Answer:
Step-by-step explanation:
1) Given figure is a parallelogram
Area = 144 cm²
base * altitude = 144
16 * x = 144
x =144/16
x = 9 cm
2)2) Trapezium
Area = [tex]\frac{a+b}{2}*h[/tex] ; {a and b are parallel sides of trapezium}
( 37 +27 /2) * x = 480 cm²
64/2 * h = 480
32 * h = 480
h = 480/32
h = 15 cm
Which equation can be solved to find one of the missing side lengths in the triangle?
60
12 units
O cos(609) = 12
O cos(600) =
O COS(60°) = 6
Answer:
[tex]cos(60^o)=\frac{a}{12}[/tex]
Step-by-step explanation:
The complete question in the attached figure
we know that
In the right triangle of the figure
The cosine of the angle of 60 degrees is equal to divide the adjacent side to the angle of 60 degrees (BC) by the hypotenuse (AB)
so
[tex]cos(60^o)=\frac{BC}{AB}[/tex]
we have
[tex]BC=a\ units\\AB=12\ units[/tex]
substitute the values
[tex]cos(60^o)=\frac{a}{12}[/tex]
The correct equation that represents the side length is Cos 60 = a/12
Trigonometry identityFrom the triangle given, we have the following
Adjacent = aHypotenuse = 12Using the soh cah toa identity
Cos theta = adj/hyp
Cos 60 = a/12
Hence the correct equation that represents the side length is Cos 60 = a/12
Learn more on SOH CAH TOA here: https://brainly.com/question/20734777
6. 40 adults and 26 kids went to
see a movie for $486.70. At the
same price, another group of 20
1 adults and 31 kids went to see
the same move for $332.45.
How much was an adult ticket
and how much was a kid ticket?
The cost of adult and kid tickets, we set up two equations representing the total cost for separate groups and use the elimination method to solve the system of linear equations. Once we solve for one ticket type, we can use its value to find the cost of the other ticket type.
The problem presented is a system of linear equations where we have two unknowns: the cost of an adult ticket and the cost of a kid ticket. We can set up the two equations based on the given information:
40A + 26K = 486.70 (First group's total cost)
21A + 31K = 332.45 (Second group's total cost)
To solve this system, we can use either substitution or elimination methods. For simplification, let's use the elimination method:
Multiply the second equation by 2: (2 x 21A) + (2 x 31K) = 2 x 332.45, which gives us 42A + 62K = 664.90.
Now subtract the first equation from this new equation: (42A + 62K) - (40A + 26K) = 664.90 - 486.70, resulting in 2A + 36K = 178.20.
Divide the entire equation by 2: A + 18K = 89.10.
We now have an easier equation to work with along with our original first equation.
To find the value of one variable, we could substitute the value of A from the first equation (using the second simplified equation) into the second equation and solve for K.
Once we have the value of K, we can substitute it back into either original equation to solve for A.
These steps will give us the exact cost of an adult ticket (A) and a kid ticket (K).
A recipe uses 1 1/4 cups of oil to make 20 servings. If the same amount of oil is used for each serving, how many servings can be Made with one gallon of oil ?
Answer:
Step-by-step explanation:
1 1/4 (or 1.25) cups to 20 servings = 1 gallon (16 cups) to x servings
1.25 16
--------- = -------- cross multiply
20 x
(1.25)(x) = (20)(16)
1.25x = 320
x = 320/1.25
x = 256 servings <===
What are the lower quartile, upper quartile, and median for this box and whisker plot?
A. LQ = 7 UQ = 14 Median = 18
B. LQ = 18 UQ = 14 Median = 21
C. LQ = 14 UQ = 28 Median = 21
D. LQ = 14 UQ = 28 Median = 22
Answer:
C
Step-by-step explanation:
The lower quartile is the value at the left side of the box, that is
LQ = 14
The upper quartile is the value at the right side of the box, that is
UQ = 28
The median is positioned at the vertical line inside the box. that is
Median = 21
A construction company is repaving a damaged road. So far, they have repaved a total of 97,338 inches of the road. Today, they repaved 29,092 inches of the road. How many inches of the road had they repaved before today?
68,246 inches of road had been repaved before today.
Step-by-step explanation:
Given,
Length of road repaved so far = 97338 inches
Length repaved today = 29092 inches
Length repaved before today = Total length repaved - Length repaved today
Length repaved before today = 97338 - 29092
Length repaved before today = 68246 inches
68,246 inches of road had been repaved before today.
Keywords: subtraction
Learn more about subtraction at:
brainly.com/question/1096947brainly.com/question/11018983#LearnwithBrainly
If m || n and m <8 = 115°, what is m <2
A. 180°
B. 115°
C. 65°
D. 25°
Answer: OPTION B.
Step-by-step explanation:
When parallel lines are cut by a transversal several angles are formed.
There are pairs of angles called "Alternate Interior angles".
These angles are not adjacent and they are located between the parallel lines, and on opposite sides of the transversal.
By definition, they are are congruent, or, in other words the measure of Alternate Interior angles are equal.
In this case, you can identify that the [tex]\angle 8[/tex] and the [tex]\angle 2[/tex] are Alternate Interior angles.
Based on the data given in the exercise, you know that the measure of the angle 8 is:
[tex]\angle 8=115\°[/tex]
So, You can determine that the angle 2 have the same measure. This is:
[tex]\angle 2=115\°[/tex]
You purchase 26 “parking hours” that you can use over the next month to park your food truck at the fair. Weekday hours costs $2/hour and weekend hours cost $10/hour. You spent a total of $220. How many weekday hours did you purchase?
You have purchased 5 weekday hours.
Step-by-step explanation:
Parking hours purchased = 26
Cost per hour on weekday = $2
Cost per hour on weekend = $10
Total spent = $220
Let,
Number of hours on weekdays = x
Number of hours on weekend = y
According to given statement;
x+y=26 Eqn 1
2x+10y=220 Eqn 2
Multiplying Eqn 1 by 10
[tex]10(x+y=26)\\10x+10y=260\ \ \ Eqn\ 3\\[/tex]
Subtracting Eqn 2 from Eqn 3
[tex](10x+10y)-(2x+10y)=260-220\\10x+10y-2x-10y=40\\8x=40[/tex]
Dividing both sides by 8
[tex]\frac{8x}{8}=\frac{40}{8}\\x=5[/tex]
You have purchased 5 weekday hours.
Keywords: linear equation, elimination method
Learn more about elimination method at:
brainly.com/question/3306327brainly.com/question/3375830#LearnwithBrainly
Mo’s farm stand sold a total of 165 pounds of apples and peaches. She sold apples for $1.75 per pound and peaches for $2.50 per pound. If she made $337.50, how many pounds of peaches did she sell?
Answer:
Step-by-step explanation:
a + p = 165......a = 165 - p
1.75a + 2.5p = 337.50
1.75(165 - p) + 2.5p = 337.50
288.75 - 1.75p + 2.5p = 337.50
-1.75p + 2.5p = 337.50 - 288.75
0.75p = 48.75
p = 48.75 / 0.75
p = 65 <==== 65 lbs of peaches were sold
a + p = 165
a + 65 = 165
a = 165 - 65
a = 100 <=== there were 100 lbs of apples sold
check...
1.75a + 2.5b = 337.50
1.75(100) + 2.5(65) = 337.50
175 + 162.50 = 337.50
337.50 = 337.50 (correct)
Two parallel lines are crossed by a transversal. Parallel lines r and s are cut by transversal q. On line s where it intersects with line q, the uppercase left angle is 125 degrees and the bottom right angle is d degrees. What is the value of d? d = 55 d = 75 d = 125 d = 155
Answer:
d=125
Step-by-step explanation
edge 2020
The value of d, which is the bottom right angle formed on line s when cut by transversal q, is 125 degrees due to the alternate exterior angles being congruent on parallel lines.
Explanation:When two parallel lines are crossed by a transversal, certain angles are equal due to the properties of parallel lines. The upper left angle on line s when intersected with the transversal q is given as 125 degrees; this is the alternate exterior angle relative to the bottom right angle formed on line s also intersected by q, which is known as d degrees in the question.
According to the alternate exterior angles theorem, these two angles are equal because the lines r and s are parallel. Therefore, the bottom right angle on line s, or d degrees, is also 125 degrees, because alternate exterior angles are congruent when two parallel lines are cut by a transversal.
Learn more about Alternate Exterior Angles here:https://brainly.com/question/17931911
#SPJ3
Select the expressions that are equivalent to 12x - 6.
@ -6(2x - 1)
® 6(2x - 1)
© 6x(2-1)
-6x(2x - 1)
@ -6(-2x + 1)
® 6x(-2x + 1)
Answer:
® 6(2x - 1); @ -6(-2x + 1)
Step-by-step explanation:
12x - 6 = 6(2x- 1) Factored out 6
12x - 6 = -6(-2x + 1) Factored out -6
solve x=6y-11 3x+2y=7 by substitution
Answer:
3(6y-11)+2y=7
18y-33+2y=7
20y-33=7
20y=40
y=40/20
y=2
Put equation 1 into equation 2.
3(6y - 11) + 2y = 7
18y - 33 + 2y = 7
18y + 2y = 40
20y = 40
y = 2
x = 6(2) - 11
x = 12 - 11
x = 1
The coordinate pair is (1, 2) (x = 1, y = 2.)
⭐ Please consider brainliest! ⭐
✉️ If any further questions, inbox me! ✉️
what percent of 108 is 81?
Answer: 133.33
Just do 108/81x100 to get 133.33
Hope this helps!
Answer:
75%
Step-by-step explanation:
help asap! What is equal to 3,068 times 108=?
Answer:
Step-by-step explanation:
3,068 × 108
= 331344
Answer:
331,344
Step-by-step explanation:
Line up the numbers like how u would do it if adding or subtracting and multiply each digit in 108 by each digit in 3068 starting with 8*8. Then do the same with multiplying each digit in 3068 by each digit in 108 starting with 8*8
HELP HELP I DONT UNDERSTAND THIS
Answer:
1) angle bisector
2) w = 72°
3) t = 44°
4) t = 51°
5) FG = 16 units
Step-by-step explanation:
1) Given that, ∠VYW ≅ ∠WYV
The line which cuts any angle into equal halves is angular bisector of the angle
⇒ YW is angle bisector
2) In a triangle, sum of two interior angle is equal to exterior angle of other side.
⇒ w-41° + w-31° = w.
⇒ w = 72°
3) Sum of interior angles in a pentagon is 540°
(For a n sided it is (n-2)180° )
⇒ 149° + 139° + t+32° + 3t +t = 540°
⇒ t = 44°
4) sum of all exterior angles taken one at each vertex = 360°
⇒ 2t-50° + 46° + 2t + 34° + 2t-50° + 34° + 40° = 360°
⇒ t = 51°
5) Here, by comparing ΔHGF and ΔHIF
∠GHF = ∠IHF
∠HGF = ∠HIF
and HF is common side for both triangles
⇒ ΔHGF ≡ ΔHIF ; i.e) ΔHGF , ΔHIF are congruent triangles
⇒ FG = FI = 16 units
Find the value ox X:
A 20
B 18
C 15
D 11
Answer:
x =15°
Step-by-step explanation:
Given that the horizontal line is 90° to the vertical line, then both the angles have to necessarily add up to 90° i.e
(5x-10)° + 25° = 90°
5x - 10 + 25 = 90
5x + 15 = 90 (subtract 15 from both sides)
5x = 90 - 15
5x = 75 (divide both sides by 5)
x = 75 / 5 = 15°
The cost for the olive oil used to fill the containers on the tables in an Italian restaurant is given by the function f(x) = 5x – 4, where x represents the number of quarts of olive oil and f(x) represents the quarts of oil used. If f(4a) = 80, what is the value of a?
If f(4a) = 80, then the value of "a" is 4.2
Solution:
Given that cost for the olive oil used to fill the containers on the tables in an Italian restaurant is given by the function:
f(x) = 5x – 4
where "x" represents the number of quarts of olive oil
f(x) represents the quarts of oil used
To find: value of "a" when f(4a) = 80
Substitute x = 4a in given function
f(4a) = 5(4a) - 4
80 = 20a - 4
20a = 84
10a = 42
a = 4.2
Thus the value of "a" is 4.2
We want to know the value of a factor, given that we know f(4a) = 80 and the function f(x).
The value of a is 4.2
Here we start with the function f(x) = 5x - 4
Now we know that:
f(4a) = 5*(4a) - 4 = 80
Then we can just solve the above equation to find the value of a:
5*(4a) - 4 = 80
20*a - 4 = 80
20*a = 80 + 4 = 84
a = 84/20 = 4.2
The value of a is 4.2
If you want to learn more, you can read:
https://brainly.com/question/1354826
1.
A gym has two membership plans.
The Gold Plan costs 50 dollars per month and 3 dollars per visit.
The Platinum Plan costs 20 dollars per month and 6 dollars per visit.
Answer:
The number of visit so that both plan cost same is 10 .
Both the plan has equivalent choice of benefit
Step-by-step explanation:
Given as :
A gym has two membership plans.
For Gold plan
The charge per month = $50
The charge per visit = $3
For Platinum plan
The charge per month = $20
The charge per visit = $6
Let The number of visit for which each plan be same = n visits
Now, According to question
∵ Each plan cost to be same
So,
The charge per month for gold plan+ The charge per visit × numbers of visit = The charge per month for platinum plan+ The charge per visit × numbers of visit
I.e $50 + $3 × n = $20 + $6 × n
Or, $50 - $20 = $6 × n - $3 × n
Or, $30 = ($6 - $3) × n
Or, $30 = $3 × n
∴ n = [tex]\dfrac{30}{3}[/tex]
I.e n = 10
So, The number of visits = n = 10
Now, For Gold plan
The charge per month = $50
The charge per visit = $3 × 10 = $30
So, Total charge for gold plan = $50 + $30 = $80
Similarly For Platinum plan
The charge per month = $20
The charge per visit = $6×10 = $60
So, For Platinum plan ,total charge = $20 + $60 = $80
Hence, The number of visit so that both plan cost same is 10
and both the plan has equivalent benefit. Answer
if an=5n-3 find the common difference
Answer:
Hi here is your answer
an=5n-3
an-1= -3+5n
an-1= -3+5(n-1)
an-1= -3+5n-5
an-1= 5n-7
d= an- an-1
d=(5n-3)-(5n-7)
d=5n-3-5n+7
d=4
Answer: d = 4
Hope this helps you.
Answer:
d = 5
Step-by-step explanation:
an = 5n -3
a1 = 5 -3 = 2
a2 = 5*2 -3 = 10 - 3 = 7
d = a2 - a1 = 7 - 2 = 5
Can you help with these two questions?
1)
Scientists are studying a 500 g. sample of a radioactive element. which has an annual decay rate of 11%. How many grams of the sample would be left after 10 years?
Round the answer to two decimal places.
2)
In 2000, the population of an Ohio town was 140,212. The population is expected to grow at a rate of 2.5% each year.
At this rate, what would be the population in 2040?
Round your answer to the nearest whole number.
1) 155.91 grams would be left after 10 years
2) The population would be 376,478 in 2040
Step-by-step explanation:
The form of the exponential function is [tex]y=a(b)^{x}[/tex] , where
a is the initial amount (y at x = 0)b is the growth/decay factorb = 1 + r, where r is the rate of growthb = 1 - r, where r is the rate of decay1)
Scientists are studying a 500 grams sample of a radioactive element, which has an annual decay rate of 11%
∵ The initial amount is 500 grams
∴ a = 500
∵ The annual decay rate is 11%
∴ r = 11% = 11 ÷ 100 = 0.11
∵ b = 1 - r ⇒ decay
∴ b = 1 - 0.11 = 0.89
- We need to find how many grams of the sample would be left
after 10 years
∴ x = 10
- Substitute all of these values in the form of the exponential function
∵ [tex]y=500(0.89)^{10}[/tex]
∴ y = 155.9085996
- Round it to 2 decimal places
∴ y = 155.91
155.91 grams would be left after 10 years
2)
In 2000, the population of an Ohio town was 140,212. The population is expected to grow at a rate of 2.5% each year
∵ The population of an Ohio town was 140,212
∴ a = 140.212
∵ The population is expected to grow at a rate of 2.5% each year
∴ r = 2.5% = 2.5 ÷ 100 = 0.025
∵ b = 1 + r ⇒ growth
∴ b = 1 + 0.025 = 1.025
- We need to find the population in 2040
∵ The number of years is 2040 - 2000 = 40 years
∴ x = 40
- Substitute all of these values in the form of the exponential function
∵ [tex]y=140212(1.025)^{40}[/tex]
∴ y = 376478.1709
- Round it to the nearest whole number
∴ y = 376,478
The population would be 376,478 in 2040
Learn more:
You can learn more about the functions in brainly.com/question/11921476
#LearnwithBrainly
Mathematics MH helpo
The inequalities that require flipping the sign are:
-5x - 10 > 5
[tex]\frac{x}{-7} + 3 \leq 4[/tex]
Solution:
Let us the inequalities one by one
You can perform on operations on both sides of inequality, and have its truth value unchanged
But if we multiply or divide by a negative number , we must flip the sign
option 1)-5x - 10 > 5
Move -10 from L.H.S to R.H.S
-5x > 5 + 10
-5x > 15
Divide the above expression by 5
[tex]-x > 3[/tex]
Divide the above inequality by -1, so we must flip the sign
x < -3
option 2)[tex]7x - 5 \leq 16[/tex]
Move the constant term from L.H.S to R.H.S
[tex]7x \leq 16 + 5\\\\7x \leq 21\\\\[/tex]
Divide the above inequality by 7
[tex]x \leq 3[/tex]
This does not required flipping the symbol
option 3[tex]\frac{x}{5} - 6 > -11[/tex]
Move the constant term from L.H.S to R.H.S
[tex]\frac{x}{5} > -11 + 6\\\\\frac{x}{5} > -5[/tex]
Multiply both the sides by 5
[tex]x > -25[/tex]
This does not required flipping the symbol
option 4[tex]x + 12 \leq 29[/tex]
Move the constant term from L.H.S to R.H.S
[tex]x \leq 29 - 12\\\\x \leq 17[/tex]
This does not required flipping the symbol
option 5[tex]\frac{x}{-7} + 3 \leq 4[/tex]
Move the constant term from L.H.S to R.H.S
[tex]\frac{x}{-7} \leq 4-3\\\\\frac{x}{-7} \leq 1\\\\[/tex]
Multiply both the sides by -7, so we must flip the sign
[tex]x \geq -7[/tex]
Thus this requires flipping the sign
Answer: -5x - 10 > 5
Step-by-step explanation:
Matthew earned $75 in interest on
his savings account in one year.
The bank paid a simple interest
rate of 5%. What was the initial
amount of money Matthew put
into his savings account?
Answer:
Step-by-step explanation:
The formula for simple interest is
I = Prt,
where I is the interest earned,
P is the initial investment amount,
r is the interest rate in decimal form, and
t is the time in years. For us,
I = 75,
P = ?
r = .05
t = 1
Filling in what we were given:
75 = P(.05)(1) and
.05P = 75 so
P = 1500
Does (-3,5 make the equation y=X+-2 true
Answer:
No.
Step-by-step explanation:
x+(-2)=-3+(-2)=-3-2=-5, not 5.
please help
3×[(12+33)]÷5-7
Answer:3x(45/5)-7)
(3x9)-7=27-7=20
Step-by-step explanation:
Answer:
Step-by-step explanation:
3×[(12+33)]÷5-7 = 3 * 45/5 -7
=3*9 - 7 = 27 - 7 = 20
5h+-6h=20 solve h help me please
Answer:
[tex] \: \: \: \: \: \: \: \: 5h + ( - 6h) = 20 \\ = > 5h - 6h = 20 \\ = > - h = 20 \\ = > h = - 20[/tex]
What is 4 7/8 x 28 in simplest form
Answer:
164 and one over two
Step-by-step explanation:
47 over 8 *28
=1316 over 8
=164 and four over eight
=164 and one over two
[tex] \frac{47}{8} \times 28 \\ = \frac{1316}{8} \\ = 164 \frac{4}{8} \\ = 164 \frac{1}{2} [/tex]
Hope that helps
You start driving north for 11 miles, turn right, and drive east for another 60 miles.
How many miles must you travel to return directly back to your starting point?
Answer:
61 miles.
Step-by-step explanation:
Given: driving north for 11 miles and drive east for another 60 miles.
As given in the question, the travelling pattern show a right angle triangle, where hypotenuse line is the way to return back directly to starting point. As shown in picture attached.
∴ we can say, adjacent (a) is 11 miles and opposite (b) is 60 miles
Now, using Pythagoras theorem to get distance to return.
[tex]h^{2} = a^{2} +b^{2}[/tex]
⇒ [tex]h^{2} = 11^{2} +60^{2}[/tex]
⇒ [tex]h^{2} = 121+3600= 3721[/tex]
⇒ [tex]h= \sqrt{3721}[/tex]
∴[tex]h= 61[/tex]
∴ 61 miles need to be travel to return back directly to starting point.
For the function y=8−5x, what is the ordered pair when x=7?
Answer:
Ordered pairs are (0,7) , (1,8) , (-1,6) and (-7,0)
Step-by-step explanation:
Answer:
(7, -27)
Step-by-step explanation:
Given y=8-5x and x=7,
We substitute x=7 into the equation y=8-5x.
This would give us y= 8-5(7) and can be further sinplified to y= 8-35 = -27.
Ordered pair refers to 2 numbers that come in a pair to fulfil an equation in the form of (x, y).
If my rent is 2795 a month, I agree to pay 75 more than my roommate how much do I owe and how much does my roommate owe
Answer:
The rent owe by me is Rs 1435
The rent owe by roommate is Rs 1360
Step-by-step explanation:
Given as :
The total rent of the room = x = Rs 2795
Let The room rent pay by friend = Rs y
And The room rent pay by me = Rs z
Now, According to question
The room rent pay by me = Rs 75 + room rent pay by roommate
i,e Rs z = Rs 75 + Rs y
Now, Again
The total rent of the room = The room rent pay by me + room rent pay by roommate
Or, x = Rs z + Rs y
Or, Rs 2795 = (Rs 75 + Rs y) + Rs y
Or, 2795 = 75 + 2 y
Or, 2 y = 2795 - 75
Or, 2 y = 2720
∴ y = [tex]\dfrac{2720}{2}[/tex]
i.e y = Rs 1360
So, room rent pay by friend = y = Rs 1360
And,The room rent pay by me = Rs 75 + room rent pay by roommate
Or,The room rent pay by me = Rs 75 + Rs 1360
So,he room rent pay by me = Rs 1435
Hence,The rent owe by me is Rs 1435
And ,The rent owe by roommate is Rs 1360 Answer
soledads regular pay rate is $7.50 per hour. If she works more than 40 hours in one week, she receives 1.5 times
her regular pay rate for each additional hour. How many hours would Soledad have to work in one week to earn a
total of $345?
43
45
46
44
Answer:
44
Step-by-step explanation:
pay for 40 hours: 7.50 * 40= 300
pay for 1 hour of overtime pay: 1.5 * 7.5= 11.25 per hour
11.25 * 4= 45
45 + 300= 345
40 + 4= 44
If x equals 7. What is 3x-47
Answer: x = -26
Step-by-step explanation:
3x-47
substitute x with 7: 3(7)-47
3(7) = 21 -47 = -26
Answer:
-26
Step-by-step explanation:
x=7
3 is being multiplied by X
replace X with 7 in your equation
Your equation should then look like this: 3(7)-47
The parentheses around the 7 indicate that the 7 is being multiplied by the 3 or in other words: (3*7)-47
multiply 3 and seven before subtracting 47
3*7= 21
Once you have your answer to that subtract 47, your answer should be a negative # because you are subtracting a larger # from a smaller #
21-47= -26
so if X equals 7. 3x-47= -26