Determine two pairs of polar coordinates for the point (5, 5) with 0° ≤ θ < 360°.


a. (5 square root 2, 225°), (-5 square root 2, 45°)

b. (5 square root 2, 315°), (-5 square root 2, 135°)

c. (5 square root 2, 135°), (-5 square root 2, 315°)

d. (5 square root 2, 45°), (-5 square root 2, 225°)

Find an equation in standard form for the hyperbola with vertices at (0, ±9) and foci at (0, ±10).

a. y squared over 81 minus x squared over 100 = 1
b. y squared over 81 minus x squared over 19 = 1
c. y squared over 19 minus x squared over 81 = 1
d. y squared over 100 minus x squared over 81 = 1

Answers

Answer 1

Answer:

First part

The answer is (5 square root 2, 45°), (-5 square root 2, 225°) ⇒ answer (d)

Second part

The equation in standard form for the hyperbola is y²/81 - x²/19 = 1 ⇒ answer(b)

Step-by-step explanation:

First part:

* Lets study the Polar form and the Cartesian form

- The important difference between Cartesian coordinates and

  polar coordinates:

# In Cartesian coordinates there is exactly one set of coordinates

  for any given point.

# In polar coordinates there is an infinite number of coordinates

   for a given point. For instance, the following four points are all

   coordinates for the same point.

# In the polar the coordinates the origin is called the pole, and

  the x axis is called the polar axis.

# The angle measurement θ can be expressed in radians

   or degrees.

- To convert from Cartesian Coordinates (x , y) to

  Polar Coordinates (r , θ)

# r = ± √(x² + y²)

# θ = tan^-1 (y / x)

* Lets solve the problem

- The point in the Cartesian coordinates is (5 , 5)

∵ x = 5 and y = 5

∴ r = ± √(5² + 5²) = ± √50 = ± 5√2

∴ tanФ = (5/5) = 1

∵ tanФ is positive

∴ Angle Ф could be in the first or third quadrant

∵ Ф = tan^-1 (1) = 45°

∴ Ф in the first quadrant is 45°

∴ Ф in the third quadrant is 180 + 45 = 225°

* The answer is (5√2 , 45°) , (-5√2 , 225°)

Second part:

* Lets study the standard form of the hyperbola equation

- The standard form of the equation of a hyperbola with  

  center (0 , 0) and transverse axis parallel to the y-axis is

  y²/a² - x²/b² = 1, where

• the length of the transverse axis is 2a

• the coordinates of the vertices are (0 , ±a)

• the length of the conjugate axis is 2b

• the coordinates of the co-vertices are (±b , 0)

•      the coordinates of the foci are (0 , ± c),  

• the distance between the foci is 2c, where c² = a² + b²

* Lets solve our problem

∵ The vertices are (0 , 9) and (0 , -9)

∴ a = ± 9 ⇒ a² = 81

∵ The foci at (0 , 10) , (0 , -10)

∴ c = ± 10

∵ c² = a² + b²

∴ (10)² = (9)² + b² ⇒ 100 = 81 + b² ⇒ subtract 81 from both sides

b² = 19

∵ The equation is  y²/a² - x²/b² = 1

∴  y²/81 - x²/19 = 1

* The equation in standard form for the hyperbola is y²/81 - x²/19 = 1


Related Questions

Ed Parker joined a health club. There was a $39 registration fee, and a $27.50 monthly fee. If Ed visits the club 2 times a week for a year, what does each workout cost him?

Answers

Answer:

$3.55/workout

Step-by-step explanation:

Total cost:  $39 + ($27.50/month)(12 months) = $369

Number of visits per year:  (2 visits/week)(52 weeks/year) = 104 visits/year

Dividing the total cost by 104 visits/year results in:

 $369

--------------- = 3.55

104 visits

Each workout cost him $3.55. Each workout cost is obtained by the total cost and the number of the visit per year.

What is the total cost?

It is the sum of the variable cost and the fixed cost. The total cost is the minimum dollar cost of producing some quantity of output.

Registration fee = $39

Monthly fee = $27.50

No of visit a week for a year= 2

Total cost is found as;

Total cost = registration fee+monthly fee ×no of month

Total cost =  $39 + ($27.50/month)(12 months)

Total cost =$369

Number of visits per year= visits/week×no of week

Number of visits per year= (2 visits/week)(52 weeks/year)

Number of visits per year = 104 visits/year

When you divide the entire cost by 104 visits per year, you get:

Each workout cost = $369/104

Each workout cost =$3.55

Hence, each workout cost him $3.55

To learn more about the total cost, refer to the link;

https://brainly.com/question/14927680

#SPJ2

. Andrew will roll a number cube and flip a coin for a probability experiment. The faces of the number cube are labeled 1 through 6. The coin can land on heads or tails. If Andrew rolls the number cube once and flips the coin once, write a list that contains only the outcomes in which the number cube lands on a number less than 3?

Answers

Answer:

Step-by-step explanation:

1 heads

1 tails

2 heads

2 tails.

That's all you can write given the constraint.

Kameron has a combination of quarters and nickles in his wallet. The number of nickels is three times the number of quarters he has. If the total value of the coins is two dollars how many quarters does Kameron have in his wallet?

Answers

Answer:

Kameron has 5 quarters in his wallet

Step-by-step explanation:

Let

x----> the number of nickels

y----> the number of quarters

remember that

1 nickel=$0.05

1 quarter=$0.25

we know that

x=3y -----> equation A

0.05x+0.25y=2

Multiply by 100 both sides

5x+25y=200

Simplify

x+5y=40 -----> equation B

Substitute equation A in equation B

(3y)+5y=40

8y=40

y=5 quarters

x=3(5)=15 nickels

Final answer:

By setting up and solving equations based on the value of quarters and nickels and their proportions, we can determine that Kameron has 5 quarters in his wallet.

Explanation:

Finding the Number of Quarters in Kameron's Wallet

To solve Kameron's problem, we can set up two equations based on the given information. Let's define Q as the number of quarters and N as the number of nickels Kameron has. Since we know that the number of nickels is three times the number of quarters, we can express this as N = 3Q.

Next, we calculate the monetary value of the quarters and nickels. Each quarter is worth 25 cents, and each nickel is worth 5 cents. Since the total amount is two dollars, which is 200 cents, we can write the equation 25Q + 5N = 200.

Substituting N with 3Q in the second equation, we get 25Q + 5(3Q) = 200, which simplifies to 40Q = 200. Solving for Q gives us Q = 200 / 40 = 5, so Kameron has 5 quarters in his wallet.

Use the imaginary number i to rewrite the expression:

Answers

Answer:

D

Step-by-step explanation:

√(-49)

Let's rewrite this as:

√(-1) √(49)

√49 is 7, and √-1 is i.  Therefore:

7i

Answer D.

The expression √(-49) can be rewritten using the Imaginary unit "i" as follows:

[tex]\sqrt(-49) = \sqrt(49 \times (-1)) = \sqrt49 \times \sqrt(-1) = 7i[/tex]

So, the correct answer is option D) 7i.

Here, rewrite the expression √(-49) using the imaginary unit "i," you can express it as the square root of (-1) multiplied by the square root of 49. This is because the square root of -1 is represented as "i."

[tex]\sqrt(-49) = \sqrt((-1) \times 49)[/tex]

Now, we can factor out the square root of 49, which is 7:

[tex]\sqrt(-1 \times 49) = \sqrt(-1) \times \sqrt(49) = i \times 7[/tex]

So, √(-49) can be expressed as 7i.

The correct answer is:

D) 7i

Thus, √(-49) is equal to 7i, indicating that it is a complex number with a real part of 0 and an imaginary part of 7. option D) 7i is correct choice .

For more such questions on Imaginary unit

https://brainly.com/question/30967533

#SPJ3

SOMEONE PLEASE JUST ANSWER THIS FOR BRAINLIEST!!!

Answers

Answer:

[tex] y^2 + 8y + 16 [/tex]

Step-by-step explanation:

[tex] (6y^2 + 2y + 5) - (5y^2 - 6y - 11) = [/tex]

The first set of parentheses is unnecessary, so it can just be removed.

[tex] = 6y^2 + 2y + 5 - (5y^2 - 6y - 11) [/tex]

To remove the second set of parentheses, you must distribute the negative sign that is to its left. It changes every sign inside the parentheses.

[tex] = 6y^2 + 2y + 5 - 5y^2 + 6y + 11 [/tex]

Now you combine like terms.

[tex] = 6y^2 - 5y^2 + 2y + 6y + 5 + 11 [/tex]

[tex] = y^2 + 8y + 16 [/tex]

Which quadratic equation is equivalent to (x2 – 1)2 – 11(x2 – 1) + 24 = 0?

Answers

Answer:

u² – 11u + 24 = 0 where u = (x² – 1)

Step-by-step explanation:

Given the equation;

(x² – 1)² – 11(x² – 1) + 24 = 0

We can let;

u = x² - 1

Substituting the value of u in the equation we get;

(u)² - 11 (u) + 24 = 0

u²- 11u + 24 = 0

Therefore;

The quadratic equation that is equivalent to the equation is;

u² – 11u + 24 = 0 where u = (x² – 1)

Answer:

option 1

Step-by-step explanation:

Find a vector v whose magnitude is 4 and whose component in the i direction is twice the component in the j direction.

The answer is (8√5 i + 4√5j)/5.

Could someone please give me a detailed explanation on how to do the problem? Thanks

Answers

Start with

[tex]\vec v=x\,\vec\imath+y\,\vec\jmath[/tex]

as a template for the vector [tex]\vec v[/tex]. Its magnitude is 4, so

[tex]\|\vec v\|=\sqrt{x^2+y^2}=4[/tex]

Its component in the [tex]\vec\imath[/tex] direction is twice the component in the [tex]\vec\jmath[/tex] direction, which means

[tex]x=2y[/tex]

So we have

[tex]\sqrt{(2y)^2+y^2}=\sqrt{5y^2}=4\implies y^2=\dfrac{16}5\implies y=\pm\dfrac4{\sqrt5}[/tex]

and

[tex]x=\pm\dfrac8{\sqrt5}[/tex]

Lastly, rationalize the denominator:

[tex]\dfrac1{\sqrt5}\cdot\dfrac{\sqrt5}{\sqrt5}=\dfrac{\sqrt5}5[/tex]

So we end up with two possible answers,

[tex]\vec v=\pm\left(\dfrac{8\sqrt5}5\,\vec\imath+\dfrac{4\sqrt5}5\,\vec\jmath\right)[/tex]

Final answer:

The vector v with a magnitude of 4 and i-component being twice the j-component can be found by solving for y in the equation of magnitude based on the given conditions and then determining the i and j components accordingly. The result is the vector v = (8√5 i + 4√5 j) / 5.

Explanation:

To find a vector v whose magnitude is 4, and whose i-component is twice its j-component, we can let the i-component be 2y and the j-component be y. Using the Pythagorean theorem for two-dimensional vectors, we can write the equation for magnitude as v = √((2y)^2 + y^2). Given that the magnitude is 4, the equation becomes:

4 = √(4y^2 + y^2)

4 = √(5y^2)

16 = 5y^2

y^2 = ⅔

y = √(⅔)

y = √(⅔)

y = √(⅔)

y = √(⅔)

y = √(⅔)

y = √(⅔)

(2.0 s) gives us the direction in unit vector notation. The magnitude of the acceleration is à(2.0 s)| = √√5.0² + 4.0² + (24.0)² = 24.8 m/s².

Using the value of y we calculated, the components of vector v are:

i-component = 2y = 2(⅔) = 8√5 / 5

j-component = y = ⅔ = 4√5 / 5

So the vector v can be expressed as v = (8√5 i + 4√5 j) / 5.

On a baseball diamond,1st base, 2nd base, 3rd base, and home plate form a square. If the ball is thrown from 1st base to 2nd base and then from 2nd base to home plate, how many feet has the ball been thrown? The distance between the bases are 90 feet. Option A: 90 Sq. root of 2 Option B: 180 Sq. Root of 2 Option C: 90+90 Sq. Root of 2 Option D: 270 Sq. Root of 2

Answers

Answer:

Option C: 90+90 Sq. Root of 2

Step-by-step explanation:

First we find the distance from second base to home plate.  This is the diagonal of the square, which splits it into two right triangles.

Each right triangle will have legs of 90 feet.  We use the  Pythagorean theorem to find the length of the diagonal (the hypotenuse of the right triangle):

a² + b² = c²

90² + 90² = c²

8100 + 8100 = c²

16200 = c²

Take the square root of each side:

√(16200) = √(c²)

Simplifying √16200, we find the prime factorization:

16200 = 162(100)

162 = 2(81)

81 = 9(9) [Since this is a perfect square, we can stop; we know we take this out of the radical.]

100 = 10(10) [Since this is a perfect square, we can stop; we know we take this out of the radical.]

√16200 = √(9²×10²×2) = 9×10√2 = 90√2

This means the distance from 1st to 2nd and then from 2nd to home would be

90 + 90√2

The math club needs to choose four people for a committee to represent it at the school board meeting. The club consists of 14 members, made up of nine girls and five boys. Which counting method should you use to find the compound probability? Explain. What is the total number of possible outcomes? What is the probability that two girls and two boys are on the committee? Round your answer to two decimal places.

Answers

Answer:

Use combinations because order does not matter, 1001, 0.36

Step-by-step explanation:

Answer: Combination method is used for counting.  There are 1001 possible outcomes and there is probability of 0.36 of getting two girls and two boys are on the committee.

Step-by-step explanation:

Since we have given that

Total number of members = 14

Number of girls = 9

Number of boys = 5

We will use "Combination method " to count the compound probability.

So, the total number of possible outcomes is given by

[tex]^{14}C_4\\\\=1001[/tex]

The probability that two girls and two boys are on the committee is given by

[tex]\dfrac{^9C_2\times ^5C_2}{^{14}C_4}\\\\=\dfrac{360}{1001}\\\\=0.3596\\\\=0.36[/tex]

Hence, there are 1001 possible outcomes and there is probability of 0.36 of getting two girls and two boys are on the committee.

An employee worked 175.25 hours in January, 162 hours in February, 158 hours in March and 175 hours in April.

Answers

I. need. more info. to solve it sorry

If sin theta equal 2/3 and theta is in Quadrant 1, then what value of (tan theta)(cos theta)? Help Please!
A-2/3
B-3 square root 5/5
C-2 square root 5/3
D-square root 5/3

Answers

Answer:

Option A. 2/3

Step-by-step explanation:

we know that

If angle theta is in Quadrant 1

then

The value of cos(theta) is positive and the value of tan(theta) is positive

Remember that

tan(theta)=sin(theta)/cos(theta)

In this problem we have

tan(theta)*cos(theta)=[sin(theta)/cos(theta)]*cos(theta)=sin(theta)

therefore

tan(theta)*cos(theta)=sin(theta)=2/3

Final answer:

The value of (tan theta)(cos theta) is 2/3.

Explanation:

To find the value of (tan theta)(cos theta), we can use the given value of sin theta and the fact that sin² θ + cos² θ = 1.

Since the value of sin theta is known to be 2/3, we can square this value to find sin² θ = (2/3)² = 4/9.

Using the identity sin² θ + cos² θ = 1, we can solve for cos² θ by subtracting sin² θ from 1. This gives us cos²θ = 1 - 4/9 = 5/9.

Finally, we can calculate (tan θ)(cos θ) by multiplying tan θ = sin θ/ cos θ = (2/3) / [tex]\sqrt{5/9[/tex] = (2/3) / ([tex]\sqrt{5[/tex]/3) = 2 / [tex]\sqrt{5[/tex] and cos θ = [tex]\sqrt{5/9[/tex]. Therefore, (tan θ )(cos θ ) = (2 / [tex]\sqrt{5[/tex]) * [tex]\sqrt{5/9[/tex] = 2 / 3.

PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!

The number 0.1271 represents the area under the standard normal curve below a particular z-score.

What is the z-score?



Enter your answer,as a decimal to the nearest hundredth, in the box.

Answers

Final answer:

A z-score is a standardized value that represents the number of standard deviations a given score is above or below the mean in a normal distribution. In this case, the area under the standard normal curve is 0.1271, and the corresponding z-score is approximately -1.14.

Explanation:

A z-score is a standardized value that represents the number of standard deviations a given score is above or below the mean in a normal distribution.

It allows for comparison of scores from different data sets with different means and standard deviations. In this case, we are given the area under the standard normal curve and asked to find the corresponding z-score.

To find the z-score, we can use a z-table, which shows the area under the normal curve to the left of each z-score. In the given problem, the area under the curve is 0.1271.

By looking up the closest area in the z-table, we find that the z-score is approximately -1.14.

Final answer:

The z-score represents the number of standard deviations a value is from the mean in a standard normal distribution.

Explanation:

The z-score represents the number of standard deviations a value is from the mean in a standard normal distribution. To find the z-score, we can use the z-table or a calculator. In this case, the area under the standard normal curve is given as 0.1271. Using the z-table, we can find the z-score that corresponds to this area and enter it in the box.

Sorry if this is too much but I'm desperate right now.

Answers

Answer:

[tex]f(x)=\dfrac{2x-1}{x+2}\\ \\f^{-1}(x)=\dfrac{-2x-1}{x-2}[/tex]

[tex]f(x)=\dfrac{x-1}{2x+1}\\ \\f^{-1}(x)=\dfrac{-x-1}{2x-1}[/tex]

[tex]f(x)=\dfrac{x+2}{-2x+1}\\ \\f^{-1}(x)=\dfrac{2-x}{-2x-1}=\dfrac{x-2}{2x+1}[/tex]

[tex]f(x)=\dfrac{2x+1}{2x-1}\\ \\y=f^{-1}(x)=\dfrac{1+x}{2(x-1)}[/tex]

[tex]f(x)=\dfrac{x+2}{x-1}\\ \\f^{-1}(x)=\dfrac{x+2}{x-1}[/tex] - extra

Step-by-step explanation:

1.

[tex]f(x)=y=\dfrac{2x-1}{x+2}\\ \\y(x+2)=2x-1\\ \\yx+2y=2x-1\\ \\yx-2x=-1-2y\\ \\x(y-2)=-1-2y\\ \\x=\dfrac{-1-2y}{y-2}\\ \\y=f^{-1}(x)=\dfrac{-2x-1}{x-2}[/tex]

2.

[tex]f(x)=y=\dfrac{x-1}{2x+1}\\ \\y(2x+1)=x-1\\ \\2xy+y=x-1\\ \\2xy-x=-1-y\\ \\x(2y-1)=-1-y\\ \\x=\dfrac{-1-y}{2y-1}\\ \\y=f^{-1}(x)=\dfrac{-x-1}{2x-1}[/tex]

3.

[tex]f(x)=y=\dfrac{x+2}{-2x+1}\\ \\y(-2x+1)=x+2\\ \\-2xy+y=x+2\\ \\-2xy-x=2-y\\ \\x(-2y-1)=2-y\\ \\x=\dfrac{2-y}{-2y-1}\\ \\y=f^{-1}(x)=\dfrac{2-x}{-2x-1}=\dfrac{x-2}{2x+1}[/tex]

4.

[tex]f(x)=y=\dfrac{2x+1}{2x-1}\\ \\y(2x-1)=2x+1\\ \\2xy-y=2x+1\\ \\2xy-2x=1+y\\ \\x(2y-2)=1+y\\ \\x=\dfrac{1+y}{2y-2}\\ \\y=f^{-1}(x)=\dfrac{1+x}{2(x-1)}[/tex]

5.

[tex]f(x)=y=\dfrac{x+2}{x-1}\\ \\y(x-1)=x+2\\ \\xy-y=x+2\\ \\xy-x=2+y\\ \\x(y-1)=2+y\\ \\x=\dfrac{2+y}{y-1}\\ \\y=f^{-1}(x)=\dfrac{x+2}{x-1}[/tex]

How would adding a score of 0 to this data affect the mean and median game scores? 100, 120, 130, 150

Answers

Answer:

100, 120

Step-by-step explanation:

The mean of the given data is 500/4, or 125.

If a score of 0 were added to this data, the mean would be smaller, because we'd have to divide the five scores by 5.  The mean would now be 100.

The median of the given data is the average of the middle two scores, that is, of 120 and 130.  It's 125.

If we were to add the score of 0 to the four data points, obtaining

0, 100, 120, 130, 150,

the median would be the middle number:  120.

Mean is the average of the data set and mode is the middle terms or average of the middle terms of the data set.

Given information-

The given data consists the values 100,120,130,150.

Total number of values is four.

Mean

Mean is the average of the given data.

The mean of the given data can be calculated as,

[tex]m=\dfrac{100+120+130+150}{4} [/tex]

[tex]m=\dfrac{500}{4} [/tex]

[tex]m=125[/tex]

Medium

For even terms the medium is the average of the middle terms.

The medium of the given data can be calculates as,

[tex]M=\dfrac{120+130}{2} [/tex]

[tex]M=125[/tex]

Adding a score of 0.

The data consists of the values will be 0,100,120,130,150.

Total number of values is five.

Mean

The mean of the given data can be calculated as,

[tex]m=\dfrac{0+100+120+130+150}{5} [/tex]

[tex]m=\dfrac{500}{5} [/tex]

[tex]m=100[/tex]

Medium

Medium for the odd terms is equal to the middle terms.

The medium of the given data can be calculates as,

For the

[tex]M=120[/tex]

Thus adding a score of 0 the mean of the given data is reduced with number 25 and the mode reduced with number 5.

Learn more about the mean and medium here;

https://brainly.com/question/11263643

(10Q) Convert the angle to decimal degrees and round to the nearest hundredth of a degree.

Answers

Answer:

B. 13.26

Step-by-step explanation:

To go from the Degree-Minute-Second (DMS) system to a numeric one, we simply use this formula:

numeric = d + (min/60) + (sec/3600)

Where you take the degree number as is (13 in our case), then you divide the number of minutes by 60 (15 in our case) and the number of seconds by 3600 (36 in our case) and you add everything together.

So, if we plug in our numbers, we have

numeric = 13 + (15/60) + (36/3600)

numeric = 13 + 0.25 + 0.01

numeric = 13.26

What is the planes ground distance to the airport (picture provided)

Answers

Answer:

d. ≈ 37,106 ft

Step-by-step explanation:

The angle of depression to the plane to the airport is the same as the angle of elevation from the airport to the plane. Therefore, the angle of elevation form the airport to the plane is 6°.

Notice that the height of the plane is the opposite side of the angle of elevation and the ground distance is the adjacent side of the angle of elevation. To find ground distance we need to use a trig function to relate the opposite side and the adjacent side; that trig function is tangent:

[tex]tan(\alpha )=\frac{opposite-side}{adjacent-side}[/tex]

[tex]tan(6)=\frac{3900ft}{ground-distance}[/tex]

[tex]ground-distance=\frac{3900ft}{tan(6)}[/tex]

[tex]ground-distance=37106ft[/tex]

We can conclude that the plane's ground distance to the airport is approximately 37,106 feet

Sound travels through sea water at a speed of about 1500 meters per second. At this rate, how far will sound travel in 2 minutes?

Answers

Answer:

180,000 m

Step-by-step explanation:

There are 60 seconds in a minute, so:

2 min × 60 s/min = 120 s

Distance = rate × time

d = 1500 m/s × 120 s

d = 180,000 m

There are 12 pieces of fruit in a bowl 1/4 of the fruit pieces draw a fraction strip to show how many apples pieces are in the bowl

Answers

To find out how many apple pieces are in the bowl when 1/4 of 12 fruit pieces are apples, divide 12 by 4, which equals 3. So, there would be 3 apples in the bowl.

Understanding fractions is an important part of mathematics. In this scenario, we have a total of 12 pieces of fruit in a bowl and we want to find out how many of those are apple pieces if 1/4 of the fruit pieces are apples.

Since there's a total of 12 pieces, we divide this number into 4 equal parts (fractions strips) to determine what one quarter (1/4) of the bowl would contain.

To visualize this, you can draw a rectangle and divide it into 4 equal horizontal sections (fractions strips), because 1/4 means one part out of four equal parts. When you divide 12 by 4, you get 3. So, each section of your fraction strip would represent 3 pieces of fruit. This means that if 1/4 of the pieces are apples, there are 3 apples in the bowl.

The surface area of a pyramid is 327 square meters. what is the surface area of a similar pyramid that is smaller by a scale factor of 2 − 3 ? round to the nearest hundredth if necessary

Answers

Answer:

[tex]\boxed{\text{144.33 m}^{2}}[/tex]

Step-by-step explanation:

The scale factor (C) is the ratio of corresponding parts of the two pyramids.  

The ratio of the areas is the square of the scale factor.

[tex]\dfrac{A_{1}}{ A_{2}} = C^{2}\\\\\dfrac{\text{327 m}^{2}}{A_{2}} = \left (\dfrac{1}{\frac{2}{3}}\right)^{2}\\\\ \dfrac{\text{327 m}^{2}}{A_{2}}= \dfrac{9}{4}\\\\\text{1308 m}^{2}= 9A_{2}\\\\A_{2} = \text{145.33 m}^{2}\\\text{The surface area of the smaller pyramid is \boxed{\text{145.33 m}^{2}}}[/tex]

Please help me out!!!!!

Answers

We have three pythagoras:

4² + y² = z²

16² + y² = x²

x² + z² = 20²

Now let's think:

4² + y² = z²

y² = z² - 4²

16² + y² = x²

16² + z² - 4² = x²

x² + z² = 20²

16² + z²- 4² + z² = 20²

2z² = 20² - 16² + 4²

2z² = (2.10)² - (2^4)² + (2²)²

2z² = 2².10² - 2^8 + 2^4

z² = 2.10² - 2^7 + 2^3

z² = 200 - 128 + 8

z² = 208 - 128

z² = 80

z = √80

80 | 2

40 | 2

20 | 2

10 | 2

5 | 5

1

80 = 5.2^4

So

√80 = 4√5

z = 4√5

If the length of an arc is 12 inches and the radius of the circle is 10 inches, what is the measure of the arc? 216 degrees 270 degrees 288 degrees

Answers

Answer:

216 degrees

Step-by-step explanation:

step 1

Find the circumference of the circle

The circumference of the circle is equal to

[tex]C=2\pi r[/tex]

we have

[tex]r=10\ in[/tex]

substitute

[tex]C=2\pi (10)[/tex]

[tex]C=20\pi\ in[/tex]

step 2

Find the measure of the arc if the length of the arc is 12π in

Remember that

The circumference of a circle subtends a central angle of 360 degrees

so

by proportion

[tex]\frac{360}{20\pi}=\frac{x}{12\pi}\\ \\x=360*12/20\\ \\x= 216\°[/tex]

A theatre sells 1986 tickets. 234 more adult tickets are sold than child tickets, and 186 more child tickets are sold than student tickets. How many child tickets are sold?

Answers

Answer:

  646 child tickets are sold

Step-by-step explanation:

Let c represent the number of child tickets sold. Then (c-186) is the number of student tickets sold, and (c+234) is the number of adult tickets sold. The total number sold is ...

  (c -186) + c + (c+234) = 1986

  3c +48 = 1986 . . . simplify

  c + 16 = 662 . . . . divide by 3

  c = 646 . . . . . . . . . subtract 16

The number of child tickets sold is 646.

The number of child tickets sold is 646.

To find the number of child tickets sold at the theatre, we can define some variables and set up equations based on the information provided.

Let:

x = number of student tickets soldy = number of child tickets soldz = number of adult tickets sold

From the information given, we have the following relationships:

The total number of tickets sold is 1986:
x + y + z = 1986

There are 234 more adult tickets sold than child tickets:
z = y + 234

There are 186 more child tickets sold than student tickets:
y = x + 186

Now we can substitute the equations for z and y into the first equation:

Substitute z in the total tickets equation:
x + y + (y + 234) = 1986

This simplifies to:
x + 2y + 234 = 1986

Next, simplify further by isolating x:
x + 2y = 1986 − 234
x + 2y = 1752

Now, we substitute y using the equation y=x+186:

Replace y in the equation:
x + 2(x + 186) = 1752

This simplifies to:
x + 2x + 372 = 1752
3x + 372 = 1752

Now isolate x:
3x = 1752 − 372
3x = 1380
x = 31380​
x = 460

Now that we have the value for x, we can find y:

Substitute x back into the equation for y:
y = 460 + 186
y = 646

Finally, we calculate z to confirm:  

Using z = y + 234:
z = 646 + 234
z = 880

Now we can verify:
x + y + z = 460 + 646 + 880 = 1986

So the number of child tickets sold is y = 646.

Which of the following shows the graph of y = 4x + 3?

Answers

Answer:

the graph of y=4 x+3 is a straight line that passes through the point (0,3) and (\frac{-3}{4},0)

Step-by-step explanation:

The graph of the exponential function y = 4ˣ + 3 is attached below.

Exponential function

An exponential function is in the form:

y = abˣ

Where y, x are variables, a is the initial value of y and b is the multiplication factor.

Given an exponential function of y = 4ˣ + 3

The graph of the exponential function y = 4ˣ + 3 is attached below.

Find out more on Exponential function at: https://brainly.com/question/12940982

A number decreased by 15 is less than 35. What numbers satisfy this condition?

Answers

Answer:

Any number between 36-49

Step-by-step explanation:

The number has to be higher then 35. It has to be less then 50 because any number 50 or above would be more then/equal to 35

Answer: x < 50

Explination:

The given equation is x - 15 < 35.

To solve you add 15 to both sides:

x - 15 + 15 < 35 + 15

And you are left with a simplified answer of x < 50.

Devontre rode his bike uphill 5 miles and then back downhill. The rate at which Devontre traveled downhill was 20 mph faster than his rate going uphill. If it took him 20 minutes longer to ride uphill than downhill, what was his uphill rate?

Answers

Answer:

10 mph

Step-by-step explanation:

Let x mph be Devontre rate uphill, then x+20 mph its his rate downhill.

1. Time uphill:

[tex]\dfrac{5}{x}\ hours[/tex]

2. Time downhill:

[tex]\dfrac{5}{x+20}\ hours[/tex]

3. If it took him 20 minutes (1/3 hour) longer to ride uphill than downhill, then

[tex]\dfrac{5}{x}-\dfrac{5}{x+20}=\dfrac{1}{3}[/tex]

Solve this equation:

[tex]\dfrac{5(x+20)-5x}{x(x+20)}=\dfrac{1}{3}\\ \\\dfrac{100}{x(x+20)}=\dfrac{1}{3}\\ \\300=x(x+20)\\ \\x^2+20x-300=0\\ \\D=20^2-4\cdot (-300)=400+1200=1600\\ \\x_{1,2}=\dfrac{-20\pm \sqrt{1600}}{2}=\dfrac{-20\pm 40}{2}=-30,\ 10.[/tex]

The rate cannot be negative, thus, x=10 mph (rate uphill).

if you horizontally shift the square root parent function, F(x) = [tex]\sqrt{x}[/tex], left four units, what is the equation of the new function?

Answers

ANSWER

[tex]g(x) = \sqrt{x + 4} [/tex]

EXPLANATION

The parent square root function is

[tex]f(x) = \sqrt{x} [/tex]

The translation

[tex]g(x ) = \sqrt{x + k} [/tex]

Will shift the graph of f(x) k units to left.

The translation

[tex]g(x) = \sqrt{x -k} [/tex]

will shift the graph of f(x) to the right by k units.

Therefore if f(x) is shifted 4 units to the left its new equation is:

[tex]g(x) = \sqrt{x + 4} [/tex]

Final answer:

Shifting a function left involves adding a value to the x-component. Hence, shifting the square root parent function, F(x) = √x, to the left by 4 units results in a new function F(x) = √(x+4).

Explanation:

When a function is shifted horizontally, it impacts the input or the x-values. A shift to the left is represented by the addition of a value to the x-component of the function. Hence, to shift the square root parent function, F(x) = √x, to the left by 4 units, you would add 4 to 'x' in the function, which results in a new function F(x) = √(x+4). "This function represents the original square root parent function shifted 4 units to the left".

Learn more about Horizontal Shift of Function here:

https://brainly.com/question/36050732

#SPJ3

Which value of x satisfies both -9x + 4y = 8 and -3x − y = 4 given the same value of y?

A-1/7
B-7/9
C-8/7
D-9
E-4/3

Answers

Answer:

C

Step-by-step explanation:

Since y will have same value, y doesn't really matter. Thus,

We can solve for y in the 2nd equation as:

-3x - y = 4

-3x - 4 = y

Now we can plug it into the first and solve for x:

-9x + 4y = 8

-9x + 4(-3x - 4) = 8

-9x - 12x - 16 = 8

-21x = 8 + 16

-21x = 24

x = 24/-21

x = -8/7

Correct answer is C.

Answer: Option C

C-8/7

Step-by-step explanation:

We have the following equations

 [tex]-9x + 4y = 8[/tex] and [tex]-3x - y = 4[/tex]

We want to find a value of x that satisfies both equations and obtains the same value of y.

To find the value of x, clear the value of y in both equations

[tex]-9x + 4y = 8\\\\-9x + 4y -8 = 0\\\\-9x -8 = -4y\\\\y = \frac{9}{4}x +2[/tex]

------------------------------

[tex]-3x - y = 4\\\\\-3x -y - 4 = 0\\\\y = -3x -4[/tex]

Now solve both equations and solve for x.

[tex]\frac{9}{4}x +2 = -3x -4\\\\\frac{21}{4}x = -4-2\\\\\frac{21}{4}x = -6\\\\21x = -24\\\\x = -\frac{24}{21}\\\\x = -\frac{8}{7}[/tex]

The answer is [tex]x = -\frac{8}{7}[/tex]

Find the odds in favor of getting all heads on nine coin tosses.
A. 1 to 508
B. 1 to 518
C. 1 to 511
D. 1 to 505

Answers

Answer:

(C) 1 : 511

Step-by-step explanation:

Possible outcome for every throw = 2 (head or tail)

Total possible outcome for 9 throws

= 2⁹

= 512

Odd of getting all head

= 1 : 511

Final answer:

The odds in favor of getting all heads on nine coin tosses is 1 to 512.

Explanation:

The odds in favor of getting all heads on nine coin tosses can be calculated as the number of favorable outcomes divided by the number of possible outcomes. In this case, we want all nine coin tosses to result in heads, which is only 1 favorable outcome. The total number of possible outcomes for nine coin tosses is 2^9 = 512.

Therefore, the odds in favor of getting all heads on nine coin tosses is 1 to 512. Comparing this to the options given, the correct answer is A. 1 to 508.

Learn more about Odds in coin tosses here:

https://brainly.com/question/31687847

#SPJ2

a fruit company delivers its fruit in two types of boxes: large and small. a delivery of 2 large boxes and 3 small boxes has a total weight of 78 kilograms. a delivery of 6 large boxes and 5 small boxes has a total weight of 180 kilograms. how much does each type of box weigh ?
weight of each large box: ? kilogram(s)
weight of each small box: ? kilogram(s)

Answers

Answer:

large box: 18.75 kgsmall box: 13.5 kg

Step-by-step explanation:

The information given in the problem statement lets you write two equations relating box weights (L for the large box weight; S for the small box weight).

  2L +3S = 78 . . . . . . weight of the first collection of boxes

  6L +5S = 180 . . . . . weight of the second collection of boxes

We can subtract 3S from the first equation and multiply it by 3 and we have ...

  2L = 78 -3S . . . . . . subtract 3S [eq3]

  6L = 234 -9S . . . . . multiply by 3

Now we have an expression for 6L that can substitute into the second equation:

  (234 -9S) +5S = 180

  234 -4S = 180 . . . . . . . . simplify

  54 -4S = 0 . . . . . . . . . . . subtract 180

  13.5 -S = 0 . . . . . . . . . . . divide by 4

  13.5 = S . . . . . . . . . . . . . add S

From [eq3] above, we can now find L.

  2L = 78 -3(13.5) = 37.5

  L = 37.5/2 = 18.75

The weight of the large box is 18.75 kg; the small box is 13.5 kg.

_____

A graphing calculator can provide an alternate means o finding the solution.

In the fifth grade at Lenape Elementary School, there are 4/7 as many girls as there are boys. There are 66 students in the fifth grade. How many students are girls?

Answers

Answer:

24 girls.

Step-by-step explanation:

If the number of boys is x then:

x + 4/7 x = 66

x = 66  / 1 4/7

x = 66 *  7/11

= 6 * 7

= 42.

So the number of  girls is 66 - 42

= 24.

The quantitative relation between two amounts shows the number of times one value contains or is contained within the other:

The number of girls students is 24.

Given

In the fifth grade at Lenape Elementary School, there are 4/7 as many girls as there are boys.

There are 66 students in the fifth grade.

What is a ratio?

The quantitative relation between two amounts shows the number of times one value contains or is contained within the other:

There are 66 students in fifth grade, and there is a 4:7 girl to boy ratio.

[tex]= \dfrac{66}{11}\\\\= 6[/tex]

Then,

the number of girls is = [tex]6 \times 4=24[/tex]

The number of boys is = [tex]6 \times 7 = 42[/tex]

Hence, the number of girls students is 24.

To know more about Ratio click the link given below.

https://brainly.com/question/4573383

Other Questions
Read the letter. Dear Mom and Dad, Last night, I took part in a battle that just might change the war for us. Right before midnight, planes began taking off, delivering supplies and soldiers to our destination. As a paratrooper I was being sent to help capture key locations from the enemy. Since it was dark and the weather wasn't the greatest, my pilot dropped me a mile away from my target in Normandy. I had to mix in with an unfamiliar unit, but we were still able to complete our mission successfully. I don't think the enemies even saw us coming! A letter like this likely would have been written by a U.S. soldier in what war? Korean War Vietnam War World War II Imagine that muskrats are removed from wetland ecosystem predict what would happen both to producers and to secondary consumers.. What type of bond forms between carbon and oxygen Please help meI love you!!!!!!! 2. MONEY Hans opens a savings account by depositing$1200. The account earns 3 percent interestcompounded weekly. How much will be in theaccount in 10 years if he makes no more deposits?Assume that there are exactly 52 weeks in a year andround your answer to the nearest cent. The sensory organs are responsible for which of the following?A. SmellingB. BalancingC. Both A and BD. Neither A nor B if you have 17 bananas but someone steals them and now you have 7 how many did he take without using subtraction and division In what way is the stock market similar to other markets such as stores where consumers buy goodsA. Supply is determined by the government B. Prices are determined by supply and demand C. Quality is controlled by the workers D. Demand is controlled by the producers Social Darwinists believed that A) religious and scientific worlds should be kept separate. B) powerful nations were meant to dominate weaker societies. C) the teaching of evolution theories in American public schools was unconstitutional. D) human beings had reached the point where competition among nations was no longer necessary. Explain how some collaborators helped make genocide possible For a set of data, the average squared deviation from the mean, with a denominator of n-1 is called the: 1. Which biome has a large canopy? 2. Which biome contains mostly deciduous trees? 3. Which biome is also known as a prairie? 4. Which biome has cold, dark winters, and sunny cool summers? Jack has $4.95 in dimes and quarters. He has 30 coins total. How many dimes and how many quarters does he have ? Mercedes is going to have her car fixed. Cairo Prince Auto Tech charges $45 for an estimate plus $24 per additional hour of work. Tarantinos Ca Garage offers a free estimate and it changes $30 per additional hour of work. Which of the following statement are true? Select all that apply. Which of the following is an example of the built environment?A.a parkB.squirrelsC.a mountainD.snowfall In her essay, "loneliness . . . an american malady," carson mccullers states, "it has been said that loneliness is the great american malady. what is the nature of this loneliness? it would seem essentially to be a quest for identity." what does mccullers mean when she says that americans suffer from loneliness, and that this malady is actually a quest for identity and acceptance? cite evidence from the text to support your response. Which achievement is the most important for the writer?driving a carpassing as Aryanknowing someone who knows Hitlerbeing liked by her principal Solve for x a)14.5 b)10 c)6/3 d) 20 suppose Paola uses 18 tablespoons of iced tea mix. How many cups of water does she need to use? ANSWER QUICKLY PLEASE ITS URGENTSolve the equation for the unknown variable. X^3 = -125