Find an equation of the tangent to the curve at the given point by both eliminating the parameter and without eliminating the parameter. x = 4 + ln (t), y = t^2 + 6, (4, 7)

Answers

Answer 1

Answer:

y = 2x − 1

Step-by-step explanation:

By eliminating the parameter, first solve for t:

x = 4 + ln(t)

x − 4 = ln(t)

e^(x − 4) = t

Substitute:

y = t² + 6

y = (e^(x − 4))² + 6

y = e^(2x − 8) + 6

Taking derivative using chain rule:

dy/dx = e^(2x − 8) (2)

dy/dx = 2 e^(2x − 8)

Evaluating at x = 4:

dy/dx = 2 e^(8 − 8)

dy/dx = 2

Writing equation of line using point-slope form:

y − 7 = 2 (x − 4)

y = 2x − 1

Now, without eliminating the parameter, take derivative with respect to t:

x = 4 + ln(t)

dx/dt = 1/t

y = t² + 6

dy/dt = 2t

Finding dy/dx:

dy/dx = (dy/dt) / (dx/dt)

dy/dx = (2t) / (1/t)

dy/dx = 2t²

At the point (4, 7), t = 1.  Evaluating the derivative:

dy/dx = 2(1)²

dy/dx = 2

Writing equation of line using point-slope form:

y − 7 = 2 (x − 4)

y = 2x − 1

Answer 2

To find the tangent to the curve represented by the parametric equations x = 4 + ln(t), y = t² + 6, both methods, eliminating and not eliminating the parameter t, yield the same result. The slope of the tangent line at the point (4, 7) is determined to be 2, thus the equation of the tangent is y - 7 = 2(x - 4).

To find the equation of the tangent to the given curve at the point (4, 7) with the parametric equations x = 4 + ln(t) and y = t² + 6, we can approach the problem in two ways: with and without eliminating the parameter t.

Firstly, without eliminating the parameter, we need to find the derivatives dx/dt and dy/dt, and then use them to find dy/dx which is the slope of the tangent at the given point. Since dx/dt = 1/t and dy/dt = 2t, at the point (4, 7), we have t = 1, making the slope dy/dx = (dy/dt)/(dx/dt) = 2 × 1 / (1/1) = 2. The equation of the tangent line can thus be written as y - y₁ = m(x - x₁), where m is the slope, and (x₁, y₁) is the point of tangency.

This gives us the equation y - 7 = 2(x - 4).


Related Questions

The volume of water flowing through a pipe varies directly wlth the square of the radius of the pipe. If the water flows at a rate of 80 liters per minute through a pipe with a radlus of 4 cm, at what rate would water flow through a pipe with a radius of 3 cm? (Rigorous) (Competency 007) 11. A) 45 liters per minute B) 6.67 liters per minute C) 60 liters per minute D) 4.5 liters per minute

Answers

Answer:

A

Step-by-step explanation:

Volume varies directly with the square of the radius, so:

V = k r²

When V = 80, r = 4.

80 = k (4)²

k = 5

V = 5r²

When r = 3:

V = 5 (3)²

V = 45

The flow is 45 L/min.

Solve the following using the crossing-graphs method. (Round your answer to two decimal places.) 5 + 69 × 0.96t = 32

Answers

Answer:

The solution is 22.98.

Step-by-step explanation:

Here, the given equation,

[tex]5 + 69\times 0.96^t = 32[/tex],

Let [tex]f(t) = 5 + 69\times 0.96^t[/tex]

And, [tex]f(t) = 32[/tex]

Where, t represents x-axis and f(t) represents y-axis,

Since, [tex]f(t) = 5 + 69\times 0.96^t[/tex] is an exponential decay function having y-intercept (0,74).

Also, f(t) = 32 is the line, parallel to x-axis,

Thus, after plotting the graph of the above functions,

We found that they are intersecting at (22.984, 32)

Hence, the solution of the given equation = x-coordinate of the intersecting point = 22.984 ≈ 22.98

Final answer:

To solve the given equation, 5 + 69 × 0.96t = 32, you start by subtracting 5 from both sides, then divide by 69. Then, divide both sides by 0.96 to solve for t. The solution is t ≈ 0.41 (rounded to two decimal places).

Explanation:

To solve the equation 5 + 69 × 0.96t = 32 using the crossing-graphs method, we first simplify the equation:

Start by subtracting 5 from both sides of the equation: 69 × 0.96t = 32 - 5.This results in: 69 × 0.96t = 27.Next, divide both sides by 69: 0.96t = 27/69.Which simplifies to 0.96t ≈ 0.391 (rounded to three decimal places).Finally, divide both sides by 0.96 to solve for t: t ≈ 0.391/0.96 ≈ 0.41 (rounded to two decimal places).

Learn more about Crossing-graphs method here:

https://brainly.com/question/34386833

#SPJ6

The conversion factor relating feet to meters is 1 ft=0.305 m. Keep in mind that when using conversion factors, you want to make sure that like units cancel leaving you with the units you need. You have been told that a certain house is 164 m2 in area. How much is this in square feet?

Answers

Answer:

  1763 ft²

Step-by-step explanation:

Using the given conversion factor, ...

  (164 m²)(1 ft/(.305 m))² = 165/.093025 ft² ≈ 1763 ft²

_____

The exact conversion factor is 1/0.3048, so the area is closer to 1765 ft². For a 4-significant digit answer, you need to use a conversion factor accurate to 4 significant digits.

Final answer:

To convert square meters to square feet, you must square the feet to meter conversion factor, resulting in approximately 10.764 sq ft/sq m. You then multiply this by the square meter measurement to get the equivalent in square feet. Therefore, the house's area, which was provided as 164 square meters, translates to approximately 1765.736 square feet.

Explanation:

The measure of the area in square feet can be derived using the conversion factor for feet to meters, 1 ft = 0.305 m. However, when you deal with areas, you must square the conversion factor. We then apply the conversion factor to the known area in reference, which in our case is 164 square meters.

So our conversion factor becomes (1/0.305)² sq ft/sq m = 10.764 sq ft/sq m.

To use the conversion factor, we multiply it by the metric unit measurement, like this: 164 m²*(10.764 ft²/m²) = 1765.736 square feet.

So, the house's area is approximately 1765.736 square feet.

Learn more about Unit Conversion here:

https://brainly.com/question/32030244

#SPJ2

please help asap!!!!!

Answers

Answer:

The volume of the prism is 27√3/2

Step-by-step explanation:

* Lets revise the triangular prism properties

- The triangular prism has five faces

- Two bases and three side faces

- The two bases are triangles

- The three side faces are rectangles

- The rule of its volume is Area of its base × its height

* Lets solve the problem

- The triangular prism has two bases which are equilateral triangles

- The length of each side of the triangular base is 3"

- The height of the prism is 6"

∵ The volume of the prism = area of the base × its height

∵ The base is equilateral triangle of side length 3"

- The area of any equilateral triangle is √3/4 s²

∴ The area of the base of the prism = √3/4 × (3)² = 9√3/4

∵ The length of the height of the prism is 6"

∴ The volume of the prism = 9√3/4 × 6 = 27√3/2

* The volume of the prism is 27√3/2


........Help Please.......

Answers

Answer:

  b = 1.098

Step-by-step explanation:

Each year, the GDP is 9.8% higher than the year before, so the multiplier each year is 1 + 9.8% = 1.098. This is the value of b.

  b = 1.098

Tangent lines-someone please help explain

Answers

 

The angle between radius and tangent to circle is 90 degrees.

The quadrilateral formed by the two tangents and the two rays has two angles of 90 degrees, an angle of 40 degrees and an unknown angle.

The sum of the angles of a quadrilateral is 360 degrees.

⇒  x = 360° - 90 - 90 - 40 = 140°

x = 140°

 

A car was valued at $39,000 in the year 1995. The value depreciated to $11,000 by the year 2003.
A)What was the annual rate of change between 1995 and 2003? (Round to 4 decimal places)
B)What is the correct answer to part A written in percentage form?
C)Assume that the car value continues to drop by the same percentage. What will the value be in the year 2007?
Please help ASAP the homework is due Monday!!! :(

Answers

Answer:

14.6328% , $5836.03

Step-by-step explanation:

Here we are going to use the formula

[tex]A_{0}(1-r)^n = A_{n}[/tex]

[tex]A_{0}[/tex] = 39000

r=?

[tex]A_{8}[/tex] = 11000

n=8

Hence

[tex]39000(1-r)^8 = 11000[/tex]

[tex](1-r)^8 = \frac{11000}{39000}[/tex]

[tex](1-r)^8 = 0.2820[/tex]

[tex](1-r) = 0.2820^{\frac{1}{8}[/tex]

[tex](1-r) = 0.2820^{0.125}[/tex]

[tex](1-r) = 0.8536[/tex]

[tex](1-0.8536=r[/tex]

[tex]r = 0.1463[/tex]

Hence r= 0.1463

In percentage form r = 14.63%

Now let us see calculate the value of car in 2003 that is after 12 years

we use the main formula again

[tex]A_{0}(1-r)^n = A_{n}[/tex]

[tex]A_{0}[/tex] = 39000

r=0.1463

[tex]A_{12}[/tex] = ?

n=12

[tex]39000(1-0.14634)^{(12} = A_{12}[/tex]

[tex]39000(0.8536)^{12} = A_{12}[/tex]

[tex]39000*0.1497 = A_{12}[/tex]

[tex]A_{12}=5840.34[/tex]

Hence the car's value will be depreciated to $5840.34 (approx) by 2003.

The annual rate of change between 1995 and 2003 is -0.1463

The annual rate of change between 1995 and 2003 is -14.63%

The value of the car in 2007 would be $5,844.24

The value of the car decreases as the years go by. This is referred to as depreciation. Depreciation is the decline in value of an asset as a result of wear and tear.

In order to determine the annual rate of change, use this formula:

g = [tex](FV / PV) ^{\frac{1}{n} } - 1[/tex]

Where:

g = depreciation rate

FV = value of the car in 2003 = $11,000

PV = value of the car in 1995 = $39,000

n = number of years = 2003 - 1995 = 8

[tex](11,000 / 39,00)^{\frac{1}{8} } - 1[/tex] = -0.1463 = -14.63%

The value of car in 7 years can be determined using this formula:

FV = P (1 + g)^n

$39,000 x (1 - 0.1463)^12

$39,000 x 0.8537^12 = $5,844.24

A similar question was answered here: https://brainly.com/question/12980665?referrer=searchResults

Angle measures and segment lengths. Someone please explain

Answers

ooops, i made a mistake.  deleted. Give the other guy brainly

sorry

Check the picture below.

Random samples of size 81 are taken from an infinite population whose mean and standard deviation are 200 and 18, respectively. The distribution of the population is unknown. The mean and the standard error of the distribution of the sample mean are

Answers

Answer: The mean and the standard error of the distribution of the sample mean are 200 and 2.

Step-by-step explanation:

Given: Sample size : n= 81

Mean of infinite population : [tex]\mu=200[/tex]

We know that the mean of the distribution of the sample mean is same as the mean of the population.

i.e. [tex]\mu_x=\mu=200[/tex]

The standard error of the distribution of the sample mean is given by :-

[tex]S.E.=\dfrac{\sigma}{\sqrt{n}}[/tex]

[tex]\Rightarrow\ S.E.=\dfrac{18}{\sqrt{81}}=\dfrac{18}{9}=2[/tex]

Hence, the mean and the standard error of the distribution of the sample mean are 200 and 2.

Final answer:

The mean of the sample mean distribution for a random sample of size 81 from a population with a mean of 200 and a standard deviation of 18 is 200, and the standard error is 2.

Explanation:

The question is about determining the mean and the standard error of the distribution of the sample mean. According to the Central Limit Theorem, regardless of the distribution of the original population, the distribution of the sample mean tends to form a normal distribution as the sample size increases. In this case, the mean of the sample mean distribution is the same as the population mean, which is 200.

The standard error of the mean is calculated as the population standard deviation divided by the square root of the sample size. So, the standard error in this scenario would be 18/√81 = 2.

Therefore, in a random sample of size 81 taken from an infinite population with a mean of 200 and a standard deviation of 18, the mean of the sample mean distribution is 200, and the standard error is 2.

Learn more about Sample Mean Distribution here:

https://brainly.com/question/31520808

#SPJ3

Find the​ point, P, at which the line intersects the plane. x equals 7 plus 9 t​, y equals 3 minus 7 t​, z equals 7 minus 5 t​; 5 x minus 6 y minus 9 z equals negative 1 \

Answers

Answer:

The point of intersection [tex]P\left(\dfrac{1133}{122},\dfrac{149}{122},\dfrac{699}{122}\right)[/tex]

Step-by-step explanation:

Equation of line:

[tex]x=7+9t[/tex]

[tex]y=3-7t[/tex]

[tex]z=7-5t[/tex]

Equation of plane:

[tex]5x-6y-7z=-1[/tex]

We need to find the point of intersection of line and plane.

Point of intersection: When both line and plane meet at single point.

So, put the value of x, y and z into plane.

[tex]5(7+9t)-6(3-7t)-7(7-5t)=-1[/tex]

[tex]35+45t-18+42t-49+35t=-1[/tex]

[tex]122t=-1+32[/tex]

[tex]t=\dfrac{31}{122}[/tex]

Substitute the value of t into x, y and z

[tex]x=7+9\cdot \dfrac{31}{122}=\dfrac{1133}{122}[/tex]

[tex]y=3-7\cdot \dfrac{31}{122}=\dfrac{149}{122}[/tex]

[tex]z=7-5\cdot \dfrac{31}{122}=\dfrac{699}{122}[/tex]

Point of intersection:

[tex]\left(\dfrac{1133}{122},\dfrac{149}{122},\dfrac{699}{122}\right)[/tex]

Hence, The point of intersection [tex]P\left(\dfrac{1133}{122},\dfrac{149}{122},\dfrac{699}{122}\right)[/tex]

A pharmaceutical company receives large shipments of aspirin tablets. The acceptance sampling plan is to randomly select and test 42 ​tablets, then accept the whole batch if there is only one or none that​ doesn't meet the required specifications. If one shipment of 6000 aspirin tablets actually has a 5​% rate of​ defects, what is the probability that this whole shipment will be​ accepted? Will almost all such shipments be​ accepted, or will many be​ rejected?

Answers

Answer: Hence, the probability that the whole shipment would be accepted is 0.371.

Many would be rejected.

Step-by-step explanation:

Since we have given that

Number of tablets to be tested = 42

Probability of getting a defect = 5% = 0.05

We need to find the probability that this whole shipment will be accepted.

As we have mentioned that if there is only one or none defect, then the whole shipment would be accepted.

P(accepted) = P(either none or one defect) =  P(X=0)+P(X=1)

[tex]P(X=0)=(1-0.05)^{42}=(0.95)^{42}=0.115\\\\and\\\\P(X=1)=42\times (0.05)(0.95)^{41}=0.006\times 42=0.256[/tex]

So, P(Accepted) = 0.115+0.256=0.371

Hence, the probability that the whole shipment would be accepted is 0.371.

Many would be rejected.

A large school district in southern California asked all of its eighth-graders to measure the length of their right foot at the beginning of the school year, as part of a science project. The data show that foot length is approximately Normally distributed, with a mean of 23.4 cm and a standard deviation of 1.7 cm. Suppose that 25 eighth-graders from this population are randomly selected. Approximately what is probability that the sample mean foot length is less than 23 cm?

Answers

Answer:

The probability of the sample mean foot length less than 23 cm is 0.120

Step-by-step explanation:

* Lets explain the information in the problem

- The eighth-graders asked to measure the length of their right foot at

  the beginning of the school year, as part of a science project

- The foot length is approximately Normally distributed, with a mean of

 23.4 cm

∴ μ = 23.4 cm

- The standard deviation of 1.7

∴ σ = 1.7 cm

- 25 eighth-graders from this population are randomly selected

∴ n  = 25

- To find the probability of the sample mean foot length less than 23

∴ The sample mean x = 23, find the standard deviation σx

- The rule to find σx is σx = σ/√n

∵ σ = 1.7 and n = 25

∴ σx = 1.7/√25 = 1.7/5 = 0.34

- Now lets find the z-score using the rule z-score = (x - μ)/σx

∵ x = 23 , μ = 23.4 , σx = 0.34

∴ z-score = (23 - 23.4)/0.34 = -1.17647 ≅ -1.18

- Use the table of the normal distribution to find P(x < 23)

- We will search in the raw of -1.1 and look to the column of 0.08

∴ P(X < 23) = 0.119 ≅ 0.120

* The probability of the sample mean foot length less than 23 cm is 0.120

Two automobiles left simultaneously from cities A and B heading towards each other and met in 5 hours. The speed of the automobile that left city A was 10 km/hour less than the speed of the other automobile. If the first automobile had left city A 4 1/2 hours earlier than the other automobile left city B, then the two would have met 150 km away from B. Find the distance between A and B.

Answers

Answer:

  450 km

Step-by-step explanation:

Equations

We can define 3 variables: a, b, d. Let "a" and "b" represent the speeds of the cars leaving cities A and B, respectively. Let "d" represent the distance between the two cities. We can write three equations in these three variables:

1. The relation between "a" and "b":

  a = b -10 . . . . . . . the speed of car A is 10 kph less than that of car B

2. The relation between speed and distance when the cars leave at the same time:

  d = (a +b)·5 . . . . . . distance = speed × time

3. Note that the time it takes car B to travel 150 km to the meeting point is (150/b). (time = distance/speed) The total distance covered is ...

  distance covered by car A in 4 1/2 hours + distance covered by both cars (after car B leaves) = total distance

  4.5a + (150/b)(a +b) = d

__

Solution

Substituting for d, we have ...

  4.5a + 150/b(a +b) = 5(a +b)

  4.5ab +150a +150b = 5ab +5b^2 . . . . . . multiply by b, eliminate parentheses

  5b^2 +0.5ab -150(a +b) = 0 . . . . . . . . . . subtract the left side

Now, we can substitute for "a" and solve for b.

  5b^2 + 0.5b(b-10) -150(b -10 +b) = 0

  5.5b^2 -5b -300b +1500 = 0 . . . . . . . . eliminate parentheses

  11b^2 -610b +3000 = 0 . . . . . . . . . . . . . multiply by 2

  (11b -60)(b -50) = 0 . . . . . . . . . . . . . . . . factor

The solutions to this equation are ...

  b = 60/11 = 5 5/11 . . . and . . . b = 50

Since b must be greater than 10, the first solution is extraneous, and the values of the variables are ...

b = 50a = b-10 = 40d = 5(a+b) = 5(90) = 450

The distance between A and B is 450 km.

_____

Check

When the cars leave at the same time, their speed of closure is the sum of their speeds. They will cover 450 km in ...

  (450 km)/(40 km/h +50 km/h) = 450/90 h = 5 h

__

When car A leaves 4 1/2 hours early, it covers a distance of ...

  (4.5 h)(40 km/h) = 180 km

before car B leaves. The distance remaining to be covered is ...

  450 km - 180 km = 270 km

When car B leaves, the two cars are closing at (40 +50) km/h = 90 km/h, so will cover that 270 km in ...

  (270 km)/(90 km/h) = 3 h

In that time, car B has traveled (3 h)(50 km/h) = 150 km away from city B, as required.

Answer:

450km

Step-by-step explanation:

Take it that each automobile travels at 30 km an hour, for 150 km, meaning it will be 450 km apart.

A bag contains 2 steel balls and 5 brass balls. The total weight is 13 pounds. If 2 steel balls are added and 2 brass balls are removed, the weight decreases to 12 pounds. How much does each kind of ball weigh?

Answers

Solve using system of equations.
s=number of steel balls
b=number of brass balls
2s+5b=13
4s+3b=12
Multiply first equation by -2 to get -4s-10b=-26
add the two equations
-7b=-14
Simplify
b=2 now substitute 2 for b in any equation to get s=1.5

Answer:

Step-by-step explanation:

The answer above this answer is correct

let f(x) = -2x/(x^2-x-5) There are 2 numbers that are not in the domain of f. Give the larger value to 2 decimal places.

Answers

Answer:

Step-by-step explanation:

The 2 numbers that are not in the domain of the function are the 2 numbers that cause the denominator of the function to equal 0.  In order to find those 2 numbers, we have to factor the quadratic that is in the denominator. When you factor, you get x = 2.79 and x = -1.79

Those are the values of x that cause the denominator to equal 0, which of course is NEVER allowed in math!

A club has 50 members, 10 belonging to the ruling clique and 40 second-class members. Six members are randomly selected for free movie tickets. What is the probability that 3 or more belong to the ruling clique?

Answers

Answer: The probability that 3 or more belong to the ruling clique is 0.34.

Step-by-step explanation:

Since we have given that

Number of total members = 50

Number of belonging to ruling clique = 10

Number of belonging to second class member = 40

We need to find the probability that 3 or more belong to the ruling clique.

Let X be the number of outcomes belong to ruling clique.

So, it becomes,

P(X≥3)=1-P(X<3)

[tex]P(X\geq 3)=1-P(X=1)-P(X=2)\\\\P(X\geq 3)=1-\dfrac{^{10}C_1\times ^{40}C_5}{^{50}C_6}-\dfrac{^{10}C_2\times ^{40}C_4}{^{50}C_6}\\\\P(X\geq 3)=1-0.41-0.25\\\\P(X\geq 3)=0.34[/tex]

Hence, the probability that 3 or more belong to the ruling clique is 0.34.

Final answer:

The probability of selecting 3 or more members from the ruling clique when choosing 6 members randomly from a club of 50 members (10 in ruling clique, 40 second-class) is 8.56%.

Explanation:

This probability problem can be solved using the concepts of Combinations and Binomial Theorem. You need to determine the number of ways to choose 3, 4, 5, or 6 members from the ruling clique (10 members) and the remaining from the second-class members (40 members). For each case, divide by the total number of ways to choose 6 members from all 50 members to get the probability. Sum up all the probabilities for each case to get the total probability of having 3 or more from the ruling clique.

Calculations:

1. Number of ways of choosing 3 from the ruling clique and 3 from the second class: C(10,3)*C(40,3) = 120*9880 = 1,185,600 ways

2. Number of ways of choosing 4 from the ruling clique and 2 from the second class: C(10,4)*C(40,2) = 210*780 = 163,800 ways

3. Number of ways of choosing 5 from the ruling clique and 1 from the second class: C(10,5)*C(40,1) = 252*40 = 10,080 ways

4. Number of ways of choosing 6 from the ruling clique and 0 from the second class: C(10,6)*C(40,0) = 210*1 = 210 ways

Total ways to choose 3 or more from the ruling clique: 1,185,600 + 163,800 + 10,080 +210 = 1,359,690 ways

From 50 members, the total ways to choose 6: C(50,6) = 15,890,700 ways

The Probability of 3 or more from the ruling clique = 1,359,690 / 15,890,700 = 0.0856 or 8.56%

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

A coin is tossed 30 times it lands 12 times on heads and 18 times on tails what is experimental probability of the coin landing on tails?

Answers

1/2 theres only two faces on the coin despite how many times you throw it

Answer:

3/5

Step-by-step explanation:

Total tossed : 30

# of times landed on tails : 18

Experimental probability of tails = 18/30 = 3/5

Solve the following system of equations

3x - 2y =5

-2x - 3y = 14

Answers

Answer:

x = -1 and y = -4

Step-by-step explanation:

It is given that,

3x - 2y = 5     ----(1)

-2x - 3y = 14 ------(2)

To find the solution of equations

(1) * 2 ⇒

6x - 4y = 10  -----(3)

(2) * 3 ⇒

-6x - 9y =  42   ----(4)

eq(3) + eq(4) ⇒

6x - 4y = 10  -----(3)

-6x - 9y =  42  ----(4)

 0   - 13y = 52

y = 52/(-13) = -4

Substitute the value of y in eq(1)

3x - 2y = 5     ----(1)

3x - (2 * -4) = 5

3x  +8 = 5

3x = 5 - 8 = -3

x = -3/3 = -1

Therefore x = -1 and y = -4

Answer:

The solution is:

[tex](-1, -4)[/tex]

Step-by-step explanation:

We have the following equations

[tex]3x - 2y =5[/tex]

[tex]-2x - 3y = 14[/tex]

To solve the system multiply by [tex]\frac{3}{2}[/tex] the second equation and add it to the first equation

[tex]-2*\frac{3}{2}x - 3\frac{3}{2}y = 14\frac{3}{2}[/tex]

[tex]-3x - \frac{9}{2}y = 21[/tex]

[tex]3x - 2y =5[/tex]

---------------------------------------

[tex]-\frac{13}{2}y=26[/tex]

[tex]y=-26*\frac{2}{13}[/tex]

[tex]y=-4[/tex]

Now substitute the value of y in any of the two equations and solve for x

[tex]-2x - 3(-4) = 14[/tex]

[tex]-2x +12 = 14[/tex]

[tex]-2x= 14-12[/tex]

[tex]-2x=2[/tex]

[tex]x=-1[/tex]

The solution is:

[tex](-1, -4)[/tex]

8. Write three other proportions for each given proportion. 35 miles/2 hours=87.5 miles/5 hours

Answers

Answer:

218.75 miles / 12.5 hours

437.5 miles / 25 hours

656.25 miles / 37.5 hours

Step-by-step explanation:

35 miles / 2 hours = 87.5 miles / 5 hours

This is the  ratio of 2.5. So, the other proportions are

87.5 x 2.5 miles / 5 x 2.5 hours = 218.75 miles / 12.5 hours

87.5 x 5 miles / 5 x 5 hours = 437.5 miles / 25 hours

87.5 x 7.5 miles / 5 x 7.5 hours = 656.25 miles / 37.5 hours

The speed of cars on a stretch of road is normally distributed with an average 48 miles per hour with a standard deviation of 5.9 miles per hour. What is the probability that a randomly selected car is violating the speed limit of 50 miles per hour? (a) 0.37 (b) 0.48 (c) 0.21 (d) 0.63

Answers

Answer: (a) 0.37

Step-by-step explanation:

Given: The speed of cars on a stretch of road is normally distributed with an average 48 miles per hour with a standard deviation of 5.9 miles per hour.

i.e. Mean : [tex]\mu = 48\text{ miles per hour} [/tex]

Standard deviation : [tex]\sigma = 5.9\text{ miles per hour}[/tex]

The formula to calculate z is given by :-

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For the probability that a randomly selected car is violating the speed limit of 50 miles per hour (X≥ 50).

For x= 80

[tex]z=\dfrac{50-48}{5.9}=0.338983050847\approx0.34[/tex]

The P Value =[tex]P(z>0.34)=1-P(z<0.34)=1-0.6330717\approx0.3669283\approx0.37[/tex]

Hence,  the probability that a randomly selected car is violating the speed limit of 50 miles per hour =0.37

PLEASE ANSWER WITH AN EXPLANATION! THANK YOU

Answers

Answer:

[tex]\large\boxed{A=153\ cm^2}[/tex]

Step-by-step explanation:

Look at the picture.

We have

square with side length a = 9

trapezoid with base lengths b₁ = 9 and b₂ = 6 and the height length h = 6

right triangle with legs lengths l₁ = 3 + 6 = 9 and l₂ = 6

The formula of an area of a square

[tex]A=a^2[/tex]

Substitute:

[tex]A_I=9^2=81\ cm^2[/tex]

The formula of an area of a trapezoid:

[tex]A=\dfrac{b_1+b_2}{2}\cdot h[/tex]

Substitute:

[tex]A_{II}=\dfrac{9+6}{2}\cdot6=\dfrac{15}{2\!\!\!\!\diagup_1}\cdot6\!\!\!\!\diagup^3=(15)(3)=45\ cm^2[/tex]

The formula of an area of a right triangle:

[tex]A=\dfrac{l_1l_2}{2}[/tex]

Substitute:

[tex]A_{III}=\dfrac{(9)(6)}{2}=\dfrac{54}{2}=27\ cm^2[/tex]

The area of the shape:

[tex]A=A_I+A_{II}+A_{III}\\\\A=81+45+27=153\ cm^2[/tex]

a figure has a vertex at (-1,-3). if the figure has a line symmetry about x-axis , what are the coordinates of another vertex of the figure?
a. (3,1)
b. (-1,3)
c. (-3,-1)
d. (1,-3)

Answers

Answer:

b. (-1,3)

Step-by-step explanation:

the  image of the point (x ; y)  by symmetry about x-axis is : ( x ;-  y)

so the answer "b" : (-1,3)

State the linear programming problem in mathematical terms, identifying the objective function and the constraints. A firm makes products A and B. Product A takes 2 hours each on machine M; product B takes 4 hours on L and 3 hours on M. Machine L can be used for 8 hours and M for 6 hours. Profit on product A is $9 and $7 on B. Maximize profit.

Answers

Final answer:

The problem requires formulating a linear programming model to maximize the profit function Z = 9x + 7y with constraints on machine time for product A and B (2x + 3y ≤ 6 for machine M and 4y ≤ 8 for machine L) and the non-negativity restrictions (x, y ≥ 0).

Explanation:

The linear programming problem can be stated in mathematical terms with an objective function and constraints for a firm making products A and B. The objective is to maximize profit, which is the sum of 9 dollars per unit of product A and 7 dollars per unit of product B. Let the number of products A and B produced be represented by variables x and y, respectively.

The objective function to maximize is Z = 9x + 7y.

Constraints:

Machine M's availability limits product A to 2 hours each, and product B to 3 hours each, with a total available time of 6 hours: 2x + 3y ≤ 6.Machine L can be used for 8 hours and is only required for product B, which takes 4 hours: 4y ≤ 8.Non-negativity constraints: x ≥ 0 and y ≥ 0, since the number of products cannot be negative.

x^2+y^2=25 Find the distance of point (x,y) from origin.

Answers

Answer:

5 units

Step-by-step explanation:

This is a circle with a center of (0, 0).  The square root of 25 represents the radius of the circle which is 5.  The radius represents the distance that the outside of the circle is from the center.

if cos θ = -0.6, and 180° < θ < 270°, find the exact value of sin 2θ.

Answers

Answer:

  sin(2θ) = 0.96

Step-by-step explanation:

In the third quadrant, both sin(θ) and cos(θ) are negative. Then the double-angle trig identity tells us ...

  sin(2θ) = 2·sin(θ)·cos(θ) = -2cos(θ)√(1 -cos(θ)²) . . . . using the negative root

Filling in the given value, we have

  sin(2θ) = -2·(-0.6)(√(1-(-0.6)²) = 2·0.6·0.8 = 0.96

If 2000 dollars is invested in a bank account at an interest rate of 8 per cent per year,

Find the amount in the bank after 12 years if interest is compounded annually:

Answers

Answer:

  $5036.34

Step-by-step explanation:

Each year, 8% of the existing balance is added to the existing balance, effectively multiplying the amount by 1.08. If that is done for 12 years, the effective multiplier is 1.08^12 ≈ 2.51817. The the amount in the bank at the end of that time is ...

  $2000×2.51817 = $5036.34

Final answer:

The amount in the bank after 12 years with an annual interest rate of 8% on a principal amount of 2000 dollars, compounded annually, will be approximately $5025.90.

Explanation:

This is a compound interest problem. The formula used to solve this type of problem is A = P(1 + r/n)^(nt), where:

P is the principal amount (initial money),r is the annual interest rate,t is the number of years,n is the number of times that interest is compounded per year.

In this case, P = $2000, r = 8% or 0.08, t = 12 years and n = 1 (as interest is compounded annually). Substituting these values in the equation, we get:

A = 2000(1 + 0.08/1)^(1*12)

.

The resulting Amount A after 12 years will be approximately $5025.90.

Learn more about Compound Interest here:

https://brainly.com/question/34614903

#SPJ3

An engineer is going to redesign an ejection seat for an airplane. The seat was designed for pilots weighing between 120 lb and 161 lb. The new population of pilots has normally distributed weights with a mean of 125 lb and a standard deviation of 28.1 lb.
a)If a pilot is randomly​ selected, find the probability that his weight is between 120 lb and 161 lb.The probability is approximately?

b. If 36 different pilots are randomly​ selected, find the probability that their mean weight is between 120 lb and 161 lb. The probability is approximately?

c. When redesigning the ejection​ seat, which probability is more​ relevant? . Part​ (b) because the seat performance for a single pilot is more important. B. Part​ (b) because the seat performance for a sample of pilots is more important. C. Part​ (a) because the seat performance for a sample of pilots is more important. D. Part​ (a) because the seat performance for a single pilot is more important.

Answers

I think the answer is c

Solve for x in the equation

Answers

Answer:

[tex]\large\boxed{x=6\pm3\sqrt{10}}[/tex]

Step-by-step explanation:

[tex]x^2-12x+36=90\\\\x^2-2(x)(6)+6^2=90\qquad\text{use}\ (a-b)^2=a^2-2ab+b^2\\\\(x-6)^2=90\iff x-6=\pm\sqrt{90}\\\\x-6=\pm\sqrt{9\cdot10}\\\\x-6=\pm\sqrt9\cdot\sqrt{10}\\\\x-6=\pm3\sqrt{10}\qquad\text{add 6 to both sides}\\\\x=6\pm3\sqrt{10}[/tex]

Line m is parallel to line n. The measure of angle 2 is 74°. What is the
measure of angle 5?
OA) 74°
O B) 120
OC) 106°
OD) 86°

Answers

Answer:

C. 106

Step-by-step explanation:

Angles 2 and 6 are corresponding angles so they're both 74. So you just subtract 74 from 180 to get 106.

Answer:

C. 106 is the answer

Step-by-step explanation:

angle 3 = angle 2 (vertically opp. angle)

angle 3+ angle 5 = 180

74+ angle 5 = 180

angle 5 = 106

I need help with math work!!

Answers

Answer:

(g-h)=x^2+5-8-x

=x^2-x-3

(g-h)(-9) means x= -9

x^2-x-3

=(-9)^2-(-9)-3

=81+9-3

=90-3

=87

Other Questions
triangle EFG in which segment EF measures 3 units and segment FG measures 5 unitsIn EFG, is it possible for segment GE to measure 6 units? can somebody plz help me URGENT HELP PLEASE HELP ME!!!!!!!!!))Shari rolls a pair of dice, numbered 1 to 6, 64 times. How many times can she expect to roll an odd number? why could a loss of chlorophy 2 limit cellular respiration in plants How does the brain primarily interpret the strength of a stimulus in the nervous system? A. Based on the size of the action potential B. Based on the frequency of the action potential C. Based on how much potassium is in the nerve cell D. Based on which chemicals are released at nerve junctions This mode of expression is not unique to cinema. True or False 2. Janice is buying paint to paint her new apartment. The store sells paint in one-gallon cans. How accurate does her estimate need to be for the amount of paint needed?3. A city planner is measuring the distance of one city block. Which unit of measure should she use: 1 mile, 1 meter, inch? what is the standard deviation of 2,3,6,9,10 Which statement most accurately describes this figure? Which best describes the sex chromosomes in humans? A. Females have two Y chromosomes. B. Females have two X chromosomes. C. Males have two Y chromosomes. D. Males have two X chromosomes. A chemical substance that people of any age may not lawfully manufacture, possess, buy, or sell is known as a(n)A.Over the counter drug B.Prescription drugC.Medicine D.Illegal drug Choose the verb(s) in this sentence.Neither Jim nor I skate or ski very well.Select the correct answer.I skateski well1orskate, ski Which type of college credit program does the statement describe? In a(n)_________program, students can get credit for their high school classes as long as they take specific courses that a college will accept as transfer credits at the college level.A.International BaccalaureateB.Advanced PlacementC.Dual CreditD.Articulated Credit Which statement best describes a hypothesis?A.the facts collected from an experiment are written in the form of a hypothesisB. A hypothesis is the correct answer to a scientific questionC. A hypothesis is a possible, testable explanation for a scientific question D. A hypothesis is the process of making careful observations Which statement can be supported by details in the article? A)Many doctors do not know how to treat cancer in women. Eliminate B)Cancer is only a problem in developed countries of the world. C)Young adults do not need to be concerned about getting cancer. D)With early detection and proper treatment, cancer patients have a good chance of survival. 9. Wind power creates _____ pollution.waterairsoilnoise how do computers benefit individuals' health care? Aaron bought a new television that has a 92 in. 76 in. screen. It has a feature that splits the screen to allow him to watch 4 channels at once. What is the scale factor and size for each channel when this feature is turned on? HELP ME Drag the labels to the correct locations on the table. Not all tiles will be used.Match each attribute of a parabola to the correct quadratic function. A ball is dropped from a height of 20 meters. At what height does the ball have a velocity of 10 meters/second?A.5.1 metersB.9.8 metersC.25 metersD.15 meters