Answer:
12xy^2z^2
Step-by-step explanation:
The GCG or greatest common factor is the greatest value of number or expression which will divide into both expressions. Here 24 and 36 are both divisible by 12. Both also have the variables xy^2z^2. This means the GCG is 12xy^2z^2.
Factor 8X squared + 10x + 2
Answer:
2(4x + 1)(x + 1)
Step-by-step explanation:
Given
8x² + 10x + 2 ← factor out 2 from each term
= 2(4x² + 5x + 1)
To factor the quadratic
Consider the factors of the product of the coefficient of the x² term and the constant term which sum to give the coefficient of the x- term
product = 4 × 1 = 4 and sum = + 5
The factors are + 1 and + 4
Use these factors to split the x - term
4x² + x + 4x + 1 ( factor the first/second and third/fourth terms )
= x(4x + 1) + 1 (4x + 1) ← factor out (4x + 1)
= (4x + 1)(x + 1), thus
4x² + 5x + 1 = (4x + 1)(x + 1) and
8x² + 10x + 2 = 2(4x + 1)(x + 1) ← in factored form
At a local company, the ages of all new employees hired during the last 10 years are normally distributed. The mean age is 35 years old, with a standard deviation of 10 years.
If you were to take a sampling of 10 employees, what is the probability your mean age will be at least 37? Round to the nearest percent.
Answer:
P =26%
Step-by-step explanation:
In this problem we have the ages of all new employees hired during the last 10 years of normally distributed.
We know that the mean is [tex]\mu = 35[/tex] years and standard deviation is [tex]\sigma = 10[/tex] years
By definition we know that if we take a sample of size n of a population with normal distribution, then the sample will also have a normal distribution with a mean
[tex]\mu_m = \mu[/tex]
And with standard deviation
[tex]\sigma_m = \frac{\sigma}{\sqrt{n}}[/tex]
Then the average of the sample will be
[tex]\mu_m = 35\ years[/tex]
And the standard deviation of the sample will be
[tex]\sigma_m =\frac{10}{\sqrt{10}} = 3.1622[/tex]
Now we look for the probability that the mean of the sample is greater than or equal to 37.
This is
[tex]P({\displaystyle{\overline {x}}}\geq 37)[/tex]
To find this probability we find the Z-score
[tex]Z = \frac{{\displaystyle{\overline{x}}} -\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
[tex]Z = \frac{37 -35}{\frac{10}{\sqrt{10}}} = 0.63[/tex]
So
[tex]P({\displaystyle{\overline {x}}}\geq 37) = P(\frac{{\displaystyle{\overline {x}}}-\mu}{\frac{\sigma}{\sqrt{n}}}\geq\frac{37-35}{\frac{10}{\sqrt{10}}}) = P(Z\geq0.63)[/tex]
We know that
[tex]P(Z\geq0.63)=1-P(Z<0.63)[/tex]
Looking in the normal table we have:
[tex]P(Z\geq0.63)=1-0.736\\\\P(Z\geq0.63) = 0.264[/tex]
Finally P = 26%
To find the probability that the sample mean age of 10 employees is at least 37, we can use the Central Limit Theorem and standardize the sample mean. The probability is approximately 2.28%.
Explanation:To solve this problem, we need to use the Central Limit Theorem, which states that the sample mean of a large enough sample size will be approximately normally distributed regardless of the shape of the population distribution.
In this case, the mean age of new employees is normally distributed with a mean of 35 and a standard deviation of 10. We want to find the probability that the sample mean age of 10 employees is at least 37.
To find this probability, we first need to standardize the sample mean using the formula z = (x - μ) / (σ / sqrt(n)), where x is the sample mean, μ is the population mean, σ is the population standard deviation, and n is the sample size.
Using this formula, we have z = (37 - 35) / (10 / sqrt(10)) = 2 * sqrt(10).
From a standard normal distribution table, we can find that the probability of getting a z-score less than 2 * sqrt(10) is approximately 1 - 0.0228 = 0.9772. However, we want the probability of getting a sample mean at least 37, so we subtract this probability from 1 to get 1 - 0.9772 ≈ 0.0228.
Therefore, the probability that the sample mean age of 10 employees will be at least 37 is approximately 2.28%.
find the value of the trigonometric function sin (t) if sec t = -4/3 and the terminal side of angle t lies in quadrant II
Answer:
[tex]sin(t) =\frac{\sqrt{7}}{4}[/tex]
Step-by-step explanation:
By definition we know that
[tex]sec(t) = \frac{1}{cos(t)}[/tex]
and
[tex]cos ^ 2(t) = 1-sin ^ 2(t)[/tex]
As [tex]sec(t) = -\frac{4}{3}[/tex]
Then
[tex]sec(t) = -\frac{4}{3}\\\\\frac{1}{cos(t)} =-\frac{4}{3}\\\\cos(t) = -\frac{3}{4}[/tex]
Now square both sides of the equation:
[tex]cos^2(t) = (-\frac{3}{4})^2[/tex]
[tex]cos^2(t) = \frac{9}{16}\\\\[/tex]
[tex]1-sin^2(t) =\frac{9}{16}\\\\sin^2(t) =1-\frac{9}{16}\\\\sin^2(t) =\frac{7}{16}\\\\sin(t) =\±\sqrt{\frac{7}{16}}[/tex]
In the second quadrant sin (t) is positive. Then we take the positive root
[tex]sin(t) =\sqrt{\frac{7}{16}}[/tex]
[tex]sin(t) =\frac{\sqrt{7}}{4}[/tex]
The value of sin(t) = √7/4 because sine is positive in Quadrant II.
First, recall that sec(t) is the reciprocal of cos(t):
sec(t) = 1/cos(t)
Given: sec(t) = -4/3, so:
cos(t) = -3/4
Since angle t lies in Quadrant II, cosine is negative, and sine is positive. Use the Pythagorean identity:
sin²(t) + cos²(t) = 1
Substitute cos(t):
sin²(t) + (-3/4)² = 1
sin²(t) + 9/16 = 1
Solve for sin²(t):
sin²(t) = 1 - 9/16
sin²(t) = 16/16 - 9/16
sin²(t) = 7/16
Take the square root of both sides:
sin(t) = √(7/16) = √7/4
Since we are in Quadrant II, sine is positive:
sin(t) = √7/4
Calculating area and perimeter worksheet works.com answer #4-9
Step-by-step explanation:
dude i have no idea sorry
The Calculating area and perimeter worksheet from works.com
#4
Area: [tex]360 yd^2[/tex]
Perimeter: 30 yd
#5
Area: [tex]45 yd^2[/tex]
Perimeter: 22 yd
#6
Area: 87 yd^2
Perimeter: 30 yd
#7
Area: 72 ft^2
Perimeter: 24 ft
#8
Area: 150 ft^2
Perimeter: 30 ft
#9
Area: 2128 ft^2
Perimeter: 70 ft.
Area is the amount of space that a two-dimensional shape takes up. It is measured in square units, such as square feet (ft^2), square yards (yd^2), or square meters (m^2).
To calculate the area of a rectangle, multiply the length by the width.
Area of a rectangle = length * width
To calculate the area of a square, multiply the side length by itself.
Area of a square = side length * side length
To calculate the area of a triangle, multiply the base by the height and divide by 2.
Area of a triangle = base * height / 2
Perimeter is the total length of all the sides of a two-dimensional shape. It is measured in linear units, such as feet (ft), yards (yd), or meters (m).
To calculate the perimeter of a shape, add up the lengths of all the sides.
Perimeter of a shape = sum of the lengths of all the sides
Example:
To calculate the area and perimeter of the rectangle in question #4, we would use the following formulas:
Area = length * width = 5 yd * 72 yd = 360 yd^2
Perimeter = sum of the lengths of all the sides = 5 yd + 72 yd + 5 yd + 72 yd = 30 yd
Answers to the remaining questions:
#5:
Area = 45 yd^2
Perimeter = 22 yd
#6:
Area = 87 yd^2
Perimeter = 30 yd
#7:
Area = 72 ft^2
Perimeter = 24 ft
#8:
Area = 150 ft^2
Perimeter = 30 ft
#9:
Area = 2128 ft^2
Perimeter = 70 ft.
For similar question on perimeter worksheet.
https://brainly.com/question/31110180
#SPJ12
Emma is 9 and one fourths Year’s old. How many months old is Emma?
She is 4 years an d3 months old
Answer:
111 months
Step-by-step explanation:
First, look at how many whole years old Emma is. Emma is 9 whole years old. 1 year consists of 12 months. So, multiply 9 [years] by 12 [months] to get 108. The number 108 is how many months are in 9 years. However, Emma is 9 months and 1/4 years old.
To find out how many months 1/4 of a year is, multiply 1/4 [year] by 12 [months] . 12 is the same as 12/1, so multiply the numerators and denominators of 1/4 and 12/1
1 x 12 = 12
4 x 1 = 4
12/4 = 3
Therefore, 1/4 year is 3 months. Now, add 108 months and 3 months to get 111 months. Therefore, Emma is 111 months old.
I hope this helps! :)
What is the area of the base of a cylinder with a volume of 174π in.3 and a height of 12 inches? 1. Apply the formula for the volume of a cylinder: V = Bh 2. Substitute the known measures into the formula: 174π = B(12) 3. Apply the division property of equality: 174π 12 = B 12 12 The area of the base of the cyclinder is π in.2.
ANSWER
The area of the base is 14.5π in²
EXPLANATION
The volume of a cylinder is given by
[tex]Volume =base\:area \times height[/tex]
Or
V=Bh
It was given that the volume of the cylinder is 174π in³.
The height was given as 12 inches.
We substitute to get,
174π=12B
Divide both sides by 12 to get:
B=14.5π in²
Hence the area of the base is 14.5π in²
Answer:
14.5
Step-by-step explanation:
how do i factor this trinomial?
[tex]\text{Hey there!}[/tex]
[tex]\text{The answer is: (3g + 2)(g + 2)}[/tex]
[tex]\text{To make sure it comes back to the original problem}\bf{(3g^2+8g+4)}[/tex] [tex]\text{You would have to distribute the answer}[/tex]
[tex]\text{3g(g)=}3g^2\\ \text{3g(2)=6g}\\ \text{2(g)=2g}\\ \text{2(2)=4}[/tex]
[tex]\text{After distributing combine your like terms:}[/tex]
[tex]\text{In this particular answer we have: 1 term with TWO LIKE TERMS}[/tex]
[tex]\text{6g+2g=8g(That's how we got the 8g in the original equation)}[/tex]
[tex]\text{The}\bf{\ 3g^2}\text{ stays the same because there's nothing to go with it}[/tex]
[tex]\text{The 4 also stays the same because nothing goes with it as well}[/tex]
[tex]\boxed{\boxed{\text{Answer:(3x + 2 (x + 2)})}}\checkmark[/tex]
[tex]\text{Good luck on your assignment and enjoy your day!}[/tex]
~[tex]\frak{LoveYourselfFirst:)}[/tex]
Find the value of the expression given below. 2/3-1/7
Answer:
the answer is 11/21 or 0.523809524
hope this helped
Step-by-step explanation:
Write 0.6 as a fraction.
A) 1 3
B) 2 3
C) 3 7
D) 3 9
Answer:
All of them are wrong, the answer is 3/5
Hope this helps :)
Have a great day !
5INGH
Step-by-step explanation:
0.6 = 6 / 10 = 3 / 5
Mr. Olaffsen opened a sandwich shop and a smoothie stand in his neighborhood. The following table and equation show function f, representing Mr. Olaffsen's profit, in dollars, x months since opening the sandwich shop. x 1 2 3 4 5 6 7 f(x) 12,000 15,500 18,000 19,500 20,000 19,500 18,000 The following table and equation show function g, representing Mr. Olaffsen's profit, in dollars, x months since opening the smoothie stand. x 1 2 3 4 5 6 7 g(x) 9,300 12,000 14,100 15,600 16,500 16,800 16,500 Select the true statement. A. The difference between the maximum profit earned by the sandwich shop and the smoothie stand is $3,000. B. The difference between the maximum profit earned by the sandwich shop and the smoothie stand is $3,200. C. The difference between the maximum profit earned by the sandwich shop and the smoothie stand is $3,500. D. The difference between the maximum profit earned by the sandwich shop and the smoothie stand is $2,700.
Answer: the difference between the max is 3200.
Step-by-step explanation:
20000-16800= 3200
The difference between the max is 3200.
What is the difference?Subtract the smaller of the two numbers from the larger of the two numbers to find the difference between them. The difference between the two numbers is the sum's product. For instance, you could calculate the difference between 100 and 45 as follows: 100 - 45 = 55.
Given
20,000 - 16,800 = 3200
therefore, The difference between the max is 3200.
To know more about differences refer to :
https://brainly.com/question/148825
#SPJ2
chester wanted to find the product of 3840 and 5.he was going to use an area model to help find the product.finish chesters incomplete area model below and find the product
Answer:
fghjk²;.
Step-by-step explanation:
Final answer:
To find the product of 3840 and 5 using an area model, we can draw a rectangle with a length of 3840 units and a width of 5 units. Then, we divide the rectangle into smaller squares or rectangles of equal size. The product of 3840 and 5 is 19,200.
Explanation:
To find the product of 3840 and 5 using an area model, we can draw a rectangle with a length of 3840 units and a width of 5 units. Then, we divide the rectangle into smaller squares or rectangles of equal size. For example, we can divide the rectangle into 384 squares of length 10 and width 5, or into 192 squares of length 20 and width 10. After that, we count the total number of squares to find the product. In this case, the product of 3840 and 5 is 19,200.
Solve the following equation. Then place the correct number in the box provided. Leave answer in terms of a mixed number. 7x - 2 < 10
Answer:
[tex]\huge \boxed{x<\frac{12}{7}}[/tex]
Step-by-step explanation:
First thing you do is add by 2 from both sides of equation.
[tex]\displaystyle 7x-2+2<10+2[/tex]
Simplify.
[tex]\displaystyle 10+2=12[/tex]
[tex]\displaystyle 7x<12[/tex]
Divide by 7 from both sides of equation.
[tex]\displaystyle \frac{7x}{7}<\frac{12}{7}[/tex]
Simplify, to find the answer.
[tex]\displaystyle\huge\boxed{ x<\frac{12}{7}}[/tex], which is our answer.
The inequation 7x - 2 < 10 is x < 12/7.
What are inequalities and it's types?Inequality is a relation that compares two numbers or other mathematical expressions in an unequal way.
The symbol a < b indicates that a is smaller than b.
When a > b is used, it indicates that a is bigger than b.
a is less than or equal to b when a notation like a ≤ b.
a is bigger or equal value of an is indicated by the notation a ≥ b.
The inequation 7x - 2 < 10 is,
7x < 12.
x < 12/7.
learn more about inequalities here :
https://brainly.com/question/28823603
#SPJ5
Colin and Brian were playing darts. Colin scored 139 Brian scored 53 more than Colin. What was their combined score?
Answer
Their combined score is 331 points
Explanation
Determine each person's score
Collin score: 139
Brian: 139 + 53 = 192
Add the scores together
139 + 192 = 331
Colin scored 139 points and Brian scored 53 points more than Colin, which is 192 points. Adding Colin's and Brian's scores gives a combined score of 331 points.
Explanation:In the game of darts, Colin and Brian scored different points. We know that Colin scored 139 points. As per the information given, Brian scored 53 points more than Colin. So, to find out how many points Brian scored, we can add 53 to Colin's score of 139, which gives us 192 points for Brian.
To find out the combined score of Colin and Brian, we simply add Colin's score to Brian's score. So, 139 (Colin's score) plus 192 (Brian's score) equals 331.
Therefore, the combined score of Colin and Brian is 331 points.
Learn more about Adding Scores here:https://brainly.com/question/29000462
#SPJ3
In rectangle ABCD, if the coordinates of A are (0, 0) and of C are (r, s), find the coordinates of B.
ANSWER
B(r,0)
or
B(0,s)
EXPLANATION
In rectangle ABCD, the coordinates of A are (0, 0) and of C are (r, s).
When we name the triangle in a clockwise direction.
Then B must bear the y-coordinate of A and bear the x-coordinate of C.
This gives us (r,0)
When we name the triangle in an anticlockwise direction.
Then B must bear the x-coordinate of A and bear the y-coordinate of C.
This gives us (0,s)
Find the missing term. The roots of x2 − ( ) + 34 are 5 ± 3i.
Answer:
the required equation is:
[tex]x^2 -10 +34[/tex]
Step-by-step explanation:
The equation given is:
[tex]x^2 -()+34[/tex]
Comparing it with standard quadratic equation
[tex]a^2 +bx+c[/tex]
a= 1,
b=?
C= 34
We can find the value of b using Vieta's formulas :
That states that if roots x₁ and x₂ are given then,
x₁ + x₂ = -b/a
We are given roots: 5 ± 3i i.e, x₁= 5 + 3i and x₂= 5 - 3i
solving
5 + 3i + 5 - 3i = -b/1
10 = -b
Since the given equation already gives b as -b so, -b= 10 => b=10
Putting value of b in the missing place the required equation will be:
[tex]x^2 -10 +34[/tex]
To find the missing term in a quadratic equation given complex roots, use the properties of conjugate roots to determine the term.
Since the roots are in the form of a complex number, they are conjugates of each other, which helps in finding the missing term.
Given roots: 5 ± 3i
Using the sum and product of roots formula
Sum: (5 + 3i) + (5 - 3i) = 10. Product: (5 + 3i)*(5 - 3i) = 34
Construct the equation: x2 - (10x) + 34 = 0
what is the missing reason in the proof
Answer:
SSS Congruence Theorem
Step-by-step explanation:
sss congruence theorem. you can get this answer by marking all the givens.
A store sells a television for $1000. Customers can choose to receive a 10% discount and pay it off with a loan at a simple interest rate of 4% or they can choose to pay the full price and pay it off in 3 years no interest. If the customer plans to pay it off in 3 years, which option is better
Answer:
Second option
Step-by-step explanation:
Option 1:
1. Original cost: 90% * 1000 = $900
2. Interest: A = P(1 + rt), A = amount, P = original amount, r = rate, t = years
Plug in: A = 900(1 + 0.05*3)
Multiply + add: A = 900(1.15)
Multiply: A = $1035
Option 2: $1000
So, paying full price upfront will save more money if all goes to plan.
Pablo's is running a special for Cinco de Mayo (fifth of May). All entree's are $5.55. You and your family, a total of six people, eat. The tax is 7%. It was extremely busy that night and the service wasn't good. Mom leaves a 12% tip. How much money did she spend in all? *
Please HELP!
Answer:
$39.91
Step-by-step explanation:
6*5.55=33.30
33.30*1.07=35.63
35.63*1.12=39.91
Don't know how to delete the incorrect answer that my sister put but I can edit it, so this is what I'm editing it to.
Destiny has one round window that is 20 inches in diameter. What is the circumference and area of the window?
Answer:
The Circumference is 62.80, The Area is 100 inches squared
Step-by-step explanation:
Diameter is 20 so the Radius is half of thats.
D=20 In
R=10 in
Circumference is diameter multipied by pi
so you multiply 20 by 3.14 and you get 62.80 inches
To Find Area you have to multiply the radius times it self. so 10×10 whoch equals 100.
so the area is 100 inches squared.
suppose the radius of a circle is 8 units. what is its circumference
Answer:
[tex]\large\boxed{C=16\pi\approx50.24}[/tex]
Step-by-step explanation:
The formula of a circumference of a circle:
[tex]C=2\pi r[/tex]
r - radius
We have r = 8. Substitute:
[tex]C=2\pi(8)=16\pi[/tex]
[tex]\pi\approx3.14\to C\approx(16)(3.14)=50.24[/tex]
Answer:
50.24 units
Step-by-step explanation:
Hope this helps!
What is the answer?
Answer:
x ≤ - 4
Step-by-step explanation:
Given
3 - x ≥ 2x + 15 ( add x to both sides )
3 ≥ 3x + 15 ( subtract 15 from both sides )
- 12 ≥ 3x ( divide both sides by 3 )
- 4 ≥ x, hence
x ≤ - 4
3 - x is greater than equal to 2 X + 15
3 is greater than equal to 3X + 15
- 12 is greater than equal to 3 x
- 4 is greater than equal to x
hence x b - 4 - 4 is greater than x
which graph represents y= square root x?
[tex]y=\sqrt{x}[/tex] is the square root function. The graph of this function has been attached below. As you can see, this is in fact a function it passes the Vertical Line Test for Functions that establishes that if a vertical line intersects a graph at most one point, then this is a function. From the square root function we know:
The domain of the function is the set of all nonnegative real numbers. The range of the function is the set of all nonnegative real numbers. The origin [tex](0,0)[/tex] is an intercept of the graph. The graph increases on the interval [tex](0, \infty)[/tex].Answer:
b on edge
Step-by-step explanation:
Simplify square root 72 minus 3 times square root 12 plus square root of 192
A. 6 square root 2 plus 2 square root 3
B. 12 square root 2 plus 2
C. 14 square root 2
D. 8 square root 3 minus square root 1
Step-by-step explanation:
hope it helps you!!!!!!!
Answer: Option 'A' is correct.
Step-by-step explanation:
Since we have given that
√72-3×√12+√192
As we have
[tex]\sqrt{72}=6\sqrt{2}[/tex]
[tex]\sqrt{12}=6\sqrt{2}[/tex]
[tex]\sqrt{192}=8\sqrt{3}[/tex]
So, our equation becomes
[tex]6\sqrt{2}-3\times 2\sqrt{3}+8\sqrt{3}\\\\=6\sqrt{2}-6\sqrt{3}+8\sqrt{3}\\\\=6\sqrt{2}+2\sqrt{3}[/tex]
Hence, Option 'A' is correct.
Without graphing predict weather the function y= (1/2)x shows exponential growth or decay. Justify your predictions
Answer:
The base of the exponential function is 0.5 which is between 0 and 1 and thus this is an exponential decay function.
Step-by-step explanation:
Exponential equations are usually in the form;
[tex]y=ab^{x}[/tex]
where;
a is the initial value, that is the value of y when x is 0,
b is the growth or decay factor and also the base of the exponential function
If b>1, then it is an exponential growth function and the values of y keep getting bigger.
if 0<b<1, then it is an exponential decay function and the y values keep getting smaller as x increases.
In the function given;
[tex]y=(\frac{1}{2})^{x}[/tex]
The base of the exponential function is 0.5 which is between 0 and 1 and thus this is an exponential decay function.
In order to justify our prediction, we can simply obtain the graph of the function and check on how x and y vary.
From the attachment below we can see that the values of y become increasingly smaller as the values of x increases in magnitude which justifies our predictions.
The function y = [tex](1/2)^x[/tex] represents an exponential decay because the base (1/2) is a fraction less than 1.
The function y = [tex](1/2)^x[/tex] represents an exponential decay model because it is in the form y = [tex]a^x[/tex] where a is a fraction between 0 and 1 (0 < a < 1).
An exponential decay function describes a situation where the quantity decreases over time, and the rate of decrease slows down as the quantity gets smaller.
In contrast, if a were greater than 1, it would represent exponential growth, indicating that the quantity increases over time, and the rate of increase accelerates as the quantity grows larger.
So, since (1/2) is less than 1, the function shows exponential decay.
Charles owed 390$ to his friend. On the first day Charles paid his friend 12$. Each following week the amount Charles paid his friend increased by the same amount. After 10 payments, Charles had paid back the full amount. By how much did each payment increase?
What is the perimeter of the rectangle shown below?
Answer:
To find perimeter, you must add length plus length plus width plus width.
(L+L+W+W)
the length is 5, and the width is 8. since there are 4 sides, we must add 5+5+8+8, and that equals 26.
So the perimeter of the rectangle is 26 units.As we know the formula for finding the perimeter of a rectangle is:
[tex]Perimeter=2(L+B)[/tex]
here, L is the length of the rectangle and B is the breadth of the rectangle.
As the values of the length and breadth are given, we will put in the formula;
[tex]Perimeter=2(8+5)[/tex]
[tex]Perimeter=2(13)[/tex]
[tex]Perimeter=26[/tex]
Hence, the perimeter of the rectangle is 26 units.
What is the perimeter in math?Perimeter is the distance around the edge of a shape.
What is a perimeter and its formula?The total length of the boundary of a closed shape is called its perimeter. Hence, the perimeter of that shape is measured as the sum of all the sides. Thus, the perimeter formula is Perimeter(P) = Sum of all the sides.
What is parameter formula?Any equation expressed in terms of parameters is a parametric equation. The general equation of a straight line in slope-intercept form, y = mx + b, in which m and b are parameters, is an example of a parametric equation.
Learn more about perimeter, refer to:
https://brainly.com/question/27186283
#SPJ2
Given: NQ is an altitude of △MNP
Prove: Sinm/m = Sinp/p
PLEASE HELP ASAP any answers appreciated I am completely stuck on this
Answer:
Statement: Reason:
ΔNQM and ΔNQP are right triangle Definition of a right triangle
SinM = h/p and SinP = h/m Definition of sine ratio
p sin M = m sin P Substitution property of equality
p sin M / pm = msinP / pm Division property of equality.
A 50ft. cable is stretched from the top of an antenna to an anchor point on the ground 15 ft. from the base of the antenna. How tall is the antenna? Round the nearest tenth.
Answer:
h = 47.70 ft
The antenna is 47.70 ft tall.
Step-by-step explanation:
The height of the antenna is approximately 47.4ft when calculated using the Pythagorean theorem: √((50ft)^2 - (15ft)^2).
Explanation:The question is asking for the height of the antenna. We can solve this problem by using the Pythagorean theorem, which states that in a right triangle the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the lengths of the other two sides. Here, the hypotenuse is the length of the cable (50 ft), one side is the distance from the base of the antenna to the anchor point (15 ft) and the other side (which we are trying to find), is the height of the antenna.
According to the Pythagorean theorem, the height of the antenna can be calculated as follows: Height = √(Hypotenuse^2 - Base^2), which translates into Height = √((50ft)^2 - (15ft)^2). When you calculate that you get the height of the antenna as approximately 47.4 feet, rounded to the nearest tenth.
Learn more about Pythagorean theorem here:https://brainly.com/question/28361847
#SPJ3
confused, so can someone pls help
Answer:
Choice C
Step-by-step explanation:
(f+g)(x) is a composite function which is obtained by adding the two given functions f(x) and g(x)
(f+g)(x) = f(x) + g(x)
= [tex]3^{x} +10x+4x-2[/tex]
= [tex]3^{x} +14x-2[/tex]
Find the arc length of a partial circle
Answer is...
23.55
See attached photo