Find S for the given geometric series. Round answers to the nearest hundredth, if necessary.

a1=0.2, a5=259.2, r=6

a) 311
b)51
c)222.2
d)624.96

Answers

Answer 1

Answer:

A

Step-by-step explanation:

Sum of the first n terms of a geometric series is:

S = a₁ (1 - r^n) / (1 - r)

Here, a₁ = 0.2, r = 6, and n = 5.

S = 0.2 (1 - 6^5) / (1 - 6)

S = 311

Answer 2

Answer:

Option A

Step-by-step explanation:

For the given geometric series  

a₁ = 0.2

a₅ = 259.2

r = 6

Then we have to find the sum of initial 5 terms of this series

[tex]S_{n} =\frac{a_1(r^4-1)}{(r-1)}=\frac{0.2(6^3-1)}{(6-1)}[/tex]

[tex]=\frac{0.2(7776-1)}{5}[/tex]

[tex]\frac{0.2\times 7775}{5}[/tex]

= 311

Option A is the answer.


Related Questions

Please Explain and Show your work! Thank you!

Answers

Answer:

  344 ft²

Step-by-step explanation:

The area of the square is (40 ft)² = 1600 ft².

The area of the four circles is ...

  4×(πr²) = 4×3.14×(10 ft)² = 1256 ft²

Then the area that is not covered by the circles is ...

  1600 ft² -1256 ft² = 344 ft²

The area not sprinkled is 344 ft².

George was given 11 grams of medicine, but the full dose is supposed to be 25 grams. What percent of his full dose did George receive? Solve with percent table and equivalent fractions

Answers

Answer:  George receive 44 % of his full dose .

Step-by-step explanation:

Given : The amount for full dose : 25  grams

The amount received by George = 11 grams

Now, the percent of his full dose received by George :-

[tex]\dfrac{\text{Dose taken by George}}{\text{Full dose}}\times100[/tex]

[tex]=\dfrac{11}{25}\times100=44\%[/tex]

Hence, George receive 44 % of his full dose .

The AWP for a gallon (3785 ml) of antihistamine/ antitussive cough syrup is $18.75, with an additional 20% discount from the wholesaler. What is the cost of 1 pint of the medication?

Answers

Answer:

The cost of 1 pint of the medication would be $1.875.

Step-by-step explanation:

The AWP of 3785 ml ( 1 gallon ) cough syrup = $18.75

After an additional 20% discount from wholesaler the price would be

New price = 18.75 - (0.20 × 18.75)

                 = 18.75 - 3.75

                 = $15.00

Since 1 gallon ( 3785 ml) = 8 pints

Therefore, the price for 1 pint = [tex]\frac{15}{8}[/tex] = $1.875

The cost of 1 pint of the medication would be $1.875.

A rectangular patio measures 20 feet by 30 feet. By adding x feet to the width and x feet to the length, the area is doubled. Find the new dimensions of the patio.

Answers

Answer:

2400sq ft

Step-by-step explanation:

20×2 and 30×2

40×60

2400 sq ft

Answer:

Length = 40 feet

Width =30 feet

Step-by-step explanation:

It is given that a  rectangular patio measures 20 feet by 30 feet.

To find the area of first patio.

Area = length * breadth

 = 20 * 30 = 600 square feet

To find the value of x

It is given that new area will be the double the area of first patio.

Here area = 2 * 600 = 1200 square feet

Here length = 30 + x

width = 20 + x

Area = (30 +x)(20 + x) = 1200

x² + 50x + 600 =1200

x² + 50x - 600 = 0

By solving this quadratic equation we get,

x = 10 and x = -60

take positive value x = 10

To find the dimensions of new patio

New length = 30 + x = 30 + 10 = 40 feet

width= 20 + x = 20 + 10 = 30 feet

Find the sum of the sequence 46+47+48+49+...+137

Answers

Answer:

8418

Step-by-step explanation:

1 + 2 + ... + n is (n^2 + n)/2

46 + 47 + ... + 137

is the same as

1 + 2 + ... + 137 - (1 + 2 + ... + 45)

or

(137^2 + 137)/2 - (45^2 + 45)/2

= 8418

Graph the line that passes through the given point and has the given slope m. (3,10); m=-(5)/(2)

Answers

Step-by-step explanation:

given a slope and a point that the line passes through you have 2 options

Option 1: Solve for the equation of the line so you can just use that to graph the line. In this scenario it would be y=(-5/2)x - (20/13)

Option 2: plot the given point and, based on the slope, plot the next point that it crosses. In this case the next point would be (5, 7). Then you can just draw a line using these 2 points.

A drawer contains 2 red socks, 4 white socks, and 8 blue socks. Without looking, you draw out a sock, return it, and draw out a second sock. What is the probability that the first sock is red and the second sock is blue?

Answers

[tex]|\Omega|=14^2=196\\|A|=2\cdot8=16\\\\P(A)=\dfrac{16}{196}=\dfrac{4}{49}\approx8.2\%[/tex]

How is this equation completed? I cannot find any examples in the book.

Answers

Answer: Option D

[tex]t_{max} =19\ s[/tex]

Step-by-step explanation:

Note that the projectile height as a function of time is given by the quadratic equation

[tex]h = -12t ^ 2 + 456t[/tex]

To find the maximum height of the projectile we must find the maximum value of the quadratic function.

By definition the maximum value of a quadratic equation of the form

[tex]at ^ 2 + bt + c[/tex] is located on the vertex of the parabola:

[tex]t_{max}= -\frac{b}{2a}[/tex]

Where [tex]a <0[/tex]

In this case the equation is: [tex]h = -12t ^ 2 + 456t[/tex]

Then

[tex]a=-12\\b=456\\c=0[/tex]

So:

[tex]t_{max} = -\frac{456}{2*(-12)}[/tex]

[tex]t_{max} =19\ s[/tex]

1.What’s the least common multiple (LCM) for each group of numbers?
a. 6 and 15
b. 4 and 11
c. 6, 9, and 12
d. 8, 10, and 20

2.What’s the least common denominator (LCD) for each group of fractions?
a. 1⁄6 and 7⁄8
b. 3⁄4 and 7⁄10
c. 7⁄12, 3⁄8 and 11⁄36
d. 8⁄15, 11⁄30 and 3⁄5

3.Insert the “equal” sign or the “not equal” sign ( = or ≠) to make each statement true.
a. 18/36 _____ 1/2
b. 13/15 _____ 7/10
c. 3/5 _____ 5/9
d. 3/8 _____ 10/16

4.On a hot summer day, John drank 5⁄11 of a quart of iced tea; Gary drank 7⁄10 of a quart; and Carter drank 3⁄5 of a quart. Which man was the most thirsty?

5.What’s the largest fraction in each group?
a. 5⁄6 and 29⁄36
b. 5⁄12 and 3⁄8
c. 2⁄5 and 19⁄45
d. 5⁄7, 13⁄14, and 19⁄21
e. 7⁄11 and 9⁄121
f. 1⁄2, 3⁄18, and 4⁄9

6.Reduce each of the following fractions to its simplest form.
a. 12⁄18
b. 48⁄54
c. 27⁄90
d. 63⁄77
e. 24⁄32
f. 73⁄365

7.What is the next fraction in each of the following patterns?
a. 1⁄40, 4⁄40, 9⁄40, 16⁄40, 25⁄40 . . .?
b. 3⁄101, 4⁄101, 7⁄101, 11⁄101, 18⁄101, 29⁄101. . .?
c. 5⁄1, 10⁄2, 9⁄2, 18⁄4, 17⁄8, 34⁄32, 33⁄256. . .?

8.In each pair, tell if the fractions are equal by using cross multiplication.
a. 5⁄30 and 1⁄6
b. 4⁄12 and 21⁄60
c. 17⁄34 and 41⁄82
d. 6⁄9 and 25⁄36

9.This year, a baseball player made 92 hits out of 564 times at bat. Another player made 84 hits out of 634 times at bat. Did the two players have the same batting average?

10.On a test with 80 questions, Bob got 60 correct. On another test with 100 questions, he got 75 correct. Did Bob get the same score on both tests?

11.Find the missing numerators in each of the following problems.
a. 10⁄15 = ⁄60
b. ⁄108 = 4⁄9
c. 7⁄11 = ⁄121
d. ⁄144 = 2⁄6

12.This handy application of LCMs is used by astronomers.

All the planets in our solar system revolve around the sun. The planets occasionally line up together in their journeys, as shown in the illustration. The chart shows the time it takes each planet to make one trip around the sun.

Now, imagine that the planets Earth, Mars, Jupiter, Saturn, Uranus, and Neptune aligned last night. How many years will pass before this happens again? (Hint—Find the LCM of the planets’ revolution times.)
Solar System
Planet Revolution Time
Earth 1 year
Mars 2 years
Jupiter 12 years
Saturn 30 years
Uranus 84 years
Neptune 165 years

Answers

1.

a. 30

b. 44

c. 36

d. 40

2. I don't really remember how to do these but if you cant make the denominator smaller then I belive it's

a. 24

b. 20

c. 4

d. 5

3.

a. =

b. not =

c. not =

d. not =

4. Gary

5.

a. 5/6

b. 5/12

c. 19/45

d. 13/14

e. 7/11

f. 1/2

6.

a. 2/3

b. 8/9

c. 3/10

d. 9/11

e. 3/4

f. 1/5

7.

a. 36/40

b.

c.

8.

a. yes

b. no

c. no

d. no

9. no

10. yes

11.

a. 40

b. 48

c. 77

d. 48

12. 4,620

c. 27⁄90

d. 63⁄77

e. 24⁄32

f. 73⁄365

7.What is the next fraction in each of the following patterns?

a. 1⁄40, 4⁄40, 9⁄40, 16⁄40, 25⁄40 . . .?

b. 3⁄101, 4⁄101, 7⁄101, 11⁄101, 18⁄101, 29⁄101. . .?

c. 5⁄1, 10⁄2, 9⁄2, 18⁄4, 17⁄8, 34⁄32, 33⁄256. . .?

8.In each pair, tell if the fractions are equal by using cross multiplication.

a. 5⁄30 and 1⁄6

b. 4⁄12 and 21⁄60

c. 17⁄34 and 41⁄82

d. 6⁄9 and 25⁄36

1.

a. 30

b. 44

c. 36

d. 40

2.

a. 24

b. 20

c. 4

d. 5

3.

a. =

b. not =

c. not =

d. not =

4. Gary

5.

a. 5/6

b. 5/12

c. 19/45

d. 13/14

e. 7/11

f. 1/2

6.

a. 2/3

b. 8/9

c. 3/10

d. 9/11

e. 3/4

f. 1/5

7.

a. 36/40

b.

c.

8.

a. yes

b. no

c. no

d. no

9. no

10. yes

11.

a. 40

b. 48

c. 77

d. 48

12. 4,620

Step-by-step explanation:

You're using your meter to make voltage measurements in the circuit shown in the figure above. Your meter is connected between points A and C, and you're getting a reading of 6 V on the display. What can you conclude from this reading? A. Switch S1 is open. B. Resistors R1 and R2 have equal resistance values. C. Resistor R2 has a resistance value that's twice the value of either R1. D. Switch S1 is closed.

Answers

Answer:

A. Switch S1 is Open

Step-by-step explanation:

I attach the missing figure in the image below

Since you are getting a reading of 6V which is the maximum voltage of your circuit, you can conclude that

A. Switch S1 is Open

- If the Switch S1 was closed, we would be getting a reading of 0V. This is not the case.

- Because the switch is open, there is no current going through the circuit and therefore there is not any voltage drop across the resistors. This is why their values don't affect the reading.

The probability of winning something on a single play at a slot machine is 0.11. After 4 plays on the slot machine, what is the probability of winning at least once

Answers

Step-by-step explanation:

The probability of winning at least once is equal to 1 minus the probability of not winning any.

P(x≥1) = 1 - P(x=0)

P(x≥1) = 1 - (1-0.11)^4

P(x≥1) = 1 - (0.89)^4

P(x≥1) = 0.373

The probability is approximately 0.373.

Answer:

37.26% probability of winning at least once

Step-by-step explanation:

For each play, there are only two possible outcomes. Either you win, or you do not win. The probability of winning on eah play is independent of other plays. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

The probability of winning something on a single play at a slot machine is 0.11.

This means that [tex]p = 0.11[/tex]

After 4 plays on the slot machine, what is the probability of winning at least once

Either you do not win any time, or you win at least once. The sum of the probabilities of these events is decimal 1. So

[tex]P(X = 0) + P(X \geq 1) = 1[/tex]

We want [tex]P(X \geq 1)[/tex]. So

[tex]P(X \geq 1) = 1 - P(X = 0)[/tex]

In which

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 4) = C_{4,0}.(0.11)^{0}.(0.89)^{4} = 0.6274[/tex]

[tex]P(X \geq 1) = 1 - P(X = 0) = 1 - 0.6274 = 0.3726[/tex]

37.26% probability of winning at least once

Last​ year, a person wrote 126 checks. Let the random variable x represent the number of checks he wrote in one​ day, and assume that it has a Poisson distribution. What is the mean number of checks written per​ day? What is the standard​ deviation? What is the​ variance?

Answers

Answer:  The mean number of checks written per​ day  [tex]=0.3452[/tex]

Standard deviation[tex]=0.5875[/tex]

Variance  [tex]=0.3452[/tex]

Step-by-step explanation:

Given : The total number of checks wrote by person in a year = 126

Assume that the year is not a leap year.

Then  1 year = 365 days

Let the random variable x represent the number of checks he wrote in one​ day.

Then , the mean number of checks wrote by person each days id=s given by :-

[tex]\lambda=\dfrac{126}{365}\approx0.3452[/tex]

Since , the distribution is Poisson distribution , then the variance must equal to the mean value i.e. [tex]\sigma^2=\lambda=0.3452[/tex]

Standard deviation : [tex]\sigma=\sqrt{0.3452}=0.5875372328\approx0.5875[/tex]

All Seasons Plumbing has two service trucks that frequently need repair. If the probability the first truck is available is .73, the probability the second truck is available is .59, and the probability that both trucks are available is .43: What is the probability neither truck is available

Answers

Answer: .11

Step-by-step explanation:

Let F be the event that the first truck is available and S be the event that the second truck is available.

The probability of neither truck being available is expressed as P([tex]F^{C}[/tex]∩[tex]S^{C}[/tex]) , where P([tex]F^{C}[/tex]) is the probability that the event F doesn't happen and P([tex]S^{C}[/tex]) is the probability that the event S doesn't happen.

P([tex]F^{C}[/tex])= 1-P(F) = 1-0.73 = 0.27

P([tex]S^{C}[/tex])=1-P(S) = 1-0.59 = 0.41

Since  [tex]F^{C}[/tex] and [tex]S^{C}[/tex] aren't mutually exclusive events, then:

P([tex]F^{C}[/tex]∪[tex]S^{C}[/tex]) = P([tex]F^{C}[/tex]) + P([tex]S^{C}[/tex]) - P([tex]F^{C}[/tex]∩[tex]S^{C}[/tex])

Isolating the probability that interests us:

P([tex]F^{C}[/tex]∩[tex]S^{C}[/tex])= P([tex]F^{C}[/tex]) + P([tex]S^{C}[/tex])- P([tex]F^{C}[/tex]∪[tex]S^{C}[/tex])

Where P([tex]F^{C}[/tex]∪[tex]S^{C}[/tex]) = 1 - 0.43 = 0.57

Finally:

P([tex]F^{C}[/tex]∩[tex]S^{C}[/tex]) = 0.27+ 0.41 - 0.57 = 0.11

In terms of x, find an expression that represents the area of the shaded region. The outer square has side lengths of (x+5) and the inner square has side lengths of (x-2), as shown.

Answers

Answer:

Area = 14x + 21 square units

Step-by-step explanation:

The formula of an area of a square with side length a:

[tex]A=a^2[/tex]

The big square:

[tex]a=x+5[/tex]

Substitute:

[tex]A_B=(x+5)^2[/tex]           use  [tex](a+b)^2=a^2+2ab+b^2[/tex]

[tex]A_B=x^2+2(x)(5)+5^2=x^2+10x+25[/tex]

The small square:

[tex]a=x-2[/tex]

Substitute:

[tex]A_S=(x-2)^2[/tex]       use  [tex](a-b)^2=a^2-2ab+b^2[/tex]

[tex]A_S=x^2-2(x)(2)+2^2=x^2-4x+4[/tex]

The area of a shaded region:

[tex]A=A_B-A_S[/tex]

Substitute:

[tex]A=(x^2+10x+25)-(x^2-4x+4)=x^2+10x+25-x^2+4x-4[/tex]

combine like terms

[tex]A=(x^2-x^2)+(10x+4x)+(25-4)=14x+21[/tex]

Truck brakes can fail if they get too hot. In some mountainous areas, ramps of loose gravel are constructed to stop runaway trucks that have lost their brakes. The combination of a slight upward slope and a large coefficient of rolling friction as the truck tires sink into the gravel brings the truck safely to a halt. Suppose a gravel ramp slopes upward at 6.0∘ and the coefficient of rolling friction is 0.30. How long the ramp should be to stop a truck of 15000 kg having a speed of 35 m/s.

Answers

The length of the ramp required can be determined by using conservation

of energy principle.

The length of the ramp should be approximately 154.97 meters.

Reasons:

Given parameters are;

The angle of inclination of the ramp, θ = 6.0°

Coefficient of friction, μ = 0.30

Mass of the truck, m = 15,000 kg

Speed of the truck, v = 35 m/s

Required;

The length of the ramp to stop the truck

Solution:

From the law of conservation of energy, we have;

Kinetic energy = Work done against friction + Potential energy gained by the truck at height

K.E. = [tex]W_f[/tex] + P.E.

Kinetic energy of the truck, K.E. = [tex]\frac{1}{2} \cdot m \cdot v^2[/tex]

Therefore;

K.E. = [tex]\frac{1}{2} \times 15,000 \times 35^2 = 9,187,500[/tex]

The kinetic energy of the truck, K.E. = 9,187,500 J

Friction force,[tex]F_f[/tex] = m·g·cos(θ)·μ

Therefore;

[tex]F_f[/tex] = 15,000 × 9.81 × cos(6) × 0.30 = 43,903.169071

Friction force,[tex]F_f[/tex] = 43,903.169071 N

Work done against friction = [tex]F_f[/tex] × d

Therefore;

Work done against friction, [tex]W_f[/tex] = 43,903.169071·d

Potential energy gained, P.E. = m·g·h

The height, h = d × sin(6.0°)

P.E. = 15,000 × 9.81 × d × sin(6.0°) = 147150 × d × sin(6.0°)

Which gives;

9,187,500 J = 43,903.169071·d + 147150 × d × sin(6.0°)

[tex]d = \dfrac{9187500}{43,903.169071 + 147150 \times sin(6.0^{\circ})} \approx 154.97[/tex]

The length of the ramp, d ≈ 154.97 m.

Learn more here:

https://brainly.com/question/20166060

A hypothesis is: a The average squared deviations about the mean of a distribution of values b) An empirically testable statement that is an unproven supposition developed in order to explain phenomena A statement that asserts the status quo; that is, any change from what has been c) thought to be true is due to random sampling order dA statement that is the opposite of the null hypothesis e) The error made by rejecting the null hypothesis when it is true

Answers

Answer:

b) An empirically testable statement that is an unproven supposition developed in order to explain phenomena.

Step-by-step explanation:

b) An empirically testable statement that is an unproven supposition developed in order to explain phenomena.

A hypothesis is an unproven supposition.This may be derived from previous research or theory and is developed prior to data collection.

Note:

Variance is the average squared deviations about the mean of a distribution of values.

In a survey of 520 likely voters in a certain city, 307 said that they planned to vote to reelect the incumbent mayor. What is the probability that a surveyed voter plans to vote to reelect the mayor? Write only a number as your answer. Round to two decimal places (for example: 0.43).

Answers

Answer: 0.59

Step-by-step explanation:

Probability is a measure that quantifies the likelihood that events will occur.

Probabilities can be numerically described by the number of desired outcomes divided by the total number of all outcomes .

In this case, the number of desired outcomes is 307 (surveyed voters who plan to vote to reelect the mayor), and the total number of all outcomes is 520 (total of surveyed voters) .

Then, the probability that a surveyed voter plans to vote to reelect the mayor is calculated as:

[tex]\frac{307}{520}=0.59[/tex]

Final answer:

The probability that a surveyed voter plans to vote to reelect the mayor is 0.59.

Explanation:

To find the probability that a surveyed voter plans to vote to reelect the mayor, we divide the number of surveyed voters who plan to reelect the mayor by the total number of surveyed voters.


Given that 307 out of 520 likely voters plan to reelect the incumbent mayor, the probability is:


Probability = Number of surveyed voters who plan to reelect the mayor / Total number of surveyed voters


Probability = 307 / 520 = 0.59 (rounded to two decimal places)

A radio station claims that the amount of advertising per hour of broadcast time has an average of 10 minutes and a standard deviation equal to 5 minutes. You listen to the radio station for 1 hour, at a randomly selected time, and carefully observe that the amount of advertising time is equal to 8.2 minutes. Calculate the z-score for this amount of advertising time. Round your answer to 2 decimal places.

Answers

Answer:   -0.36

Step-by-step explanation:

Given: Mean : [tex]\mu=10\text{ minutes}[/tex]

Standard deviation : [tex]\sigma=5\text{ minutes}[/tex]

We know that the formula to calculate the z-score is given by :-

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x=8.2 minutes, we have

[tex]z=\dfrac{8.2-10}{5}=0.36[/tex]

Hence, the z-score for this amount of advertising time = -0.36

Final answer:

The z-score for the observed amount of advertising time (8.2 minutes) compared to the radio station's average of 10 minutes with a standard deviation of 5 minutes is -0.36, when rounded to two decimal places.

Explanation:

To calculate the z-score for the amount of advertising time observed on the radio station (8.2 minutes), we use the formula: Z = (X - μ) / σ, where X is the value to calculate the z-score for, μ is the mean of the data, and σ is the standard deviation. Plugging in the given values: X = 8.2 minutes (amount of advertising time observed), μ = 10 minutes (average advertising time), σ = 5 minutes (standard deviation).

So, the z-score is calculated as follows:

Z = (8.2 - 10) / 5 = -1.8 / 5 = -0.36.

Thus, the z-score of the amount of advertising time (8.2 minutes) is -0.36, rounded to two decimal places.

There are 20 multiple-choice questions on an exam, each having responses a, b, c, or d. Each question is worth 5 points, and only one response per question is correct. Suppose a student guesses the answer to each question, and her guesses from question to question are independent. If the student needs at least 40 points to pass the test, the probability the student passes is closest to

Answers

Ok, the student needs 40 points and each question is worth 5, so 40/5 = 8 questions are needed.

Each question has 4 possibilities, 1 is right, so the chances to guess it correctly is one in 4, or 1/4, or 25%.

[tex]\frac{8}{20} = \frac{2}{5}[/tex]

To know the probability to pass the exam we can do:

[tex]\frac{25}{100}*\frac{2}{5} = 10%[/tex]

Answer: 0.102 or  10.2%.

Step-by-step explanation:

Given : Number of multiple-choice questions = 20

Number of options in any question=4

Each question is worth 5 points and only one response per question is correct.

Probability of getting a correct answer =  [tex]\dfrac{1}{4}=0.25[/tex]

If the student needs at least 40 points to pass the test, that mean he needs at-least [tex]\dfrac{40}{5}=8[/tex] questions correct.

Let x denotes the number of correct questions .

By using binomial distribution , we find

[tex]P(x\geq8)=1-P(x<8)\\\\ =1-P(x\leq7)\\\\=1-0.898\ \ \text{[By using binomial table for n= 20 , p=0.25 and x=7]}\\\\=0.102[/tex]

[Binomial table gives the probability [tex]P(X\leq x)=\sum_{x=0}^c^nC_xp^x(1-p)^{n-x}[/tex] ]

Hence, the probability the student passes is closest to 0.102 or 10.2%.

You are playing with a standard deck of 52 playing cards. Each time you draw one card from the deck, and then you put the card back, and reshuffle the deck before choosing another card. What is the probability of selecting a number less than (but not including) 4? Count aces as equal to 1. (report a number rounded to the nearest two decimal places, but not a fraction)

Answers

Answer:

0.23

Step-by-step explanation:

A standard deck has 4 suits (spade, club, diamond, and heart), and each suit has 13 ranks (ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, jack, queen, and king).

We want to know the probability of drawing an ace, a 2, or a 3.  There are four aces, four 2's, and four 3's in a deck (one for each suit).  That's a total of 12 cards.  So the probability is:

12 / 52 ≈ 0.23

Using the probability concept, it is found that there is a 0.2308 = 23.08% probability of selecting a number less than 4.

--------------------------

A probability is the division of the number of desired outcomes by the number of total outcomes.In a standard deck, there are 52 cards, and thus, the number of total outcomes is [tex]T = 52[/tex]Of those, 12 are less than 4, and thus, the number of desired outcomes is [tex]D = 4[/tex].

Thus, the probability of selecting a number less than 4 is:

[tex]p = \frac{D}{T} = \frac{12}{52} = 0.2308[/tex]

0.2308 = 23.08%

A similar problem is given at https://brainly.com/question/13484439

A theater group made appearances in two cities. The hotel charge before tax in the second city was $500 lower than in the first. The tax in the first city was 6.5% and the tax in the second city was 4.5% The total hotel tax paid for the two cities was $582.50
. How much was the hotel charge in each city before tax?

Answers

Answer:

First city: $5,500

Second city: $5,000

Step-by-step explanation:

Let's define x as the hotel price in the first city and y the hotel price in the second city.  We can start with this equation:

y = x - 500 (The hotel before tax in the 2nd city was $500 lower than in the 1st.)

Then we can say

0.065x + 0.045y = 582.50  (the sum of the tax amounts were $582.50)

We place the value of y from the first equation in the second equation:

0.065x + 0.045 (x - 500) = 582.50

0.065x + 0.045x - 22.50 = 582.50 (simplifying and adding 22.5 on each side)...

0.11x = 605

x = 5,500

The cost of the first hotel was $5,500

Thus, the cost of the second hotel was $5,000 (x - 500)

Factor out the GCF (greatest common factor)


8m^2 n^3 - 24m^2 n^2 + 4m^3 n +

Answers

Answer:

4m²n

Step-by-step explanation:

The GCF is the factor by which all the terms among the given can be divided.

In the expression 8m²n³-24m²n²+4m³n,

The GCF between 8,24 and 4 is 4

The greatest common factor between m²,m² and m³ is m²

The greatest common factor between n³, n² and n is n

Thus multiplying the three we get:

4×m²×n

=4m²n

The ratio of the areas of two similar polygons is 49:36. If the perimeter of the first polygon is 15 cm, what is the perimeter of the second polygon? Round to the nearest hundredth. 11.76 cm 11.02 cm 13.25 cm 12.85 cm

Answers

Answer:

12.85 cm

Step-by-step explanation:

Area ratio of 49:36 means a side length ration of 7:6.

7/6 = 15/x

7x = 90

x = 90/7

= 12.85

Answer: 12.85 cm

Step-by-step explanation:

Combine the following expressions.



Answer right pls, thanks

Answers

a and c  both have √x  , so they will both be in brackets multiplied by √x.

b is the only term with √y  so it will be outside of the brackets.

So the answer will be:

(a - c)√x  + b√y

We can check this by expanding the brackets:

  (a - c)√x  + b√y

= a√x  - c√x  + b√y

We can rearrange this to get the same original expression:

a√x  - c√x  + b√y

= a√x  + b√y  - c√x

____________________________________

Answer:

Last option: (a - c)√x  + b√y

Answer:

choice 3 is correct  √x(a - c) + b√y

explanation:

You simplify by looking for the common multiplier which is √x

meaning it will be

√x(a - c)  + b√y

A square pyramid is 6 feet on each side. The height of the pyramid is 4 feet. What is the total area of the pyramid?

60 ft2
156 ft2
96 ft2
120 ft2

Answers

Answer:

Option C

Step-by-step explanation:

96ft2

Answer:

Area of pyramid = [tex]96[/tex]. square feet.

Step-by-step explanation:

Given : A square pyramid is 6 feet on each side. The height of the pyramid is 4 feet.

To find:  What is the total area of the pyramid.

Solution : We have given

Each side of square pyramid = 6 feet .

Height = 4 feet .

Area of pyramid = [tex](side)^{2} + 2* side\sqrt{\frac{(side)^{2}}{4} +height^{2}}[/tex].

Plug the values side =  6 feet  , height = 4 feet .

Area of pyramid = [tex](6)^{2} + 2* 6\sqrt{\frac{(6)^{2}}{4} + 4^{2}}[/tex].

Area of pyramid = [tex]36+ 12\sqrt{\frac{36}{4} + 16}[/tex].

Area of pyramid = [tex]36+ 12\sqrt{9 +16}[/tex].

Area of pyramid = [tex]36+ 12\sqrt{25}[/tex].

Area of pyramid = [tex]36+ 12 *5[/tex].

Area of pyramid = [tex]36+ 60[/tex].

Area of pyramid = [tex]96[/tex]. square feet.

Therefore, Area of pyramid = [tex]96[/tex]. square feet.

50 Points Please show graph
Solve the equation by graphing.

x^2+14x+45=0

First, graph the associated parabola by plotting the vertex and four additional points, two on each side of the vertex.
Then, use the graph to give the solution(s) to the equation.
If there is more than one solution, separate them with commas.

Answers

Answer:

The solutions are x = -9 , x = -5

Step-by-step explanation:

* Lets find the vertex of the parabola

- In the quadratic equation y = ax² + bx + c, the vertex of the parabola

 is (h , k), where h = -b/2a and k = f(h)

∵ The equation is y = x² + 14x + 45

∴ a = 1 , b = 14 , c = 45

∵ h = -b/2a

∴ h = -14/2(1) = -14/2 = -7

∴ The x-coordinate of the vertex of the parabola is -7

- Lets find k

∵ k = f(h)

∵ h = -7

- Substitute x by -7 in the equation

∴ k = (-7)² + 14(-7) + 45 = 49 - 98 + 45 = -4

∴ The y-coordinate of the vertex point is -4

∴ The vertex of the parabola is (-7 , -4)

- Plot the point on the graph and then find two points before it and

 another two points after it

- Let x = -9 , -8 and -6 , -5

∵ x = -9

∴ y = (-9)² + 14(-9) + 45 = 81 - 126 + 45 = 0

- Plot the point (-9 , 0)

∵ x = -8

∴ y = (-8)² + 14(-8) + 45 = 64 - 112 + 45 = -3

- Plot the point (-8 , -3)

∵ x = -6

∴ y = (-6)² + 14(-6) + 45 = 36 - 84 + 45 = -3

- Plot the point (-6 , -3)

∵ x = -5

∴ y = (-5)² + 14(-5) + 45 = 25 - 70 + 45 = 0

- Plot the point (-5 , 0)

* To solve the equation x² + 14x + 45 = 0 means find the value of

  x when y = 0

- The solution of the equation x² + 14x + 45 = 0 are the x-coordinates

 of the intersection points of the parabola with the x-axis

∵ The parabola intersects the x-axis at points (-9 , 0) and (-5 , 0)

∴ The solutions of the equation are x = -9 and x = -5

* The solutions are x = -9 , x = -5

PLEASE HELP!!!!!!!!!!!!!!!

Answers

Answer:

  d.  (1, 5, 2)

Step-by-step explanation:

A suitable calculator can find the reduced row-echelon form for you. Some scientific calculators and many graphing calculators have this capability, as do on-line calculator. The one below is supported by ads.

The principle of redundancy is used when system reliability is improved through redundant or backup components. Assume that a​ student's alarm clock has a 15.7​% daily failure rate. Complete parts​ (a) through​ (d) below. a. What is the probability that the​ student's alarm clock will not work on the morning of an important final​ exam? b. If the student has two such alarm​ clocks, what is the probability that they both fail on the morning of an important final​ exam? c. What is the probability of not being awakened if the student uses three independent alarm​ clocks?d. Do the second and third alarm clocks result in greatly improved​ reliability? (A) Yes, because you can always be certain that at least one alarm clock will work. (B) No, because the malfunction of both is equally or more likely than the malfunction of one. (C) ​Yes, because total malfunction would not be​ impossible, but it would be unlikely. (D) No, because total malfunction would still not be unlikely.

Answers

Step-by-step answer:

Given:

alarm clocks that fail at 15.7% on any day.

Solution

Probability of failure of a single clock = 15.7% = 0.157

(a)

probability of failure of a single clock on any given day (final exam or not)

= 15.7%  (given)

(b)

probability of failure of two independent alarm clocks on the SAME day

= 0.157^2

= 0.024649  (from independence of events)

(c)

probability of failure of three independent alarm clocks on the SAME day

= 0.157^3

= 0.00387  (from independence of events)

(d)

Since the probability of failure has been reduced from 0.157 to 0.00387, we can conclude that yes, even though malfunction of all three clocks is not impossible, it is unlikely at a probability of 0.00387 (less than 1 %)

Using the binomial distribution, it is found that:

a) 15.7% probability that the​ student's alarm clock will not work on the morning of an important final​ exam.

b) 0.0246 = 2.46% probability that they both fail on the morning of an important final​ exam.

c) 0.0039 = 0.39% probability of not being awakened if the student uses three independent alarm​ clocks.

d)

(C) ​Yes, because total malfunction would not be​ impossible, but it would be unlikely.

---------------------------

For each alarm clock, there are only two possible outcomes. Either it works, or it does not. The probability of an alarm working is independent of any other alarm, which means that the binomial distribution is used to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by:

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of a success on a single trial.

---------------------------

Item a:

15.7% probability of the alarm clock falling each day, thus, the same probability on the day of the final exam.

---------------------------

Item b:

Two clocks, thus [tex]n = 2[/tex]Each with a 100 - 15.7 = 84.3% probability of working, thus [tex]p = 0.843[/tex].

The probability of both falling is the probability that none works, thus P(X = 0).

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 0) = C_{2,0}.(0.843)^{0}.(0.157)^{2} = 0.0246[/tex]

0.0246 = 2.46% probability that they both fail on the morning of an important final​ exam.

---------------------------

Item c:

Same as item b, just with 3 clocks, thus [tex]n = 3[/tex]

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 0) = C_{3,0}.(0.843)^{0}.(0.157)^{3} = 0.0039[/tex]

0.0039 = 0.39% probability of not being awakened if the student uses three independent alarm​ clocks.

---------------------------

Item d:

Each extra clock, the probability of malfunctions become increasingly smaller, thus very unlikely, which means that the correct option is:

(C) ​Yes, because total malfunction would not be​ impossible, but it would be unlikely.

A similar problem is given at https://brainly.com/question/23576286

A student answers a multiple-choice examination question that offers four possible answers. Suppose the probability that the student knows the answer to the question is 0.9 and the probability that the student will guess is 0.1. Assume that if the student guesses, the probability of selecting the correct answer is 0.25. If the student correctly answers a question, what is the probability that the student really knew the correct answer? (Round your answer to four decimal places.)

Answers

Answer: 0.9730

Step-by-step explanation:

Let A be the event of the answer being correct and B be the event of the knew the answer.

Given: [tex]P(A)=0.9[/tex]

[tex]P(A^c)=0.1[/tex]

[tex]P(B|A^{C})=0.25[/tex]

If it is given that the answer is correct , then the probability that he guess the answer [tex]P(B|A)= 1[/tex]

By Bayes theorem , we have

[tex]P(A|B)=\dfrac{P(B|A)P(A)}{P(B|A)P(A)+P(C|A^c)P(A^c)}[/tex]

[tex] =\dfrac{(1)(0.9)}{(1))(0.9)+(0.25)(0.1)}\\\\=0.972972972973\approx0.9730[/tex]

Hence, the student correctly answers a question, the probability that the student really knew the correct answer is 0.9730.

Find the derivative of the function using the definition of derivative. State the domain of the function and the domain of its derivative. f(t) = sqrt 9-x

Answers

Answer:The derivative of the function is:

       [tex]f'(x)= \dfrac{-1}{2\sqrt{9-x}}[/tex]

The domain of the function is:  [tex]x\leq 9[/tex]and the domain of the derivative function is: [tex]x\leq 9[/tex]Step-by-step explanation:

The function f(x) is given by:

   [tex]f(x)=\sqrt{9-x}[/tex]

The domain of the function is the possible values of x where the function is defined.

We know that the square root function [tex]\sqrt{x}[/tex] is defined when x≥0.

Hence, [tex]\sqrt{9-x}[/tex] will be defined when [tex]9-x\geq 0\\\\i.e.\\\\x\leq 9[/tex]

Hence, the domain of the function f(x) is: [tex]x\leq 9[/tex]

Also, the definition of derivative of x is given by:

[tex]f'(x)= \lim_{h \to 0}  \dfrac{f(x+h)-f(x)}{h}[/tex]

Hence, here by putting the value of the function we get:

[tex]f'(x)= \lim_{h \to 0} \dfrac{\sqrt{9-(x+h)}-\sqrt{9-x}}{h}\\\\i.e.\\\\f'(x)= \lim_{h \to 0} \dfrac{\sqrt{9-(x+h)}-\sqrt{9-x}}{h}\times \dfrac{\sqrt{9-(x+h)}+\sqrt{9-x}}{\sqrt{9-(x+h)}+\sqrt{9-x}}\\\\\\f'(x)= \lim_{h \to 0} \dfrac{(\sqrt{9-(x+h)}-\sqrt{9-x})(\sqrt{9-(x+h)}+\sqrt{9-x})}{(\sqrt{9-(x+h)}+\sqrt{9-x})\times h}\\\\\\f'(x)= \lim_{h \to 0} \dfrac{9-(x+h)-(9-x)}{(\sqrt{9-(x+h)}+\sqrt{9-x})\times h}[/tex]

Since,

[tex](a-b)(a+b)=a^2-b^2[/tex]

Hence, we have:

[tex]f'(x)= \lim_{h \to 0} \dfrac{-h}{(\sqrt{9-(x+h)}+\sqrt{9-x})\times h}\\\\\\f'(x)= \lim_{h \to 0} \dfrac{-1}{(\sqrt{9-(x+h)}+\sqrt{9-x})}\\\\\\i.e.\\\\\\f'(x)= \dfrac{-1}{2\sqrt{9-x}}[/tex]

Since, the domain of the derivative function is equal to the derivative of the square root function.

Also, the domain of the square root function is: [tex]x\leq 9[/tex]

Hence, domain of the derivative function is:  [tex]x\leq 9[/tex]

Answer:

-1/sqrt(1-9x)

Step-by-step explanation:

This is the answer

Other Questions
A zygote becomes a mature adult through the process of: meiosis or mitosis A girl had $12 but spent $3 of it . what per cent did she spend Which cranial nerve innervates several different systems including blood pressure, digestion, and cardiac rhythm? Which key human trait did hunter-gatherer groups depend on to survive? A. intelligence B. imagination C. shared knowledge D. alertness E. versatility Leisure Vacations is considering a 5-year project which will require the purchase of $1.4 million in new 5-Year MACRS equipment The MACRS rates are 20 percent, 32 percent, 19.2 percent, 11.52 percent, 11.52 percent, and 5.76 percent for Years 1 to 6, respectively. The firm desires a minimal 14 percent rate of return and the tax rate is 34 percent. The equipment can be sold at the end of the project for an estimated $225,000. What is the amount of the aftertax salvage value? Select one: a. $95,322.15 b. $162,418.54 c. $147,600.00 d. $175,917.60 e. $144,238.97 The map below shows the ethnic groups in the southern Balkans in the 1900s.What does the information on this map suggest regarding ethnic groups in the southern Balkans? Someone please help ill be ur bff and do whatever u wantRead each question and answer in a complete sentence in French.Quelle est la date aujourd'hui?C'est quel jour?Cest quelle saison?Quelle est la date de ton anniversaire?Can u also translate what the questions say please!! Who led the largest slave rebellion in U.S. history? What event involving the Maine motivated the United States to go to war with Spain? It exploded in Cuba. It was hijacked in the Philippines. It exploded in Panama. It was hijacked in Puerto Rico. How do you think taking a sociology course might affect your social interactions? A new ride being built at an amusement park includes a vertical drop of 126.5 metered. Starting from rest, the ride vertically drops that distance before the track curves forward. If the velocity at the bottom of the drop is 10.0 m/s and the mass of the cart and passengers is 3.5 x 10^4 kg, how much potential energy was converted into thermal energy? The British officially recognized Americas independence in 1783 whena)the fighting ended after the war.b)George Washington was elected president.c)the Treaty of Paris was signed.d)the Declaration of Independence was passed. 1. In the number 7563291 write down the column that the 5 is in 2. Write down the term to term rule for this sequence: 3,-1,-5,-93. Work out the LCM of 18 and 30 4. Simplify b-3b+a+b5. A childs shape sorter has 3 green shapes, 3 red shapes, 4 blue shapes and 4 yellow shapes. Write down the probability of selecting a green or red shape 6. Calculate 479+725 7. Which numbers in the 100 times table is 3562 between 8. Find the input into the function machine x3 -5 289. Calculate 3/8-1/610. In a pie chart an angle of 24 degrees is drawn to represent people who voted labour in the last election. What fraction of people voted labour 11. Two angles are 72 degrees and 49 degrees. They lie on a straight line with a third angle. Calculate the size of the third angle 12. Write a list of 5 numbers with a median of 7 14. Change 0.6 into a percentage 15. Work or 7% of 5016. How many edges does a square based pyramid have Please could someone help me with these question I need help ASAP I will make your answer a brainliest answer which cells make antibodiesa-virusesb-t cellsc-bacteriad-b cells A camper wants to know the width of a river. From point A, he walks downstream 60 feet to point B and sights a canoe across the river. It is determined that [tex]\alpha[/tex] = 34. About how wide is the river? A. 34 feet B. 50 feet C. 89 feet D. 40 feet 2. Cathy started her own line of custom-made and hand-embellished wedding shoes. She opened up her own shop, paying $2500 as a one-time licensing fee. She used about $3000 in raw materials and made $3500. At the end of the first month, Carly, her sister, looked at her financials and told her that she was losing money and should shut down. Cathy is heartbroken. As an economics guru, what would you advise her to do? Describe the history and current status of the word ain't. PLEASE HELP ASAPPPA 16.6 g sample of alcohol absorbs 890 Joules of energy as it is heated. If the initial temperature of the alcohol was21.5 C, what is the final temperature of the ethanol? James calculated the height of a cylinder that has a volume of 324pi cubic inches and a radius of 12 inches. His work is shown below. Finches living on the Galapagos Islands were critical for Darwin to develop his ideas. What key observation did he make about the finches? A. The finches' feathers were structurally different to allow them to fly at different heights and speeds, depending on their local environment. B. The finches' beaks were uniquely adapted as tools for them to eat the food that was available to them. C. The finches' feathers were colored differently, providing camouflage within their unique environment. D. The finches' beaks were colored differently, providing camouflage within their unique environment