tex] = 23.76 mmHg - 1.79 mm Hg = 21.97mmHg

Therefore, the vapor pressure of the solution is approximately 22 mmHg.

To know more about vapor pressure, refer to the following link:

https://brainly.com/question/7991371?referrer=searchResults

The pH of a solution is measured eight times by one operator using the same instrument. She obtains the following data: 7.15, 7.20, 7.18, 7.19, 7.21, 7.20, 7.16, and 7.20. (a) Calculate the sample mean. Round your answer to 3 decimal places.

Answers

Answer:

7.186

Explanation:

The mean is the average of some given data from a sample point.

To calculate the mean, we use the formula below:

             Mean = ∑fx/∑f

Where f = frequency

           x = sample data

   

From the given pH of the solutions, we can form a table:

      x                                     f                                          fx

    7.15                                  1                                         7.15

    7.16                                  1                                         7.16

    7.18                                  1                                         7.18

    7.19                                  1                                         7.19

    7.20                                 3                                        21.6

    7.21                                  1                                         7.21

Now ∑fx = 7.15 +7.16 +7.18 + 7.19 + 7.20 + 7.21 = 57.49

         ∑f = 1 + 1 + 1 + 1 + 3 + 1 = 8

The mean = [tex]\frac{57.49}{8}[/tex] = 7.18625 = 7.186

When 1.50g of Ba is added to 100g of water in a container open tothe atmosphere, the reaction shown below occurs and the temperatureof the resulting solution rises from 22 degrees to 33.10 degrees.If the specific heat of the solution is 4.18J/(g*C), calculatedelta H for the reaction, as written.Ba (s)+2H2O(l) yields Ba(OH)2(aq)+H2

Answers

Answer:

- 431.15 kJ/mol.

Explanation:

Firstly, we can calculate the amount of heat (Q) released by the solution using the relation:

Q = m.c.ΔT,

where, Q is the amount of heat released from the solution (Q = ??? J).

m is the mass of solution (m = 1.5 g + 100 g = 101.5 g).

c is the specific heat capacity of solution (c = 4.18 J/g.°C).

ΔT is the difference in T (ΔT = final temperature - initial temperature = 33.1°C - 22°C = 11.1°C).

∴ Q = m.c.ΔT = (101.5 g)(4.18 J/g.°C)(11.1°C) = 4709.4 J.

To find ΔH:

∵ ΔH = Q/n

no. of moles of Ba (n) = mass/atomic mass = (1.50 g)/(137.3270 g/mol) = 0.011 mol.

∴ ΔH = - Q/n = (4709.4 J)/(0.011 mol) = - 431.15 kJ/mol.

The negative sign is not from calculation, but it is an indication that the reaction is exothermic.

A compound is 54.53% C,54.53% C, 9.15% H,9.15% H, and 36.32% O36.32% O by mass. What is its empirical formula? Insert subscripts as needed. empirical formula: CHOCHO The molecular mass of the compound is 132 amu.132 amu. What is its molecular formula? Insert subscripts as needed. molecular formula: CHO

Answers

The empirical formula and the molecular formula for the given compound will be [tex]C_2H_4O[/tex] and [tex]C_6H_{12} O_3[/tex] respectively.

The simplest whole-number ratio of atoms in a molecule is the empirical formula of a chemical compound in chemistry.

Let us consider that, we have 100g of the sample, then carbon would be 54.53 g, hydrogen would be 9.15g and oxygen would be 36.32g and the number of moles for each element will be = [tex]\frac{GivenMass}{Molar Mass}[/tex]

Number of moles of carbon = [tex]\frac{54.53}{12} = 4.544[/tex] mol

Similarly, the number of moles of Hydrogen and Oxygen would be:

Number of moles of Oxygen = [tex]\frac{36.32}{16} = 2.27\\[/tex] mol

Number of moles of Hydrogen = [tex]\frac{9.15}{1} = 9.15 mol[/tex]

Molar ratio of the elements = C:H:O = 4.54 : 9.15 : 2.27

The molar ratio = 2:4:1,

So, the empirical formula = [tex]C_2H_4O[/tex] and empirical mass = [tex]2*12 + 4*1 + 16 = 44[/tex]

The empirical formula and the molecular formula are often related in the following way: (Molecular Formula = n [tex]*[/tex] Empirical Formula). This may be used to determine the compound's empirical formula as well as its molecular formula. The term “n” in the relationship denotes the proportion between the compound's molecular mass and empirical mass.

[tex]n = \frac{Molecular Mass}{Empirical Mass} = \frac{132}{44} = 3[/tex]

So, molecular formula = [tex]3* C_2H_4O = C_6 H_{12} O_3[/tex]

Thus, the molecular formula and empirical formula for the given compound are  [tex]C_2H_4O[/tex] and [tex]C_6H_{12} O_3[/tex].

Learn more about empirical formula here:

brainly.com/question/32125056

#SPJ12

Final answer:

The empirical and molecular formula of a compound with 54.53% carbon, 9.15% hydrogen, and 36.32% oxygen and molar mass 132 amu, is CH₄O₂.

Explanation:

The process to find the empirical and molecular formula of a compound uses percentage composition of its constituent elements and molar mass. First, we convert the percentage to grams (assuming 100g of the compound) which gives: C 54.53g, H 9.15g, and O 36.32g. Using atomic masses of C(12.01), H(1.01), and O(16.00), we find moles of C, H, and O.

Dividing the obtained values by the smallest number of moles, gives us the ratio of the elements. In this case, the empirical formula comes out to be CH₄O₂. We then calculate the molecular mass of the empirical formula and divide the molar mass of the compound by the empirical formula mass. The quotient gives the number of empirical formula units present in the compound's molecular formula. If this quotient is anything other than '1', we must multiply the subscript of each element in the empirical formula by this number to get the molecular formula. However, in this case, the empirical and molecular formulas are the same, i.e., CH₄O₂.

Learn more about Empirical and Molecular Formulas here:

https://brainly.com/question/35167780

#SPJ3

In which main energy level does the 'd' sublevel first appear? K (first main energy level) L (second main energy level) M (third main energy level) N (fourth main energy level)

Answers

Answer:

M (third main energy level)

Explanation:

The third main energy level bears the first appearance of the 'd' sublevel. The principal quantum number(n) depicts the main energy levels in which an orbital is located. It takes values of n=1,2,3,4,5..... and it can be represented by the shells k,l,m,n.......

The subshells in these main orbitals are represented by s,p,d and f. For the K shell, the principal quantum number is m and its sublevel notations are s,p and d. This is where the d-sublevel first appears.

Final answer:

The 'd' sublevel first appears in the third main energy level (M). This is because the electron configuration in atoms is organized into main energy levels and sublevels, which define an electron's distance from the nucleus and energy.

Explanation:

The 'd' sublevel first appears in the third main energy level, also labeled as M. The electron configuration in atoms is organized into main energy levels and sublevels, which help define an electron's relative distance from the nucleus and its energy. The main energy levels are generally labeled K, L, M, N, etc., starting from the nucleus. Each energy level has one or more sublevels: s, p, d, f. The 's' sublevel appears in all main energy levels, the 'p' sublevel starts from the second (L), and the 'd' sublevel commences from the third (M) main energy level. Therefore, the 'd' sublevel does not exist in the first (K) or second (L) main energy levels.

Learn more about 'd' sublevel here:

https://brainly.com/question/34831957

#SPJ6

Other Questions
An unknown substance has been shown to have weak covalent bonds. Which of the following is most likely a property of this substance? A. high pH B. high conductivity C. low melting point D. low flammability Which strategy can help people remain abstinent?Date one-on-one.Choose partners who are older.Ignore what might or might not happen.End a relationship when it involves pressure to have sex. Is the orlando sentinel liberal or conservative Is (2,3), a solution to the system of equation x 2 + y 2 = 13 and 2x - y = 4? A 3 year-old is brought to the burn unit after pulling a pot of hot soup off the stove and spilling it on herself. she sustained 18% second degree burns on her legs and 20% third degree burns on her chest and arms. total body surface area burned is 38%. what icd-10-cm codes are reported for the burns (do not include external cause codes for the accident)? What was the Iran-Contra affair about? NEED HELP PLZRead these paragraphs from the excerpt.Answer: Every great play teaches many lessons and touches nearly all social problems. But the great play does this by indirection. Every beautiful thought is a teacher; every noble line speaks to the brain and heart. Beauty, proportion, melody suggest moral beauty, proportion in conduct and melody in life. In a great play the relations of the various characters, their objects, the means adopted for their accomplishment, must suggest, and in a certain sense solve or throw light on many social problems, so that the drama teaches lessons, discusses social problems and gives intellectual pleasure.The stage should not be dogmatic; neither should its object be directly to enforce a moral. The great thing for the drama to do, and the great thing it has done, and is doing, is to cultivate the imagination. This is of the utmost importance. The civilization of man depends upon the development, not only of the intellect, but of the imagination. Most crimes of violence are committed by people who are destitute of imagination. People without imagination make most of the cruel and infamous creeds. They were the persecutors and destroyers of their fellow-men. By cultivating the imagination, the stage becomes one of the greatest teachers. It produces the climate in which the better feelings grow; it is the home of the ideal. All beautiful things tend to the civilization of man. The great statues plead for proportion in life, the great symphonies suggest the melody of conduct, and the great plays cultivate the heart and brain.Which statement describes how Ingersoll uses a literary technique in his response? A- By using symbols, Ingersoll explains the role of artistic expression, which engages readers. B- By using a metaphor, Ingersoll explains how artistic thoughts address social issues, which clarifies his idea. C- By using allusion, Ingersoll emphasizes the continued growth of artistic expression, which is relatable to readers. D- By using alliteration, Ingersoll emphasizes the role drama plays in society, which evokes strong emotion. Solve the equation by graphing. m^2 = 2m + 8 the perimater of the triangle is 30cm. its sides are in the ratios 1:3:2, then find its sides Find x in the following right triangle.Helppp When writing from a prompt what is the first thing you should do? Cloning an individual usually produces orangisms that (1) contain dangerous mutations (2) contain identical genes (3) are identical in appearance and behavior (4) produce enzymes different from the parent Type the correct answer in each box. Round numbers to the nearest tenth, if necessary.Solve the equation by filling out the table. -0.5x 2 = 2x1 5 Simplify sqr 18A 2 sqr 3B 2 sqr 9C 3 sqr 2D 9 sqr 2 FInd the values and sketch the direction field for dy/dx = x^2 +y for x [-2,-1,0,1,2] and y[-2,-1,0,1,2] Which of the following is not true about the antigens?a. They have immunogenicity which means they provoke immune responsesb. They have reactivity which means they react with the antibodies or cells they provokedc. They are often large protein moleculesd. They always invade the human body from the external environmente. They may be natural or man-made molecules PLEASE HELP I REALLY DONT UNDERSTAND HOW TO DO THESE QUESTIONS!!!!! THANK YOU I APPRECIATE YOU!!!!6) The mean salary of 5 employees is $42100. The employee salaries have 2 modes: $34000 and $50500. If the median salary gets a $2400 raise, then ... a) What is the new mean? New Mean = $b) What is the new median? New Median = $ Between noon and 9pm the temperature dropped 10F. If the temperature was -4F at 9pm what was the temperature at noon ? Identify the underlined portion of the sentence below: John drove to the store to buy some milk for his mother. A. Subject c. Direct Object b. Verb d. Indirect Object Given the following: f(a) = x2 - 8x + 4; g(x) = 4x 3; and h(x) = x + 2.Complete the following:(h.g)(x)4x2 + 5x 6-22 + 12x - 722 12x +74x3 35x2 + 403 - 1